Search results for: trained athletes
1083 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 931082 Effects of Acacia Honey Drink Ingestion during Rehydration after Exercise Compared to Sports Drink on Physiological Parameters and Subsequent Running Performance in the Heat
Authors: Foong Kiew Ooi, Aidi Naim Mohamad Samsani, Chee Keong Chen, Mohamed Saat Ismail
Abstract:
Introduction: Prolonged exercise in a hot and humid environment can result in glycogen depletion and associated with loss of body fluid. Carbohydrate contained in sports beverages is beneficial for improving sports performance and preventing dehydration. Carbohydrate contained in honey is believed can be served as an alternative form of carbohydrate for enhancing sports performance. Objective: To investigate the effectiveness of honey drink compared to sports drink as a recovery aid for running performance and physiological parameters in the heat. Method: Ten male recreational athletes (age: 22.2 ± 2.0 years, VO2max: 51.5 ± 3.7 ml.kg-1.min-1) participated in this randomized cross-over study. On each trial, participants were required to run for 1 hour in the glycogen depletion phase (Run-1), followed by a rehydration phase for 2 hours and subsequently a 20 minutes time trial performance (Run-2). During Run-1, subjects were required to run on the treadmill in the heat (31°C) with 70% relative humidity at 70 % of their VO2max. During rehydration phase, participants drank either honey drink or sports drink, or plain water with amount equivalent to 150% of body weight loss in dispersed interval (60 %, 50 % and 40 %) at 0 min, 30 min and 60 min respectively. Subsequently, time trial was performed by the participants in 20 minutes and the longest distance covered was recorded. Physiological parameters were analysed using two-way ANOVA with repeated measure and time trial performance was analysed using one-way ANOVA. Results: Result showed that Acacia honey elicited a better time trial performance with significantly longer distance compared to water trial (P<0.05). However, there was no significant difference between Acacia honey and sport drink trials (P > 0.05). Acacia honey and sports drink trials elicited 249 m (8.24 %) and 211 m (6.79 %) longer in distance compared to the water trial respectively. For physiological parameters, plasma glucose, plasma insulin and plasma free fatty acids in Acacia honey and sports drink trials were significantly higher compared to the water trial respectively during rehydration phase and time trial running performance phase. There were no significant differences in body weight changes, oxygen uptake, hematocrit, plasma volume changes and plasma cortisol in all the trials. Conclusion: Acacia honey elicited greatest beneficial effects on sports performance among the drinks, thus it has potential to be used for rehydration in athletes who train and compete in hot environment.Keywords: honey drink, rehydration, sports performance, plasma glucose, plasma insulin, plasma cortisol
Procedia PDF Downloads 3091081 Assessment on the Conduct of Arnis Competition in Pasuc National Olympics 2015: Basis for Improvement of Rules in Competition
Authors: Paulo O. Motita
Abstract:
The Philippine Association of State Colleges and University (PASUC) is an association of State owned and operated higher learning institutions in the Philippines, it is the association that spearhead the conduct of the Annual National Athletic competitions for State Colleges and Universities and Arnis is one of the regular sports. In 2009, Republic Act 9850 also known as declared Arnis as the National Sports and Martial arts of the Philippines. Arnis an ancient Filipino Martial Arts is the major sports in the Annual Palarong Pambansa and other school based sports events. The researcher as a Filipino Martial Arts master and a former athlete desired to determine the extent of acceptability of the arnis rules in competition which serves as the basis for the development of arnis rules. The study aimed to assess the conduct of Arnis competition in PASUC Olympics 2015 in Tugegarao City, Cagayan, Philippines.the rules and conduct itself as perceived by Officiating officials, Coaches and Athletes during the competition last February 7-15, 2015. The descriptive method of research was used, the survey questionnaire as the data gathering instrument was validated. The respondents were composed of 12 Officiating officials, 19 coaches and 138 athletes representing the different regions. Their responses were treated using the Mean, Percentage and One-way Analysis of Variance. The study revealed that the conduct of Arnis competition in PASUC Olympics 2015 was at the low extent to moderate extent as perceived by the three groups of respondents in terms of officiating, scoring and giving violations. Furthermore there is no significant difference in the assessment of the three groups of respondents in the assessment of Anyo and Labanan. Considering the findings of the study, the following conclusions were drawn: 1). There is a need to identify the criteria for judging in Anyo and a tedious scrutiny on the rules of the game for labanan. 