Search results for: quality assurance evaluation models
20288 The Quality of Management: A Leadership Maturity Model to Leverage Complexity
Authors: Marlene Kuhn, Franziska Schäfer, Heiner Otten
Abstract:
Today´s production processes experience a constant increase in complexity paving new ways for progressive forms of leadership. In the customized production, individual customer requirements drive companies to adapt their manufacturing processes constantly while the pressure for smaller lot sizes, lower costs and faster lead times grows simultaneously. When production processes are becoming more dynamic and complex, the conventional quality management approaches show certain limitations. This paper gives an introduction to complexity science from a quality management perspective. By analyzing and evaluating different characteristics of complexity, the critical complexity parameters are identified and assessed. We found that the quality of leadership plays a crucial role when dealing with increasing complexity. Therefore, we developed a concept for qualitative leadership customized for the management within complex processes based on a maturity model. The maturity model was then applied in the industry to assess the leadership quality of several shop floor managers with a positive evaluation feedback. In result, the maturity model proved to be a sustainable approach to leverage the rising complexity in production processes more effectively.Keywords: maturity model, process complexity, quality of leadership, quality management
Procedia PDF Downloads 37020287 Internet Economy: Enhancing Information Communication Technology Adaptation, Service Delivery, Content and Digital Skills for Small Holder Farmers in Uganda
Authors: Baker Ssekitto, Ambrose Mbogo
Abstract:
The study reveals that indeed agriculture employs over 70% of Uganda’s population, of which majority are youth and women. The study further reveals that over 70% of the farmers are smallholder farmers based in rural areas, whose operations are greatly affected by; climate change, weak digital skills, limited access to productivity knowledge along value chains, limited access to quality farm inputs, weak logistics systems, limited access to quality extension services, weak business intelligence, limited access to quality markets among others. It finds that the emerging 4th industrial revolution powered by artificial intelligence, 5G and data science will provide possibilities of addressing some of these challenges. Furthermore, the study finds that despite rapid development of ICT4Agric Innovation, their uptake is constrained by a number of factors including; limited awareness of these innovations, low internet and smart phone penetration especially in rural areas, lack of appropriate digital skills, inappropriate programmes implementation models which are project and donor driven, limited articulation of value addition to various stakeholders among others. Majority of farmers and other value chain actors lacked knowledge and skills to harness the power of ICTs, especially their application of ICTs in monitoring and evaluation on quality of service in the extension system and farm level processes.Keywords: artificial intelligence, productivity, ICT4agriculture, value chain, logistics
Procedia PDF Downloads 7820286 Uplift Modeling Approach to Optimizing Content Quality in Social Q/A Platforms
Authors: Igor A. Podgorny
Abstract:
TurboTax AnswerXchange is a social Q/A system supporting users working on federal and state tax returns. Content quality and popularity in the AnswerXchange can be predicted with propensity models using attributes of the question and answer. Using uplift modeling, we identify features of questions and answers that can be modified during the question-asking and question-answering experience in order to optimize the AnswerXchange content quality. We demonstrate that adding details to the questions always results in increased question popularity that can be used to promote good quality content. Responding to close-ended questions assertively improve content quality in the AnswerXchange in 90% of cases. Answering knowledge questions with web links increases the likelihood of receiving a negative vote from 60% of the askers. Our findings provide a rationale for employing the uplift modeling approach for AnswerXchange operations.Keywords: customer relationship management, human-machine interaction, text mining, uplift modeling
Procedia PDF Downloads 24420285 Study of Coconut and Babassu Oils with High Acid Content and the Fatty Acids (C6 to C16) Obtained from These Oils
Authors: Flávio A. F. da Ponte, Jackson Q. Malveira, José A. S. Ramos Filho, Monica C. G. Albuquerque
Abstract:
The vegetable oils have many applications in industrial processes and due to this potential have constantly increased the demand for the use of low-quality oils, mainly in the production of biofuel. This work aims to the physicochemical evaluation of babassu oil (Orbinya speciosa) and coconut (Cocos nucifera) of low quality, as well the obtaining the free fatty acids 6 to 16 carbon atoms, with intention to be used as raw material for the biofuels production. The babassu oil and coconut low quality, as well the fatty acids obtained from these oils were characterized as their physicochemical properties and fatty acid composition (using gas chromatography coupled to mass). The NMR technique was used to assess the efficiency of fractional distillation under reduced pressure to obtain the intermediate carbonic chain fatty acids. The results showed that the bad quality in terms of physicochemical evaluation of babassu oils and coconut oils interfere directly in industrial application. However the fatty acids of intermediate carbonic chain (C6 to C16) may be used in cosmetic, pharmaceutical and particularly as the biokerosene fuel. The chromatographic analysis showed that the babassu oil and coconut oil have as major fatty acids are lauric acid (57.5 and 38.6%, respectively), whereas the top phase from distillation of coconut oil showed caprylic acid (39.1%) and major fatty acid.Keywords: babassu oil (Orbinya speciosa), coconut oil (Cocos nucifera), fatty acids, biomass
