Search results for: robust diagnosis
3134 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes
Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo
Abstract:
Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size
Procedia PDF Downloads 1273133 Symmetric Corticobasal Degeneration: Case Report
Authors: Sultan Çağırıcı, Arsida Bajrami, Beyza Aslan, Hacı Ali Erdoğan, Nejla Sözer Topçular, Dilek Bozkurt, Vildan Yayla
Abstract:
Objective: Corticobasal syndrome (CBS) is phenotypically characterized by asymmetric rigidity, apraxia, alien-limb phenomenon, cortical sensory loss, dystonia and myoclonus. The underlying pathologies consists of corticobasal degeneration (CBD), progressive supra nuclear palsy, Alzheimer's, Creutzfeldt-Jakob and frontotemporal degeneration. CBD is a degenerative disease with clinical symptoms related to the prominent involvement of cerebral cortex and basal ganglia. CBD is a pathological diagnosis and antemortem clinical diagnosis may change many times. In this paper, we described the clinical features and discussed a cases diagnosed with symmetric CBS because of its rarity. Case: Seventy-five-year-old woman presented with a three years history of difficulty in speaking and reading. Involuntary hand jerks and slowness of movement also had began in the last six months. In the neurological examination the patient was alert but not fully oriented. The speech was non-fluent, word finding difficulties were present. Bilateral limited upgaze, bradimimia, bilateral positive cogwheel' rigidity but prominent in the right side, postural tremor and negative myoclonus during action on the left side were detected. Receptive language was normal but expressive language and repetition were impaired. Acalculia, alexia, agraphia and apraxia were also present. CSF findings were unremarkable except for elevated protein level (75 mg/dL). MRI revealed bilateral symmetric cortical atrophy prominent in the frontoparietal region. PET showed hypometabolism in the left caudate nucleus. Conclusion: The increase of data related to neurodegenerative disorders associated with dementia, movement disorders and other findings results in an expanded range of diagnosis and transitions between clinical diagnosis. When considered the age of onset, clinical symptoms, imaging findings and prognosis of this patient, clinical diagnosis was CBS and pathologic diagnosis as probable CBD. Imaging of CBD usually consist of typical asymmetry between hemispheres. Still few cases with clinical appearance of CBD may show symmetrical cortical cerebral atrophy. It is presented this case who was diagnosed with CBD although we found symmetrical cortical cerebral atrophy in MRI.Keywords: symmetric cortical atrophy, corticobasal degeneration, corticobasal syndrome
Procedia PDF Downloads 4583132 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images
Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara
Abstract:
Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases
Procedia PDF Downloads 1423131 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model
Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele
Abstract:
The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.
Procedia PDF Downloads 663130 Molecular Characterization and Phylogenetic Analysis of Influenza a(H3N2) Virus Circulating during the 2010-2011 in Riyadh, Saudi Arabia
Authors: Ghazanfar Ali, Fahad N Almajhdi
Abstract:
This study provides data on the viral diagnosis and molecular epidemiology of influenza A(H3N2) virus isolated in Riyadh, Saudi Arabia. Nasopharyngeal aspirates from 80 clinically infected patients in the peak of the 2010-2011 winter seasons were processed for viral diagnosis by RT-PCR. Sequencing of entire HA and NA genes of representative isolates and molecular epidemiological analysis were performed. A total of 06 patients were positive for influenza A, B and respiratory syncytial viruses by RT-PCR assays; out of these only one sample was positive for influenza A(H3N2) by RT-PCR. Phylogenetic analysis of the HA and NA gene sequences showed identities higher than 99-98.8 % in both genes. They were also similar to reference isolates in HA sequences (99 % identity) and in NA sequences (99 % identity). Amino acid sequences predicted for the HA gene were highly identical to reference strains. The NA amino acid substitutions identified did not include the oseltamivir-resistant H275Y substitution. Conclusion: Viral isolation and RT-PCR together were useful for diagnosis of the influenza A (H3N2) virus. Variations in HA and NA sequences are similar to those identified in worldwide reference isolates and no drug resistance was found.Keywords: influenza A (H3N2), genetic characterization, viral isolation, RT-PCR, Saudi Arabia
Procedia PDF Downloads 2623129 Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm
Authors: Mohamed Mahmoud
Abstract:
This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found.Keywords: enhanced deduction algorithm, backtracking strategy, automatic test equipment, verfication
Procedia PDF Downloads 1203128 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 2303127 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter
Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri
Abstract:
Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion
Procedia PDF Downloads 6963126 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays
Authors: Sabri Arik
Abstract:
In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis
Procedia PDF Downloads 5283125 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function
Procedia PDF Downloads 4353124 Data-Driven Dynamic Overbooking Model for Tour Operators
Authors: Kannapha Amaruchkul
Abstract:
We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator
Procedia PDF Downloads 1343123 Neural Networks with Different Initialization Methods for Depression Detection
Authors: Tianle Yang
Abstract:
As a common mental disorder, depression is a leading cause of various diseases worldwide. Early detection and treatment of depression can dramatically promote remission and prevent relapse. However, conventional ways of depression diagnosis require considerable human effort and cause economic burden, while still being prone to misdiagnosis. On the other hand, recent studies report that physical characteristics are major contributors to the diagnosis of depression, which inspires us to mine the internal relationship by neural networks instead of relying on clinical experiences. In this paper, neural networks are constructed to predict depression from physical characteristics. Two initialization methods are examined - Xaiver and Kaiming initialization. Experimental results show that a 3-layers neural network with Kaiming initialization achieves 83% accuracy.Keywords: depression, neural network, Xavier initialization, Kaiming initialization
Procedia PDF Downloads 1283122 Gastrointestinal Basidiobolomycosis in a Tertiary Care Center at Saudi Arabia, Makkah: Case Series
Authors: Yaser Meeralam, Walaa Alharthi, Hadeel Ashi, Alaa Bakhsh, Kholood Aljabri, Ebtihal Bin Salim
Abstract:
Background:Basidiobolusranrum causes one of the rare fungal diseases that infects mainly immunocompetent individuals. Gastrointestinal Basidiobolomycosis (GIB) is a rare and uncommon form of this fungal infection. It’s still ambiguous how this fungus is reaching the gastrointestinal tract leading to Gastrointestinal Basidiobolomycosis. Objective: To summarize the clinical features, imaging, and histopathological of patients diagnosed with GIB in our institution. Patients and methods: A series of five cases of patients who diagnosed by basidiobolomycosis in King Abdullah Medical City, Makkah, Saudi Arabia, which reviewed by latest literature related to diagnosis and treatment. Results: Most of the patients were externally evaluated and were initially misdiagnosed. Some of them were suspected of colonic malignancy, other presumed to have hepatic hemangioma and fistulizing crohn’s disease. The definitive diagnosis is often based on histopathological examination and fungal culture of the surgically resected mass. An optimum standardized treatment of basidiobolomycosis has not yet been established. Conclusion: Deeper knowledge of clinical characteristics, diagnosis, and treatment of basidiobolomycosis will allow early initiating of treatment with a subsequent positive impact on the patients’ outcome. More studies are needed to establish a definite treatment.Keywords: gastrointestinal infection, crohn's mimics, malignancy mimics, fungal infection
Procedia PDF Downloads 1583121 Misdiagnosed Mammary Analogue Secretory Carcinoma of the Salivary Gland: A Case Report with a Review of the Literature
Authors: Yaya Gao, Jifeng Liu, Yafeng Liu
Abstract:
Objectives: This study aimed to improve clinicians' understanding and diagnosis of the Mammary analogue secretory carcinoma of the salivary gland(MASC). Methods: The clinical features of a MASC patient who was admitted to WestChina Hospital of Sichuan University in July 2020 were reviewed and analyzed. A 49-year-old woman with left upper neck pain for three months was admitted to the hospital. She underwent adenoma resection of the left submandibular gland 14 years ago and mucoepidermoid carcinoma resection surgery five years ago. Three months before admission, the patient developed pain in the left mandibular angle after "fatigue" and gradually developed radiation pain in the left ear, which could be relieved after rest. A mass of 1cm could be touched at the mandibular, with tenderness, poor mobility, and hard texture. No