2) The three groups of respondents have similar views towards the assessment on the overall competitions for anyo that there were no clear technical guidelines for judging the performance of anyo event. 3). The three groups of respondents have similar views towards the assessment on the overall competitions for labanan that there were no clear technical guidelines for majority rule of giving scores in labanan. 4) The Anyo performance should be rated according to effectiveness of techniques and performance of weapon/s that are being used. 5) On other issues and concern towards the rules of competitions, labanan should be addressed in improving rules of competitions, focus on the applications of majority rules for scoring, players shall be given rest interval, a clear guidelines and set a standard qualifications for officiating officials.Keywords: PASUC Olympics 2015, Arnis rules of competition, Anyo, Labanan, officiating
Procedia PDF Downloads 4581080 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 1061079 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7
Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit
Abstract:
In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety
Procedia PDF Downloads 681078 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 4831077 Photomicrograph-Based Neuropathology Consultation in Tanzania; The Utility of Static-Image Neurotelepathology in Low- And Middle-Income Countries
Authors: Francis Zerd, Brian E. Moore, Atuganile E. Malango, Patrick W. Hosokawa, Kevin O. Lillehei, Laurence Lemery Mchome, D. Ryan Ormond
Abstract:
Introduction: Since neuropathologic diagnosis in the developing world is hampered by limitations in technical infrastructure, trained laboratory personnel, and subspecialty-trained pathologists, the use of telepathology for diagnostic support, second-opinion consultations, and ongoing training holds promise as a means of addressing these challenges. This research aims to assess the utility of static teleneuropathology in improving neuropathologic diagnoses in low- and middle-income countries. Methods: Consecutive neurosurgical biopsy and resection specimens obtained at Muhimbili National Hospital in Tanzania between July 1, 2018, and June 30, 2019, were selected for retrospective, blinded static-image neuropathologic review followed by on-site review by an expert neuropathologist. Results: A total of 75 neuropathologic cases were reviewed. The agreement of static images and on-site glass diagnosis was 71% with strict criteria and 88% with less stringent criteria. This represents an overall improvement in diagnostic accuracy from 36% by general pathologists to 71% by a neuropathologist using static telepathology (or 76% to 88% with less stringent criteria). Conclusions: Telepathology offers a suitable means of providing diagnostic support, second-opinion consultations, and ongoing training to pathologists practicing in resource-limited countries. Moreover, static digital teleneuropathology is an uncomplicated, cost-effective, and reliable way to achieve these goals.Keywords: neuropathology, resource-limited settings, static image, Tanzania, teleneuropathology
Procedia PDF Downloads 1021076 The Effects of Chamomile on Serum Levels of Inflammatory Indexes to a Bout of Eccentric Exercise in Young Women
Authors: K. Azadeh, M. Ghasemi, S. Fazelifar
Abstract:
Aim: Changes in stress hormones can be modify response of immune system. Cortisol as the most important body corticosteroid is anti-inflammatory and immunosuppressive hormone. Normal levels of cortisol in humans has fluctuated during the day, In other words, cortisol is released periodically, and regulate through the release of ACTH circadian rhythm in every day. Therefore, the aim of this study was to determine the effects of Chamomile on serum levels of inflammatory indexes to a bout of eccentric exercise in young women. Methodology: 32 women were randomly divided into 4 groups: high dose of Chamomile, low dose of Chamomile, ibuprofen and placebo group. Eccentric exercise included 5 set and rest period between sets was 1 minute. For this purpose, subjects warm up 10 min and then done eccentric exercise. Each participant completed 15 repetitions with optional 20 kg weight