Procedia PDF Downloads 32020284 Proposal Evaluation of Critical Success Factors (CSF) in Lean Manufacturing Projects
Authors: Guilherme Gorgulho, Carlos Roberto Camello Lima
Abstract:
Critical success factors (CSF) are used to design the practice of project management that can lead directly or indirectly to the success of the project. This management includes many elements that have to be synchronized in order to ensure the project on-time delivery, quality and the lowest possible cost. The objective of this work is to develop a proposal for evaluation of the FCS in lean manufacturing projects, and apply the evaluation in a pilot project. The results show that the use of continuous improvement programs in organizations brings benefits as the process cost reduction and improve productivity.Keywords: continuous improvement, critical success factors (csf), lean thinking, project management
Procedia PDF Downloads 36420283 The Grit in the Glamour: A Qualitative Study of the Well-Being of Fashion Models
Authors: Emily Fortune Super, Ameerah Khadaroo, Aurore Bardey
Abstract:
Fashion models are often assumed to have a glamorous job with limited consideration for their well-being. This study aims to assess the well-being of models through semi-structured interviews with six professional fashion models and six industry professionals. Thematic analysis revealed that although models experienced improved self-confidence, they also reported heightened anxiety levels, body image issues, and the negative influence of modelling on their self-esteem. By contrast, industry professionals reported no or minimum concerns about anxious behaviours or the general well-being of fashion models. Being resilient as a model was perceived as an essential attribute to have by both models and industry professionals as they face recurrent rejection in this industry. These results demonstrate a significant gap in the current understanding of the well-being of fashion models between industry professionals and the models themselves. Findings imply that there is an inherent need for change in the modelling industry to promote and enhance their well-being.Keywords: body image, fashion industry, modelling, well-being
Procedia PDF Downloads 17220282 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment
Authors: Jatuphum Ketchatturat
Abstract:
Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.Keywords: learning achievement, monitoring and evaluation, value-added assessment
Procedia PDF Downloads 42320281 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector
Authors: Dana M. Ragab, Jasim A Ghaeb
Abstract:
The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.Keywords: power quality, space vector, unbalance evaluation, three-phase power system
Procedia PDF Downloads 18920280 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 1320279 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network
Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo
Abstract:
Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.Keywords: power quality, remote monitoring, distributed automation system, economic evaluation, LV network
Procedia PDF Downloads 34920278 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 8720277 Evaluation of Egg Quality Parameters in the Isa Brown Line in Intensive Production Systems in the Ocaña Region, Norte de Santander
Authors: Meza-Quintero Myriam, Lobo Torrado Katty Andrea, Sanchez Picon Yesenia, Hurtado-Lugo Naudin
Abstract:
The objective of the study was to evaluate the internal and external quality of the egg in the three production housing systems: floor, cage, and grazing of laying birds of the Isa Brown line, in the laying period between weeks 35 to 41; 135 hens distributed in 3 treatments of 45 birds per repetition were used (the replicas were the seven weeks of the trial). The feeding treatment supplied in the floor and cage systems contained 114 g/bird/day; for the grazing system, 14 grams less concentrate was provided. Nine eggs were collected to be studied and analyzed in the animal nutrition laboratory (3 eggs per housing system). The random statistical model was implemented: for the statistical analysis of the data, the statistical software of IBM® Statistical Products and Services Solution (SPSS) version 2.3 was used. The evaluation and follow-up instruments were the vernier caliper for the measurement in millimeters, a YolkFan™16 from Roche DSM for the evaluation of the egg yolk pigmentation, a digital scale for the measurement in grams, a micrometer for the measurement in millimeters and evaluation in the laboratory using dry matter, ashes, and ethereal extract. The results suggested that equivalent to the size of the egg (0.04 ± 3.55) and the thickness of the shell (0.46 ± 3.55), where P-Value> 0.05 was obtained, weight albumen (0.18 ± 3.55), albumen height (0.38 ± 3.55), yolk weight (0.64 ± 3.55), yolk height (0.54 ± 3.55) and for yolk pigmentation (1.23 ± 3.55). It was concluded that the hens in the three production systems, floor, cage, and grazing, did not show significant statistical differences in the internal and external quality of the chicken in the parameters studied egg for the production system.Keywords: biological, territories, genetic resource, egg