swelling, heat, pain, rupture, or pus was found on the surrounding skin. Color doppler ultrasonography of the salivary gland indicated a weak echo mass of 23*14*17mm in the left parotid gland. Results: Surgical excision was completed. Immunohistochemistry of the tumor samples after operation showed that P63(a few,+), CK7(+), S100(+), DOG1(-), Ki67(MIB-1)(+,5%),pan-TRK(+), PAS(+) . ETV-6 gene translocation was detected in FISH in postoperative pathology, which indicated MASC. After this diagnosis, the patient sent the postoperative specimen of the second submandibular tumor to our hospital for consultation. The morphology of the two was similar. FISH detected ETV-6 gene translocation, so the second pathological diagnosis was revised to MASC. Conclusion: MASC of the salivary gland is a rare salivary gland tumor whose diagnosis depends on the result of the ETV6-NTRK3 fusion gene.Keywords: mammary analogue secretory carcinoma, ETV6-NTRK3, salivary gland, misdiagnosed
Procedia PDF Downloads 633120 Development of Loop Mediated Isothermal Amplification (Lamp) Assay for the Diagnosis of Ovine Theileriosis
Authors: Muhammad Fiaz Qamar, Uzma Mehreen, Muhammad Arfan Zaman, Kazim Ali
Abstract:
Ovine Theileriosis is a world-wide concern, especially in tropical and subtropical areas, due to having tick abundance that has received less awareness in different developed and developing areas due to less worth of sheep, low to the middle level of infection in different small ruminants herd. Across Asia, the prevalence reports have been conducted to provide equivalent calculation of flock and animal level prevalence of Theileriosisin animals. It is a challenge for veterinarians to timely diagnosis & control of Theileriosis and famers because of the nature of the organism and inadequacy of restricted plans to control. All most work is based upon the development of such a technique which should be farmer-friendly, less expensive, and easy to perform into the field. By the timely diagnosis of this disease will decrease the irrational use of the drugs, and other plan was to determine the prevalence of Theileriosis in District Jhang by using the conventional method, PCR and qPCR, and LAMP. We quantify the molecular epidemiology of T.lestoquardiin sheep from Jhang districts, Punjab, Pakistan. In this study, we concluded that the overall prevalence of Theileriosis was (32/350*100= 9.1%) in sheep by using Giemsa staining technique, whereas (48/350*100= 13%) is observed by using PCR technique (56/350*100=16%) in qPCR and the LAMP technique have shown up to this much prevalence percentage (60/350*100= 17.1%). The specificity and sensitivity also calculated in comparison with the PCR and LAMP technique. Means more positive results have been shown when the diagnosis has been done with the help of LAMP. And there is little bit of difference between the positive results of PCR and qPCR, and the least positive animals was by using Giemsa staining technique/conventional method. If we talk about the specificity and sensitivity of the LAMP as compared to PCR, The cross tabulation shows that the results of sensitivity of LAMP counted was 94.4%, and specificity of LAMP counted was 78%. Advances in scientific field must be upon reality based ideas which can lessen the gaps and hurdles in the way of scientific research; the lamp is one of such techniques which have done wonders in adding value and helping human at large. It is such a great biological diagnostic tools and has helped a lot in the proper diagnosis and treatment of certain diseases. Other methods for diagnosis, such as culture techniques and serological techniques, have exposed humans with great danger. However, with the help of molecular diagnostic technique like LAMP, exposure to such pathogens is being avoided in the current era Most prompt and tentative diagnosis can be made using LAMP. Other techniques like PCR has many disadvantages when compared to LAMP as PCR is a relatively expensive, time consuming, and very complicated procedure while LAMP is relatively cheap, easy to perform, less time consuming, and more accurate. LAMP technique has removed hurdles in the way of scientific research and molecular diagnostics, making it approachable to poor and developing countries.Keywords: distribution, thelaria, LAMP, primer sequences, PCR
Procedia PDF Downloads 1033119 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis
Authors: Shriya Shukla, Lachin Fernando
Abstract:
Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning
Procedia PDF Downloads 1253118 Suggested Role for Neutrophil Extracellular Traps Formation in Ewing Sarcoma Immune Microenvironment
Authors: Rachel Shukrun, Szilvia Baron, Victoria Fidel, Anna Shusterman, Osnat Sher, Netanya Kollender, Dror Levin, Yair Peled, Yair Gortzak, Yoav Ben-Shahar, Revital Caspi, Sagi Gordon, Michal Manisterski, Ronit Elhasid