or until can’t continue moving. When the subject was no longer able to continue to move, immediately decreased 5 kg from the weight and the protocol continued until cause exhaustion or complete 15 repetitions. Also, subjects received specified amount of ibuprofen and Chamomile capsules in target groups. Blood samples in 6 stages (pre of starting pill, pre of exercise protocol, 4, 24, 48 and 72 hours after eccentric exercise) was obtained. The levels of cortisol and adrenocorticotropic hormone levels were measured by ELISA way. K-S test to determine the normality of the data and analysis of variance for repeated measures was used to analyze the data. A significant difference in the p < 0/05 accepted. Results: The results showed that Individual characteristics including height, weight, age and body mass index were not significantly different among the four groups. Analyze of data showed that cortisol and ACTH basic levels significantly decreased after supplementation consumption, but then gradually significantly increased in all stages of post exercise. In High dose of Chamomile group, increasing tendency of post exercise somewhat less than other groups, but not to a significant level. The inter-group analysis results indicate that time effect had a significant impact in different stages of the groups. Conclusion: The results of this study, one session of eccentric exercise increased cortisol and ACTH hormone. The results represent the effect of high dose of Chamomile in the prevention and reduction of increased stress hormone levels. As regards use of medicinal plants and ibuprofen as a pain medication and inflammation has spread among athletes and non-athletes, the results of this research can provide information about the advantages and disadvantages of using medicinal plants and ibuprofen.Keywords: chamomile, inflammatory indexes, eccentric exercise, young girls
Procedia PDF Downloads 4171075 Current Perspectives of Bemitil Use in Sport
Authors: S. Ivanova, K. Ivanov
Abstract:
Bemitil (2-ethylthiobenzimidazole hydrobromide) is a synthetic adaptogen and actoprotector, with wide-ranging pharmacological activities such as nootropic, antihypoxic, antioxidant, immunostimulant. The intake of Bemitil increases mental and physical performance and could be applied under either normal or extreme conditions. Until 2017 Bemitil was not considered as doping and was used by professional athletes more than 30 years because of its high efficiency and safety. The drug was included in WADA monitoring programme for 2018, and most likely it would be included in WADA Prohibited List for 2019. Usually, a substance/method is included in WADA Prohibited List if it meets any two of the following three criteria: the potential to enhance or enhances sports performance/ potential health risk to the athlete/ violates the spirit of sport. Bemitil has high performance-enhancing potential, but it is also safe- it is controversial whether it should be considered as doping.Keywords: doping, bemitil, sport, actoprotector
Procedia PDF Downloads 4741074 Effects of Sexual Activities in Male Athletes Performance
Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Massimo Briamo, Giovanni Abalsamo
Abstract:
Most of the benefits of sport come from related physical activity, however, there are secondary psychological positive effects. There are also obvious disadvantages, high tensions related to failure, injuries, eating disorders and burnout. Depressive symptoms and illnesses related to anxiety or stress can be preventable or even simply alleviated through regular activity and exercise. It has been shown that the practice of a sport brings physical benefits, but can also have psychological and spiritual benefits. Reduced performance in male individuals has been linked to sexual activity before competitions in the past. The long-standing debate about the impact of sexual activity on sports performance has been controversial in the mainstream media in recent decades. This salacious topic has generated extensive discussion, although its high-quality data has been limited. Literature has, so far, mainly included subjective assessments from surveys. However, such surveys can be skewed as these assessments are based on individual beliefs, perceptions, and memory. There has been a long discussion over the years but even there objective data has been lacking. One reason behind coaches' bans on sexual activity before sporting events may be the belief that abstinence increases frustration, which in turn is shifted into aggressive behavior toward competitors. However, this assumption is not always valid. In fact, depriving an athlete of a normal activity can cause feelings