Search results for: spectral radiative entropy generation
4183 Distributed Energy System - Microgrid Integration of Hybrid Power Systems
Authors: Pedro Esteban
Abstract:
Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.Keywords: microgrids, hybrid power systems, energy storage, grid code compliance
Procedia PDF Downloads 1464182 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses
Authors: Walid Tawfik
Abstract:
The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband
Procedia PDF Downloads 2244181 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography
Authors: O’Day Luke
Abstract:
Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison
Procedia PDF Downloads 1414180 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis
Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar
Abstract:
Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR
Procedia PDF Downloads 864179 Characteristic of Oxidation Resistant High-Entropy Alloys for Application in Zero-Emission Technologies
Authors: Wojciech J. Nowak, Natalia Maciaszek, Marcin Drajewicz
Abstract:
A constant requirement to reduce greenhouse gas emissions in combination with the desire to increase gas turbine efficiency results in a continuous trend to increase the operating temperature of gas turbines. An increase in operating temperature will result in lower fuel consumption, and a higher combustion temperature will result in lower pollution release. Moreover, there is a strong trend for hydrogen to be used as an alternative and clean fuel. However, using hydrogen or hydrogen-rich fuel results in a higher combustion temperature, as well as an increase in the water vapor content in the exhaust gases. Commonly used Ni-base alloys have their limits. Moreover, the presence of water vapor worsens the oxidation behavior of Ni-based alloys at a high temperature. Therefore, a new brand of materials is demanded to be used in gas turbines operated with hydrogen-rich fuel. High-entropy alloys (HEAs) seem to be very promising materials to replace commonly used Ni-based alloys. HEAs are the group of materials consisting of at least five main equiatomic elements. These alloys can be doped by other elements in amounts less than 5 at. % in total. Thus, in the present study, NiCoCrAlFe-X alloys are studied in terms of oxidation behavior during exposure to dry and wet atmospheres up to 1000 h. NiCoCrAlFe-X alloys are doped with minor alloying elements in amounts ranging from 1-5 at.%. The effect of the chemical composition on oxidation resistance in dry and wet atmospheres will be shown and discussed.Keywords: high entropy alloys, oxidation resistance, hydrogen fuel, water vapor
Procedia PDF Downloads 494178 Digital Watermarking Based on Visual Cryptography and Histogram
Authors: R. Rama Kishore, Sunesh
Abstract:
Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.Keywords: digital watermarking, visual cryptography, histogram, butter worth filter
Procedia PDF Downloads 3584177 Comparative Analysis of Water-Based Alumina Nanoparticles with Water-Based Cupric Nanoparticles Past an Exponentially Accelerated Vertical Radiative Riga Plate with Heat Transfer
Authors: Kanayo Kenneth Asogwa
Abstract:
The influence of the flow of nanoparticles in nanofluids across a vertical surface is significant, and its application in medical sciences, engineering, pharmaceutical, and food industries is enormous & widely published. However, the comparative examination of alumina nanoparticles with cupric nanoparticles past a rapid progressive Riga plate remains unknown. Thus, this report investigates water-based alumina and cupric nanoparticles passing through an exponentially accelerated Riga plate. Nanofluids containing copper (II) oxide (CuO) and aluminum oxide (Al2O3) nanoparticles are considered. The Laplace transform technique is used to solve the partial differential equations guiding the flow. The effect of various factors on skin friction coefficient, Nusselt number, velocity and temperature profiles is investigated and reported in tabular and graphical form. The upsurge of Modified Hartmann number and radiative impact improves copper (II) oxide nanofluid compared to aluminum oxide nanofluid due to Lorentz force and since CuO is a better heat conductor. At the same time, heat absorption and reactive species favor a slight decline in Alumina nanofluid than Cupric nanofluid in the thermal and velocity fields. The higher density of Cupric nanofluid is enhanced by increasing nanoparticle volume fraction over Alumina nanofluid with a decline in velocity distribution.Keywords: alumina, cupric, nanoparticles, water-based
Procedia PDF Downloads 2024176 Exploring Factors Affecting Electricity Production in Malaysia
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.Keywords: energy policy, energy security, electricity production, Malaysia, the regression model
Procedia PDF Downloads 1634175 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN
Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu
Abstract:
Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.Keywords: DDoS detection, EMD, relative entropy, SDN
Procedia PDF Downloads 3384174 Spectroscopic and 1.08mm Laser Properties of Nd3+ Doped Oxy-Fluoro Borate Glasses
Authors: Swapna Koneru, Srinivasa Rao Allam, Vijaya Prakash Gaddem
Abstract:
The different concentrations of neodymium-doped (Nd-doped) oxy fluoroborate (OFB) glasses were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements to understand the lasing potentialities of these glasses. Optical absorption spectra were recorded and have been analyzed using Judd–Ofelt theory. The dipole strengths are parameterized in terms of three phenomenological Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) to elucidate the glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as the transition probability (AR), radiative lifetime (τR), branching ratios (βR) and integrated absorption cross-section (σa) have been measured for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses exhibit two peaks at 1085 and 1328 nm corresponding to 4F3/2 to 4I11/2 and 4I13/2 transitions have been obtained for all the glasses upon 808 nm diode laser excitation in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2.0 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses due to the concentration quenching. The decay curves of all these glasses show single exponential behavior. The spectroscopy of Nd3+ in these glasses is well understood and laser properties can be accurately determined from measured spectroscopic properties. The results obtained are compared with reports on similar glasses. The results indicate that the present glasses could be useful for 1.08 µm laser applications.Keywords: glasses, luminescence, optical properties, photoluminescence spectroscopy
Procedia PDF Downloads 2894173 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects
Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed
Abstract:
Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis
Procedia PDF Downloads 3764172 Super-Exchange Coupling in Oxygen Rich Rare-Earth Based Sm₂MnRuO₆₊δ Double Perovskite
Authors: S. Nqayi, B. Sondezi
Abstract:
A rare-earth-based Sm₂MnRuO₆₊δ (SMRO) double perovskite was prepared using a high-temperature solid-state reaction. The structural, morphological, chemical, thermodynamic, and magnetic properties were measured with X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometer (VSM), respectively. The XRD revealed a tetragonal structure belonging to the I4/mmm space group, number 139, with linear Mn−O−Ru bonds. Replacing the well-studied alkaline earth metal with a rare-earth element increased the Mn-O bond length difference between the shorter equatorial (Mn-Oab) and the axial (Mn-Oc) bonds by approximately 6.3%. The elemental composition showed an O-rich double perovskite with a Ru deficit, which encourages the formation of a Ru⁶⁺ (d²) state. XPS spectra of Sm-3d, Ru-3d, and Mn-2p revealed the coexistence of a double oxidation state for each cation; Sm²⁺, Sm³⁺, Ru³⁺, Ru⁶⁺, Mn²⁺ , and Mn³⁺, in varying proportions. Entropy studies showed drastic ordering of spins at low temperatures (up to 12.4 K), whilst increasing temperatures above this point resulted in a drastic increase of disorder of the spins (up to 43.26 K), beyond which a constant slope of entropy is observed. Magnetic measurements revealed two magnetic ground states at TN = 12.4 K and TC = 43.3 K ordering antiferromagnetically (AFM) and ferromagnetically (FM), respectively. Kneller fit further showed that the materials become completely paramagnetic at TB = 88.1 K, (the blocking temperature). The existence of ferromagnetic (FM) super-exchange coupling in this work originating from Mn³⁺ (t³₂𝓰e¹𝓰)−O−Ru³⁺ (t⁵₂𝓰e⁰𝓰) and Mn²⁺ (t³₂𝓰e²𝓰−O−Ru⁶⁺ (t²₂𝓰e⁰𝓰) which plays an important role in suppressing the Mn/Ru−O−Mn/Ru antiferromagnetic (AFM) interactions.Keywords: solid-state reaction, super-exchange coupling, ferromagnetic, Kneller’s law, entropy
Procedia PDF Downloads 204171 Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis
Authors: Samim Khair Mohammad, Takeshi Tsuji, Chanmaly Chhun
Abstract:
The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks.Keywords: The Afghan Tajik basin, seismic lines, spectral decomposition, thrust folds, hydrocarbon reservoirs
Procedia PDF Downloads 1124170 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 4054169 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 1574168 Optimization of Line Loss Minimization Using Distributed Generation
Authors: S. Sambath, P. Palanivel
Abstract:
Research conducted in the last few decades has proven that an inclusion of Distributed Genaration (DG) into distribution systems considerably lowers the level of power losses and the power quality improved. Moreover, the choice of DG is even more attractive since it provides not only benefits in power loss minimisation, but also a wide range of other advantages including environment, economic, power qualities and technical issues. This paper is an intent to quantify and analyse the impact of distributed generation (DG) in Tamil Nadu, India to examine what the benefits of decentralized generation would be for meeting rural loads. We used load flow analysis to simulate and quantify the loss reduction and power quality enhancement by having decentralized generation available line conditions for actual rural feeders in Tamil Nadu, India. Reactive and voltage profile was considered. This helps utilities to better plan their system in rural areas to meet dispersed loads, while optimizing the renewable and decentralised generation sources.Keywords: distributed generation, distribution system, load flow analysis, optimal location, power quality