Procedia PDF Downloads 8020276 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).Keywords: chemometrics, chromatography, pesticides, sum of ranking differences
Procedia PDF Downloads 37520275 On Disaggregation and Consolidation of Imperfect Quality Shipments in an Extended EPQ Model
Authors: Hung-Chi Chang
Abstract:
For an extended EPQ model with random yield, the existent study revealed that both the disaggregating and consolidating shipment policies for the imperfect quality items are independent of holding cost, and recommended a model with economic benefit by comparing the least total cost for each of the three models investigated. To better capture the real situation, we generalize the existent study to include different holding costs for perfect and imperfect quality items. Through analysis, we show that the above shipment policies are dependent on holding costs. Furthermore, we derive a simple decision rule solely based on the thresholds of problem parameters to select a superior model. The results are illustrated analytically and numerically.Keywords: consolidating shipments, disaggregating shipments, EPQ, imperfect quality, inventory
Procedia PDF Downloads 37620274 Dual Language Immersion Models in Theory and Practice
Authors: S. Gordon
Abstract:
Dual language immersion is growing fast in language teaching today. This study provides an overview and evaluation of the different models of Dual language immersion programs in US K-12 schools. First, the paper provides a brief current literature review on the theory of Dual Language Immersion (DLI) in Second Language Acquisition (SLA) studies. Second, examples of several types of DLI language teaching models in US K-12 public schools are presented (including 50/50 models, 90/10 models, etc.). Third, we focus on the unique example of DLI education in the state of Utah, a successful, growing program in K-12 schools that includes: French, Chinese, Spanish, and Portuguese. The project investigates the theory and practice particularly of the case of public elementary and secondary school children that study half their school day in the L1 and the other half in the chosen L2, from kindergarten (age 5-6) through high school (age 17-18). Finally, the project takes the observations of Utah French DLI elementary through secondary programs as a case study. To conclude, we look at the principal challenges, pedagogical objectives and outcomes, and important implications for other US states and other countries (such as France currently) that are in the process of developing similar language learning programs.Keywords: dual language immersion, second language acquisition, language teaching, pedagogy, teaching, French
Procedia PDF Downloads 17420273 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 7420272 Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam (Ankara, Turkey)
Authors: Gulsen Tozsin, Fatma Bakir, Cemil Acar, Ercument Koc
Abstract:
Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. The quality of these surface water resources were evaluated in terms of pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results revealed that the quality of all the investigated water sources are generally at satisfactory level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008.Keywords: Kurtbogazi dam, water quality assessment, Ankara water, water supply
Procedia PDF Downloads 37720271 Water Quality, Safety and Drowning Prevention to Preschool Children in Sub-Saharan Africa
Authors: Amos King'ori Githu
Abstract:
Water safety is crucial for all ages, but particularly for children. In the past decade, preschool institutions in Sub-Saharan Africa have seen the inclusion of swimming as one of the co-curricular activities. However, these countries face challenges in adopting frameworks, staffing, and resources to heighten water safety, quality, and drowning prevention, hence the focus of this research. It is worth noting that drowning is a leading cause of injury-related deaths among children. Universally, the highest drowning rates occur among children aged 1-4 years and 5-9 years. Preschool children even stand a higher risk of drowning as they are active, eager, and curious to explore their environment. If not supervised closely around or in water, these children can drown quickly in just a few inches of water. Thus, this empirical review focuses on the identification, assessment, and analysis of water safety efforts to curb drowning among children and assess the quality of water to mitigate contamination that may eventually pose infection risks to the children. In addition, it outlines the use of behavioral theories and evaluation frameworks to guide the above. Notably, a search on ten databases was adopted for crucial peer-reviewed articles, and five were selected in the eventual review. This research relied extensively on secondary data to curb water infections and drowning-inflicted deaths among children. It suffices to say that interventions must be supported that adopt an array of strategies, are guided by planning and theory as well as evaluation frameworks, and are vast in intervention design, evaluation, and delivery methodology. Finally, this approach will offer solid evidence that can be shared to guide future practices and policies in preschools on child safety and drowning prevention.Keywords: water quality and safety, drowning prevention, preschool children, sub-saharan Africa, supervision