of guilt and loss of concentration. Sexual activity during training can promote relaxation and positively influence performance. The author concludes that, although there is a need for scientific research in this area, it seems that sexual intercourse does not decrease performance unless it is accompanied by late night socialization, loss of sleep or drinking. Although the effects of sexual engagement on aerobic and strength athletic performance have not been definitively established, most research seems to rule out a direct impact. In order to analyze, as much as possible without bias, whether sexual activity significantly affects an athletic performance or not, we sampled 5 amateur athletes, between 22 and 25 years old and all male. The study was based on the timing of 4 running races of 5 champions. We asked participants to respect guidelines to avoid sexual activity (sex or masturbation) 12 hours before 2 of the 4 competitions, and to practice before the remaining 2 races.In doing so, we were able to compare and analyze the impact of activity and abstinence on performance results. We have come to the conclusion that sexual behavior on athletic performance needs to be better understood, more randomized trials and high-quality controls are strongly needed but available information suggests that sexual activity the day before a race has no negative effects on performance.Keywords: sex, masturbation, male performance, soccer
Procedia PDF Downloads 711073 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 281072 The Return of the Witches: A Class That Motivates the Analysis of Gender Bias in Engineer
Authors: Veronica Botero, Karen Ortiz
Abstract:
The Faculty of Mines, of the National University of Colombia, Medellín Campus, is a faculty that has 136 years of history and represents one of the most important study centers in the country in the field of engineering and scientific research, as well as a reference at a global, national, and Latin American level in this matter. Despite being a faculty with so many years of history and having trained a large number of graduates under the traditional mechanistic and androcentric paradigm, which reproduces the logic of the traditional scientific method and the differentiated and severe look between subject-object of research among other binarisms, has also been the place where professors and students have become aware of the need to transform this paradigm into engineering, and focus on the sustainability of diversity and the well-being of the natural and social systems that inhabit the territories and has opened possibilities for the implementation of classes that address feminist pedagogical theories and practices. The class: The return of the witches, is an initiative that constitutes an important training exercise that provides students with the study of feminisms, the importance of closing gender gaps and critical readings on the traditional paradigm of engineering. The objective of this article is to present a systematization of the experience of design, implementation and development of this elective class, describing the tensions that arose at the time when a subject of this style was created and proposed in the Department of Geosciences and Environment, from the Faculty of Mines in 2022; the reactions of the groups of students who have taken it and their perceptions and opinions about ecofeminism as proposals for critical analysis and practices in relation to the environment and, above all, how their readings of the world have changed after having studied this subject for a semester. The pedagogical journey and the feminist methodologies that have been designed and adjusted over two years of work will be explained based on the sharing of situated knowledge of the students and the two teachers who teach the course, who pose challenges to the dominant ideology in engineering since one of them is trained in human sciences and feminist studies and the other, although trained in civil engineering and geosciences, is a woman with diverse sexual orientation and is the first professor to have assumed the position of dean in the 135 years of history of the Faculty. The transformations in the life experience of the students are revealing since they affirm that the training process is forceful and powerful to outline a much more qualified and critical professional profile that contributes to the transformation of gender gaps in the country. This class is therefore a challenge in this Faculty of Engineering that still presents a dominant ideology on gender that has not been questioned or challenged before.Keywords: feminisms, gender equality, gender bias, engineering for life Manifiesto.