Procedia PDF Downloads 4004167 Applications of Hyperspectral Remote Sensing: A Commercial Perspective
Authors: Tuba Zahra, Aakash Parekh
Abstract:
Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR
Procedia PDF Downloads 794166 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study
Authors: Jitendra Pratap, Jonathan Sivyer
Abstract:
Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.Keywords: CT, iodine density, spectral, dual-energy
Procedia PDF Downloads 1194165 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization
Procedia PDF Downloads 1564164 Municipal Solid Waste Management and Analysis of Waste Generation: A Case Study of Bangkok, Thailand
Authors: Pitchayanin Sukholthaman
Abstract:
Gradually accumulated, the enormous amount of waste has caused tremendous adverse impacts to the world. Bangkok, Thailand, is chosen as an urban city of a developing country having coped with serious MSW problems due to the vast amount of waste generated, ineffective and improper waste management problems. Waste generation is the most important factor for successful planning of MSW management system. Thus, the prediction of MSW is a very important role to understand MSW distribution and characteristic; to be used for strategic planning issues. This study aims to find influencing variables that affect the amount of Bangkok MSW generation quantity.Keywords: MSW generation, MSW quantity prediction, MSW management, multiple regression, Bangkok
Procedia PDF Downloads 4214163 Local Revenue Generation: Its Contribution to the Development of the Municipality of Bacolod, Lanao Del Sur
Authors: Louvill M. Ozarraga
Abstract:
this study was designed to ascertain the concept of the revenue generation system of Bacolod, Lanao del Norte, through the completely enumerated elected officials and permanent employees sample respondents. The pertinent data were obtained through the use of a structured questionnaire and with the help of key informants. The study utilized a cross-sectional survey design to analyze and interpret the data using frequency count, percentage distribution, and weighted mean. For the major findings, the local revenue generation of the Municipality has increased by Php 4,465,394.21, roughly 73.52%, from the years 2018 to 2020. Administrative activities help the Municipality cope with development, namely, the issuance of ordinances, personnel augmentation, and collection strategies. Moreover, respondents were undecided about whether revenue generation contributed to infrastructures and purchases of assets. The majority of the respondents agreed that the municipality’s local revenue generation contributes to the social welfare of its constituents. Also, the respondents disagreed that locally generated revenue augments the 20% development fund. The study revealed that there is a big difference between the 2018 and 2020 Real Property Tax (RPT) collection. No committee was created to monitor and supervise the municipal revenue generation system. The Municipality, through a partnership with TESDA, provides skilled-job opportunity to its constituents and participantsKeywords: Local Revenue Generation: Its Contribution To The Development Of The Municipality Of Bacolod, Lanao Del Sur
Procedia PDF Downloads 744162 Study on the Suppression of Hydrogen Generation by Aluminum-Containing Waste Incineration Ash and Water
Authors: Hideyuki Onodera, Ryoji Imai, Masahiro Sakai
Abstract:
Explosions have occurred in incineration plants in conveyors, ash pits, and other locations. The cause of such explosions is thought to be the reaction of metallic aluminum contained in the ash with water used to cool the ash and prevent scattering, resulting in the generation of hydrogen. Given this background, conveyors and other equipment have been damaged by explosions, which has hindered the stable operation of incineration plants. In addition, workers may be injured by equipment explosions, creating an unsafe situation. To remedy these problems, it is necessary to devise a way to prevent hydrogen explosions from occurring. To overcome this problem, we conducted a hydrogen generation reaction experiment using simulated incinerator ash powder containing aluminum, calcium oxide, and water and confirmed that conditions exist to stop the hydrogen generation reaction. The results of this research may contribute to the suppression of hydrogen explosions at incineration plants.Keywords: waste incinerated ash, aluminum, water, hydrogen, suppression of hydrogen generation, incineration plant
Procedia PDF Downloads 284161 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression
Authors: N. Alhazmi
Abstract:
Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity
Procedia PDF Downloads 2224160 Migration and Identity Erosion: An Exploratory Study of First Generation Nigerian-Americans
Authors: Lolade Siyonbola
Abstract:
Nigerians are often celebrated as being the most educated cultural group in America. The cultural values and history that have led to this reality are particular to a generation that came of age post colonialism. Many of these cultural values have been passed down from post-colonial parent to millennial child, but most have not. This study, based on interviews and surveys of Nigerian millennials and their parents in the United States, explores the degree to which identity has been eroded in the millennial generation due to a lack of imparted cultural values and knowledge from the previous generation. Most of the subjects do not speak their native language or identify with their cultural heritage sufficiently to build ties with their native land. Most are experiencing some degree of identity crisis, and therefore limited self-actualization, with little to no support; as there are few successful tools available to this population. If governmental programs to reverse these trends are not implemented within this generation, the implications to the individual, family and home nation (Nigeria), will be felt for generations to come.Keywords: identity, culture, self-actualization, social identity theory, migration, transnationalism, value systems
Procedia PDF Downloads 3724159 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device
Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang
Abstract:
This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.Keywords: CFD modeling, validation, microsphere generation, modified T-junction
Procedia PDF Downloads 7074158 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 1344157 The Effect of Advertising on Brand Choices of Z Generation Children and Their Social Media Consumption Habits
Authors: Hüseyin Altubaş, Hasret Aktaş, A. Mücahid Zengin
Abstract:
Children determine the direction of the power of consumption. They affect the decisions of their parents but they also reached to a significant purchasing power themselves. Children, who are turning interactive behavior to normal behavior are becoming the decision makers in a company’s survival. Companies that analyze this effective target audience can communicate successfully with children. Children, who are interactive individuals, are closer to advertising. They are almost talking better with advertising. They are not afraid to express their likings, as well as their dislikes. Children have an interactive lifestyle and they were exposed to the vast changes in technology after year 2000. They do not know a life without internet, they spend mobile life in internet. This Z generation is the new determinants of brands. Z generation finds it appropriate to be brand ambassadors and they completely changed traditional media and traditional consumer behavior. These children live social reality with virtual reality and they feed brands differently. Brands that interact with Z generation are affected by this feeding positively, while brands that keep interaction in traditional levels are affected negatively. In this research we examine the communication, advertising and brand behaviors of Z generation. We especially analyze this generation’s interaction with social media brands and their interactive attitudes.Keywords: social media, Z generation, children, advertising, brand choice
Procedia PDF Downloads 5504156 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing
Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio
Abstract:
High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS
Procedia PDF Downloads 644155 The Bayesian Premium Under Entropy Loss
Authors: Farouk Metiri, Halim Zeghdoudi, Mohamed Riad Remita
Abstract:
Credibility theory is an experience rating technique in actuarial science which can be seen as one of quantitative tools that allows the insurers to perform experience rating, that is, to adjust future premiums based on past experiences. It is used usually in automobile insurance, worker's compensation premium, and IBNR (incurred but not reported claims to the insurer) where credibility theory can be used to estimate the claim size amount. In this study, we focused on a popular tool in credibility theory which is the Bayesian premium estimator, considering Lindley distribution as a claim distribution. We derive this estimator under entropy loss which is asymmetric and squared error loss which is a symmetric loss function with informative and non-informative priors. In a purely Bayesian setting, the prior distribution represents the insurer’s prior belief about the insured’s risk level after collection of the insured’s data at the end of the period. However, the explicit form of the Bayesian premium in the case when the prior is not a member of the exponential family could be quite difficult to obtain as it involves a number of integrations which are not analytically solvable. The paper finds a solution to this problem by deriving this estimator using numerical approximation (Lindley approximation) which is one of the suitable approximation methods for solving such problems, it approaches the ratio of the integrals as a whole and produces a single numerical result. Simulation study using Monte Carlo method is then performed to evaluate this estimator and mean squared error technique is made to compare the Bayesian premium estimator under the above loss functions.Keywords: bayesian estimator, credibility theory, entropy loss, monte carlo simulation
Procedia PDF Downloads 3344154 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping
Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung
Abstract:
Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)
Procedia PDF Downloads 257