Abstract:
Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70–80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescent. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared to those with local disease. High NETs formation at diagnosis predicted poor response to neo-adjuvant chemotherapy, relapse, and death from disease (P < .05). NETs formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared to pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NETs formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS.Keywords: Ewing sarcoma, tumor microenvironment, neutrophil, neutrophil extracellular traps (NETs), prognosis
Procedia PDF Downloads 643117 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis
Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda
Abstract:
Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology
Procedia PDF Downloads 2753116 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 1013115 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization
Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang
Abstract:
The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling
Procedia PDF Downloads 2543114 Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs
Authors: Sadia Munir
Abstract:
Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.Keywords: activin, biomarkers, growth factors, miroRNA
Procedia PDF Downloads 4423113 Nontuberculous Mycobacterium Infection – Still An Important Disease Among People With Late HIV Diagnosis
Authors: Jakub Młoźniak, Adam Szymański, Gabriela Stondzik, Dagny Krankowska, Tomasz Mikuła
Abstract:
Nontuberculous mycobacteria (NTM) are bacterial species that cause diversely manifesting diseases mainly in immunocompromised patients. In people with HIV, NTM infection is an AIDS-defining disease and usually appears when the lymphocyte T CD4 count is below 50 cells/μl. The usage of antiretroviral therapy has decreased the prevalence of NTM among people with HIV, but the disease can still be observed especially among patients with late HIV diagnosis. Common presence in environment, human colonization, clinical similarity with tuberculosis and slow growth on culture makes NTM especially hard to diagnose. The study aimed to analyze the epidemiology and clinical course of NTM among patients with HIV. This study included patients with NTM and HIV admitted to our department between 2017 and 2023. Medical records of patients were analyzed and data on age, sex, median time from HIV diagnosis to identification of NTM infection, median CD4 count at NTM diagnosis, methods of determining NTM infection, type of species of mycobacteria identified, clinical symptoms and treatment course were gathered. Twenty-four patients (20 men, 4 women) with identified NTM were included in this study. Among them, 20 were HIV late presenters. The patients' median age was 40. The main symptoms which patients presented were fever, weight loss and cough. Pulmonary disease confirmed with positive cultures from sputum/bronchoalveolar lavage was present in 18 patients. M. avium was the most common species identified. M. marinum caused disseminated skin lesions in 1 patient. Out of all, 5 people were not treated for NTM caused by lack of symptoms and suspicion of colonization with mycobacterium. Concomitant tuberculosis was present in 6 patients. The median diagnostic time from HIV to NTM infections was 3.5 months. The median CD4 count at NTM identification was 69.5 cells/μl. Median NTM treatment time was 16 months but 7 patients haven’t finished their treatment yet. The most commonly used medications were ethambutol and clarithromycin. Among analyzed patients, 4 of them have died. NTM infections are still an important disease among patients who are HIV late presenters. This disease should be taken into consideration during the differential diagnosis of fever, weight loss and cough in people with HIV with lymphocyte T CD4 count <100 cells/μl. Presence of tuberculosis does not exclude nontuberculous mycobacterium coinfection.Keywords: mycobacteriosis, HIV, late presenter, epidemiology
Procedia PDF Downloads 423112 Evaluation of the Radiolabelled 68GA-DOTATOC Complex in Adenocarcinoma Breast Cancer
Authors: S. Zolghadri, M. Naderi, H. Yousefnia, B. Alirzapour, A. R. Jalilian, A. Ramazani
Abstract:
Nowadays, 68Ga-DOTATOC has been known as a potential agent for the detection of neuroendocrine tumours and it has indicated higher sensitivity compared with the 111In-Octeroetide. The aim of this study was to evaluate the effectiveness of this new agent in the diagnosis of adenocarcinoma breast cancer. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by the specific activity of 39.6 TBq/mmol. 37 MBq of the complex was injected intravenously into the BULB/c mice with adenocarcinoma breast cancer. PET/CT images were acquired after 30, 60 and 90 min post injection demonstrated significant accumulation in the tumour sites. Also, considerable activity was observed in the kidney and bladder as the main routs of excretion. Generally, the results showed that 68Ga-DOTATOC can be considered as a suitable complex for diagnosis of the adenocarcinoma breast cancer using PET procedure.Keywords: adenocarcinoma breast cancer, 68Ga, octreotide, imaging
Procedia PDF Downloads 3413111 Case Report: Complex Regional Pain Syndrome
Authors: Farah Al Zaabi, Sarah Amrani
Abstract:
Complex regional pain syndrome (CRPS) is a chronic pain condition that develops in an extremity following a fracture, soft tissue injury, or surgery. It is a neuropathic pain disorder that is accompanied by the characteristic skin manifestations that are needed for the diagnosis. We report the case of a 30 year old male, who has findings consistent with CRPS and has been followed for over two years by multiple specialties within the healthcare system without obtaining a diagnosis. The symptoms he presented with were treated based on the specialty he was seeing, rather than unified and recognized as a single disease process. Our case highlights the complexity of chronic pain, which can sometimes present with skin manifestations, and the importance of involving a pain specialist early for both the medical and physical recovery of CRPS patients.Keywords: complex regional pain syndrome, chronic pain, skin changes of CRPS, dermatological manifestions of CRPS
Procedia PDF Downloads 1543110 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.Keywords: correlation filter, long-term tracking, random fern, real-time tracking
Procedia PDF Downloads 1393109 Glyco-Biosensing as a Novel Tool for Prostate Cancer Early-Stage Diagnosis
Authors: Pavel Damborsky, Martina Zamorova, Jaroslav Katrlik
Abstract:
Prostate cancer is annually the most common newly diagnosed cancer among men. An extensive number of evidence suggests that traditional serum Prostate-specific antigen (PSA) assay still suffers from a lack of sufficient specificity and sensitivity resulting in vast over-diagnosis and overtreatment. Thus, the early-stage detection of prostate cancer (PCa) plays undisputedly a critical role for successful treatment and improved quality of life. Over the last decade, particular altered glycans have been described that are associated with a range of chronic diseases, including cancer and inflammation. These glycans differences enable a distinction to be made between physiological and pathological state and suggest a valuable biosensing tool for diagnosis and follow-up purposes. Aberrant glycosylation is one of the major characteristics of disease progression. Consequently, the aim of this study was to develop a more reliable tool for early-stage PCa diagnosis employing lectins as glyco-recognition elements. Biosensor and biochip technology putting to use lectin-based glyco-profiling is one of the most promising strategies aimed at providing fast and efficient analysis of glycoproteins. The proof-of-concept experiments based on sandwich assay employing anti-PSA antibody and an aptamer as a capture molecules followed by lectin glycoprofiling were performed. We present a lectin-based biosensing assay for glycoprofiling of serum biomarker PSA using different biosensor and biochip platforms such as label-free surface plasmon resonance (SPR) and microarray with fluorescent label. The results suggest significant differences in interaction of particular lectins with PSA. The antibody-based assay is frequently associated with the sensitivity, reproducibility, and cross-reactivity issues. Aptamers provide remarkable advantages over antibodies due to the nucleic acid origin, stability and no glycosylation. All these data are further step for construction of highly selective, sensitive and reliable sensors for early-stage diagnosis. The experimental set-up also holds promise for the development of comparable assays with other glycosylated disease biomarkers.Keywords: biomarker, glycosylation, lectin, prostate cancer
Procedia PDF Downloads 4063108 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 1323107 Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines
Authors: I. A. Farhat, M. Bin Hasan
Abstract:
A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line.Keywords: fault detection, classification, diagnosis, power transmission line protection, support vector machines (SVM)
Procedia PDF Downloads 5593106 Fault Diagnosis in Induction Motor
Authors: Kirti Gosavi, Anita Bhole
Abstract:
The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor
Procedia PDF Downloads 6333105 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 270