Procedia PDF Downloads 701071 Telephonic Communication in Palliative Care for Better Management of Terminal Cancer Patients in Rural India: An NGO Based Approach
Authors: Aditya Manna, L. K. Khanra, S. K. Sarkar
Abstract:
Aim: Due to financial incapability and the absence of manpower-poor families often fail to carry their advanced cancer patients to the nodal centers. This pilot study will explore whether communication by mobile phone can lessen this burden. Method: Initially a plan was generated regarding management of an advanced cancer patient in a nodal center at District Head Quarter. Subsequently every two week a trained social worker attached to the nodal center will follow up and give necessary advice and emotional support to the patients and their families through their registered mobile phone number. Patient’s family were also encouraged to communicate with the team by phone in case of fresh complain and urgency in between. Results: Since initiation in January 2013, 193 cancer patients were contacted by mobile phone every two weeks to enquire about their difficulties. In 76% of the situation trained social workers could give necessary advice by phone regarding management of their physical symptoms. Moreover, patient’s family was really overwhelmed by the emotional support offered by the team over the phone. Only 24% of cancer patients have to attend the nodal center for expert advice from Palliative Care specialists. Conclusion: This novel approach helped: (a) In providing regular physical and emotional support to the patients and their families. (b) In significantly reducing the financial and manpower problems of carrying patients to the nodal units. (c) In improving the quality of life of patients by continuous guidance. More and more team members can take help of this new strategy for better communication and uninterrupted care.Keywords: palliative care, terminal care, home based palliative care, rural india
Procedia PDF Downloads 3041070 Intelligent Indoor Localization Using WLAN Fingerprinting
Authors: Gideon C. Joseph
Abstract:
The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression
Procedia PDF Downloads 3471069 Decision Support System for Fetus Status Evaluation Using Cardiotocograms
Authors: Oyebade K. Oyedotun
Abstract:
The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.Keywords: decision support, cardiotocogram, classification, neural networks
Procedia PDF Downloads 3321068 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 1431067 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 861066 Teacher Training in Saudi Arabia: A Blend of Old and New
Authors: Ivan Kuzio
Abstract:
The GIZ/TTC project is the first of its kind in the Middle East, which allows the development of a teaching training programme to degree level based on modern methodologies. The graduates from this college are part of the Saudization programme and will, over the next four years be part of and eventually run the new Colleges of Excellence. The new Colleges of Excellence are being developed to create a local vocationally trained workforce and will run initially alongside the current Colleges of Technology.Keywords: blended learning, pedagogy, training, key competencies, social skills, cognitive development
Procedia PDF Downloads 3101065 Psychological Compatibility of Football Players According to Success Achievement and Failure Avoidance Motivation
Authors: Konstantin A. Bochaver, Alexandra O. Savinkina
Abstract:
The study analyzed the relationship between the homogeneity-heterogeneity of players in a football team and their efficiency. Compatible players were examined in terms of level of socio-psychological development of the team for which they act. It was shown that in teams of high level of socio-psychological development more compatible were athletes with different levels of failure avoidance motivation. But in low-level teams – bucking the trend. The homogeneity of success achievement motivation was not a factor in the effectiveness of the football team.Keywords: compatibility, failure avoidance motivation, football, heterogeneity, homogeneity, soccer, sport team, success achievement motivation
Procedia PDF Downloads 3651064 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 2051063 Getting to Know ICU Nurses and Their Duties
Authors: Masih Nikgou
Abstract:
ICU nurses or intensive care nurses are highly specialized and trained healthcare personnel. These nurses provide nursing care for patients with life-threatening illnesses or conditions. They provide the experience, knowledge and specialized skills that patients need to survive and recover. Intensive care nurses (ICU) are trained to make momentary decisions and act quickly when the patient's condition changes. Their primary work environment is in the hospital in intensive care units. Typically, ICU patients require a high level of care. ICU nurses work in challenging and complex fields in their nursing profession. They have the primary duty of caring for and saving patients who are fighting for their lives. Intensive care (ICU) nurses are highly trained to provide exceptional care to patients who depend on 24/7 nursing care. A patient in the ICU is often equipped with a ventilator, intubated and connected to several life support machines and medical equipment. Intensive Care Nurses (ICU) have full expertise in considering all aspects of bringing back their patients. Some of the specific responsibilities of ICU nurses include (a) Assessing and monitoring the patient's progress and identifying any sudden changes in the patient's medical condition. (b) Administration of drugs intravenously by injection or through gastric tubes. (c) Provide regular updates on patient progress to physicians, patients, and their families. (d) According to the clinical condition of the patient, perform the approved diagnostic or treatment methods. (e) In case of a health emergency, informing the relevant doctors. (f) To determine the need for emergency interventions, evaluate laboratory data and vital signs of patients. (g) Caring for patient needs during recovery in the ICU. (h) ICU nurses often provide emotional support to patients and their families. (i) Regulating and monitoring medical equipment and devices such as medical ventilators, oxygen delivery devices, transducers, and pressure lines. (j) Assessment of pain level and sedation needs of patients. (k) Maintaining patient reports and records. As the name suggests, critical care nurses work primarily in ICU health care units. ICUs are completely healthy and have proper lighting with strict adherence to health and safety from medical centers. ICU nurses usually move between the intensive care unit, the emergency department, the operating room, and other special departments of the hospital. ICU nurses usually follow a standard shift schedule that includes morning, afternoon, and night schedules. There are also other relocation programs depending on the hospital and region. Nurses who are passionate about data and managing a patient's condition and outcomes typically do well as ICU nurses. An inquisitive mind and attention to processes are equally important. ICU nurses are completely compassionate and are not afraid to advocate for their patients and family members. who are distressed.Keywords: nursing, intensive care unit, pediatric intensive care unit, mobile intensive care unit, surgical intensive care unite
Procedia PDF Downloads 781062 Assessing Two Protocols for Positive Reinforcement Training in Captive Olive Baboons (Papio anubis)
Authors: H. Cano, P. Ferrer, N. Garcia, M. Popovic, J. Zapata
Abstract:
Positive Reinforcement Training is a well-known methodology which has been reported frequently to be used in captive non-human primates. As a matter of fact, it is an invaluable tool for different purposes related with animal welfare, such as primate husbandry and environmental enrichment. It is also essential to perform some cognitive experiments. The main propose of this pilot study was to establish an efficient protocol to train captive olive baboons (Papio anubis). This protocol seems to be vital in the context of a larger research program in which it will be necessary to train a complete population of around 40 baboons. Baboons were studied at the Veterinary Research Farm of the University of Murcia. Temporally isolated animals were trained to perform three basic tasks. Firstly, they were required to take food prices directly from the researchers’ hands. Then a clicker sound or bridge stimulus was added each time the animal acceded to the reinforcement. Finally, they were trained to touch a target, consisted of a whip with a red ball in its end, with their hands or their nose. When the subject completed correctly this task, it was also exposed to the bridge stimulus and awarded with a food price, such as a portion of banana, orange, apple, peach or a raisin. Two protocols were tested during this experiment. In both of them, there were 6 series of 2min training periods each day. However, in the first protocol, the series consisted in 3 trials, whereas in the second one, in each series there were 5 trials. A reliable performance was obtained with only 6 days of training in the case of the 5-trials protocol. However, with the 3-trials one, 26 days of training were needed. As a result, the 5-trials protocol seems to be more effective than the 3-trials one, in order to teach these three basic tasks to olive baboons. In consequence, it will be used to train the rest of the colony.Keywords: captive primates, olive baboon, positive reinforcement training, Papio anubis, training
Procedia PDF Downloads 1241061 High Arousal and Athletic Performance
Authors: Turki Mohammed Al Mohaid
Abstract:
High arousal may lead to inhibited athletic performance, or high positive arousal may enhance performance is controversial. To evaluate and review this issue, 31 athletes (all male) were induced into high pre-determined goal arousal and high arousal without pre-determined goal motivational states and tested on a standard grip strength task. Paced breathing was used to change psychological and physiological arousal. It was noted that significant increases in grip strength performance occurred when arousal was high and experienced as delighted, happy, and pleasant excitement in those with no pre-determined goal motivational states. Blood pressure, heart rate, and other indicators of physiological activity were not found to mediate between psychological arousal and performance. In a situation where athletic performance necessitates maximal motor strength over a short period, performance benefits of high arousal may be enhanced by designing a specific motivational state.Keywords: high arousal, athletic, performance, physiological
Procedia PDF Downloads 1161060 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 1281059 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 821058 Intellectual Property Rights Applicability in the Sport Industry
Authors: Poopak Dehshahri
Abstract:
The applicability of intellectual property rights in the sports industry from the present paper’s perspective includes athletic skills, which are comprised of two parts: athletic movements and athletic methods. Also, the applicability pertaining to the athletes᾽ personality, such as the Name, the Image, the Voice, the Signature and their Shirt Number, are deemed as related to the sports natural persons. Radio and TV broadcasting rights of the sports events, the signs and symbols of the athletic institutions including the sign and symbol, trademark (brand name), the name and the place of residence of the sports clubs, the Sports events and the special sports, special slogan of the sports clubs or sports competitions and the sports clothing design are Included under the athletic institutions᾽ applicability of intellectual property rights.Keywords: sport industry, intellectual property, sport skills, right to fame, radio and television broadcasting right, sport sign
Procedia PDF Downloads 661057 Vibro-Tactile Equalizer for Musical Energy-Valence Categorization
Authors: Dhanya Nair, Nicholas Mirchandani
Abstract:
Musical haptic systems can enhance a listener’s musical experience while providing an alternative platform for the hearing impaired to experience music. Current music tactile technologies focus on representing tactile metronomes to synchronize performers or encoding musical notes into distinguishable (albeit distracting) tactile patterns. There is growing interest in the development of musical haptic systems to augment the auditory experience, although the haptic-music relationship is still not well understood. This paper represents a tactile music interface that provides vibrations to multiple fingertips in synchronicity with auditory music. Like an audio equalizer, different frequency bands are filtered out, and the power in each frequency band is computed and converted to a corresponding vibrational strength. These vibrations are felt on different fingertips, each corresponding to a different frequency band. Songs with music from different spectrums, as classified by their energy and valence, were used to test the effectiveness of the system and to understand the relationship between music and tactile sensations. Three participants were trained on one song categorized as sad (low energy and low valence score) and one song categorized as happy (high energy and high valence score). They were trained both with and without auditory feedback (listening to the song while experiencing the tactile music on their fingertips and then experiencing the vibrations alone without the music). The participants were then tested on three songs from both categories, without any auditory feedback, and were asked to classify the tactile vibrations they felt into either category. The participants were blinded to the songs being tested and were not provided any feedback on the accuracy of their classification. These participants were able to classify the music with 100% accuracy. Although the songs tested were on two opposite spectrums (sad/happy), the preliminary results show the potential of utilizing a vibrotactile equalizer, like the one presented, for augmenting musical experience while furthering the current understanding of music tactile relationship.Keywords: haptic music relationship, tactile equalizer, tactile music, vibrations and mood
Procedia PDF Downloads 1811056 Enhancing Experiential Education in Teacher Education Classes Through Simulated Person Methodology
Authors: Karen Armstrong
Abstract:
This study is a narrative inquiry into the use of simulated person methodology (SPM) in teacher education classes. This methodology -often used in medical schools- has tremendous benefits in terms of enhancing experiential education in teacher education classes. Literacy education is a major focus in elementary schools. New teachers must work with parents to ensure that children learn to read and expand their literacy horizons. The classes used in this narrative inquiry research consist of one graduate class on family literacy and two pre-service teacher education classes: literacy and culture and early and family literacy. Two scenarios were devised, both of which simulated a parent-teacher interview. In the first scenario, the parent is a reluctant father who is ashamed of his lack of reading ability and does not understand why literacy is important. His seven-year-old son, wanting to emulate his father, has suddenly transformed from an eager student to one who rejects the value of reading in loyalty to his father who cannot read. In the second scenario, a father is called in by the teacher because his son has started acting out in class. The mother in this scenario is temporarily absent from the home, and the father is now the sole caregiver. In each of the scenarios, students are the teachers who are problem-solving these dilemmas in a safe environment with the 'parent' who is a specially trained simulated person. Teacher candidates enact, with the trained simulated person, their strategies for encouraging parents to engage in the literacy development of their children. Teacher candidates attempt to offer support and encouragement to parents. This simulation strategy offers both beginning and more experienced teachers the opportunity to practice an interview with two distinct and contrasting family situations with regard to the literacy of young children. The paper discusses the details of the scenarios enacted in class and the reflective discussion through which students learn from the simulation.Keywords: experiential education, literacy, simulated person methodology, teacher education
Procedia PDF Downloads 1061055 The Use of Spirulina during Aerobic Exercise on the Performance of Immune and Consumption Indicators (A Case Study: Young Men After Physical Training)
Authors: Vahab Behmanesh
Abstract:
One of the topics that has always attracted the attention of sports medicine and sports science experts is the positive or negative effect of sports activities on the functioning of the body's immune system. In the present research, a course of aerobic running with spirulina consumption has been studied on the maximum oxygen consumption and the performance of some indicators of the immune system of men who have trained after one session of physical activity. In this research, 50 trained students were studied randomly in four groups, spirulina- aerobic, spirulina, placebo- aerobic, and control. In order to test the research hypotheses, one-way statistical method of variance (ANOVA) was used considering the significance level of a=0.005 and post hoc test (LSD). A blood sample was taken from the participants in the first stage test in fasting and resting state immediately after Bruce's maximal test on the treadmill until complete relaxation was reached, and their Vo2max value was determined through the aforementioned test. The subjects of the spirulina-aerobic running and placebo-aerobic running groups took three 500 mg spirulina and 500 mg placebo pills a day for six weeks and ran three times a week for 30 minutes at the threshold of aerobic stimulation. The spirulina and placebo groups also consumed spirulina and placebo tablets in the above method for six weeks. Then they did the same first stage test as the second stage test. Blood samples were taken to measure the number of CD4+, CD8+, NK, and the ratio of CD4+ to CD8+ on four occasions before and after the first and second stage tests. The analysis of the findings showed that: aerobic running and spirulina supplement alone increase Vo2max. Aerobic running and consumption of spirulina increases Vo2max more than other groups (P<0.05), +CD4 and hemoglobin of the spirulina-aerobic running group was significantly different from other groups (P=0.002), +CD4 of the groups together There was no significant difference, NK increased in all groups, the ratio of CD4+ to CD8+ between the groups had a significant difference (P=0.002), the ratio of CD4+ to CD8+ in the spirulina- aerobic group was lower than the spirulina and placebo groups. All in all, it can be concluded that the supplement of spirulina and aerobic exercise may increase Vo2max and improve safety indicators.Keywords: spirulina (Q2), hemoglobin (Q3), aerobic exercise (Q3), residual activity (Q2), CD4+ to CD8+ ratio (Q3)
Procedia PDF Downloads 1221054 A Profile of an Exercise Addict: The Relationship between Exercise Addiction and Personality
Authors: Klary Geisler, Dalit Lev-Arey, Yael Hacohen
Abstract:
It is a well-known fact that exercise has favorable effects on people's physical health, as well as mental well-being. However, as for as excessive exercise, it may likely elevate negative consequences (e.g., physical injuries, negligence of everyday responsibilities such as work, family life). Lately, there is a growing interest in exercise addiction, sometimes referred to as exercise dependence, which is defined as a craving for physical activity that results in extreme work-out sessions and generates negative physiological and psychological symptoms (e.g., withdrawal symptoms, tolerance, social conflict). Exercise addiction is considered a behavioral addiction, yet it was not included in the latest editions of the diagnostic and statistical manual of mental disorders (DSM-IV), due to lack of significant research. Specifically, there is scarce research on the relationship between exercise addiction and personality dimensions. The purpose of the current research was to examine the relationship between primary exercise addiction symptoms and the big five dimensions, perfectionism (high performance expectations and self-critical performance evaluations) and subjective affect. participants were 152 trainees on a variety of aerobic sports activities (running, cycling, swimming) that were recruited through sports groups and trainers. 88% of participants trained for at least 5 hours per week, 24% of the participants trained above 10 hours per week. To test the predictive ability of the IVs a hierarchical linear regression with forced block entry was performed. It was found that Neuroticism significantly predicted exercise addiction symptoms (20% of the variance, p<0.001), while consciousness was negatively correlated with exercise addiction symptoms (14% of variance p<0.05); both had a unique contribution. Other dimensions of the big five (agreeableness, openness and extraversion) did not have any contribution to the dependent. Moreover, maladaptive perfectionism (self-critical performance evaluations) significantly predicted exercise addiction symptoms as well (10% of the variance P < 0.05). The overall regression model explained 54% of variance.Keywords: big five, consciousness, excessive exercise, exercise addiction, neuroticism, perfectionism, personality
Procedia PDF Downloads 229