Procedia PDF Downloads 6020270 Design of Evaluation for Ehealth Intervention: A Participatory Study in Italy, Israel, Spain and Sweden
Authors: Monika Jurkeviciute, Amia Enam, Johanna Torres Bonilla, Henrik Eriksson
Abstract:
Introduction: Many evaluations of eHealth interventions conclude that the evidence for improved clinical outcomes is limited, especially when the intervention is short, such as one year. Often, evaluation design does not address the feasibility of achieving clinical outcomes. Evaluations are designed to reflect upon clinical goals of intervention without utilizing the opportunity to illuminate effects on organizations and cost. A comprehensive design of evaluation can better support decision-making regarding the effectiveness and potential transferability of eHealth. Hence, the purpose of this paper is to present a feasible and comprehensive design of evaluation for eHealth intervention, including the design process in different contexts. Methodology: The situation of limited feasibility of clinical outcomes was foreseen in the European Union funded project called “DECI” (“Digital Environment for Cognitive Inclusion”) that is run under the “Horizon 2020” program with an aim to define and test a digital environment platform within corresponding care models that help elderly people live independently. A complex intervention of eHealth implementation into elaborate care models in four different countries was planned for one year. To design the evaluation, a participative approach was undertaken using Pettigrew’s lens of change and transformations, including context, process, and content. Through a series of workshops, observations, interviews, and document analysis, as well as a review of scientific literature, a comprehensive design of evaluation was created. Findings: The findings indicate that in order to get evidence on clinical outcomes, eHealth interventions should last longer than one year. The content of the comprehensive evaluation design includes a collection of qualitative and quantitative methods for data gathering which illuminates non-medical aspects. Furthermore, it contains communication arrangements to discuss the results and continuously improve the evaluation design, as well as procedures for monitoring and improving the data collection during the intervention. The process of the comprehensive evaluation design consists of four stages: (1) analysis of a current state in different contexts, including measurement systems, expectations and profiles of stakeholders, organizational ambitions to change due to eHealth integration, and the organizational capacity to collect data for evaluation; (2) workshop with project partners to discuss the as-is situation in relation to the project goals; (3) development of general and customized sets of relevant performance measures, questionnaires and interview questions; (4) setting up procedures and monitoring systems for the interventions. Lastly, strategies are presented on how challenges can be handled during the design process of evaluation in four different countries. The evaluation design needs to consider contextual factors such as project limitations, and differences between pilot sites in terms of eHealth solutions, patient groups, care models, national and organizational cultures and settings. This implies a need for the flexible approach to evaluation design to enable judgment over the effectiveness and potential for adoption and transferability of eHealth. In summary, this paper provides learning opportunities for future evaluation designs of eHealth interventions in different national and organizational settings.Keywords: ehealth, elderly, evaluation, intervention, multi-cultural
Procedia PDF Downloads 32320269 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 3820268 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources
Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha
Abstract:
Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models
Procedia PDF Downloads 21120267 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey
Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar
Abstract:
5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.Keywords: 5G, 5th generation, innovation, standard, wireless communication
Procedia PDF Downloads 44420266 National Accreditation Board for Hospitals and Healthcare Reaccreditation, the Challenges and Advantages: A Qualitative Case Study
Authors: Narottam Puri, Gurvinder Kaur
Abstract:
Background: The National Accreditation Board for Hospitals & Healthcare Providers (NABH) is India’s apex standard setting accrediting body in health care which evaluates and accredits healthcare organizations. NABH requires accredited organizations to become reaccredited every three years. It is often though that once the initial accreditation is complete, the foundation is set and reaccreditation is a much simpler process. Fortis Hospital, Shalimar Bagh, a part of the Fortis Healthcare group is a 262 bed, multi-specialty tertiary care hospital. The hospital was successfully accredited in the year 2012. On completion of its first cycle, the hospital underwent a reaccreditation assessment in the year 2015. This paper aims to gain a better understanding of the challenges that accredited hospitals face when preparing for a renewal of their accreditations. Methods: The study was conducted using a cross-sectional mixed methods approach; semi-structured interviews were conducted with senior leadership team and staff members including doctors and nurses. Documents collated by the QA team while preparing for the re-assessment like the data on quality indicators: the method of collection, analysis, trending, continual incremental improvements made over time, minutes of the meetings, amendments made to the existing policies and new policies drafted was reviewed to understand the challenges. Results: The senior leadership had a concern about the cost of accreditation and its impact on the quality of health care services considering the staff effort and time consumed it. The management was however in favor of continuing with the accreditation since it offered competitive advantage, strengthened community confidence besides better pay rates from the payors. The clinicians regarded it as an increased non-clinical workload. Doctors felt accountable within a professional framework, to themselves, the patient and family, their peers and to their profession; but not to accreditation bodies and raised concerns on how the quality indicators were measured. The departmental leaders had a positive perception of accreditation. They agreed that it ensured high standards of care and improved management of their functional areas. However, they were reluctant in sparing people for the QA activities due to staffing issues. With staff turnover, a lot of work was lost as sticky knowledge and had to be redone. Listing the continual quality improvement initiatives over the last 3 years was a challenge in itself. Conclusion: The success of any quality assurance reaccreditation program depends almost entirely on the commitment and interest of the administrators, nurses, paramedical staff, and clinicians. The leader of the Quality Movement is critical in propelling and building momentum. Leaders need to recognize skepticism and resistance and consider ways in which staff can become positively engaged. Involvement of all the functional owners is the start point towards building ownership and accountability for standards compliance. Creativity plays a very valuable role. Communication by Mail Series, WhatsApp groups, Quizzes, Events, and any and every form helps. Leaders must be able to generate interest and commitment without burdening clinical and administrative staff with an activity they neither understand nor believe in.Keywords: NABH, reaccreditation, quality assurance, quality indicators
Procedia PDF Downloads 22420265 Study of Evaluation Model Based on Information System Success Model and Flow Theory Using Web-scale Discovery System
Authors: June-Jei Kuo, Yi-Chuan Hsieh
Abstract:
Because of the rapid growth of information technology, more and more libraries introduce the new information retrieval systems to enhance the users’ experience, improve the retrieval efficiency, and increase the applicability of the library resources. Nevertheless, few of them are discussed the usability from the users’ aspect. The aims of this study are to understand that the scenario of the information retrieval system utilization, and to know why users are willing to continuously use the web-scale discovery system to improve the web-scale discovery system and promote their use of university libraries. Besides of questionnaires, observations and interviews, this study employs both Information System Success Model introduced by DeLone and McLean in 2003 and the flow theory to evaluate the system quality, information quality, service quality, use, user satisfaction, flow, and continuing to use web-scale discovery system of students from National Chung Hsing University. Then, the results are analyzed through descriptive statistics and structural equation modeling using AMOS. The results reveal that in web-scale discovery system, the user’s evaluation of system quality, information quality, and service quality is positively related to the use and satisfaction; however, the service quality only affects user satisfaction. User satisfaction and the flow show a significant impact on continuing to use. Moreover, user satisfaction has a significant impact on user flow. According to the results of this study, to maintain the stability of the information retrieval system, to improve the information content quality, and to enhance the relationship between subject librarians and students are recommended for the academic libraries. Meanwhile, to improve the system user interface, to minimize layer from system-level, to strengthen the data accuracy and relevance, to modify the sorting criteria of the data, and to support the auto-correct function are required for system provider. Finally, to establish better communication with librariana commended for all users.Keywords: web-scale discovery system, discovery system, information system success model, flow theory, academic library
Procedia PDF Downloads 10320264 Performance Evaluation of Arrival Time Prediction Models
Abstract:
Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.Keywords: bus transit, arrival time prediction, link-based, path-based
Procedia PDF Downloads 35820263 Drive Sharing with Multimodal Interaction: Enhancing Safety and Efficiency
Authors: Sagar Jitendra Mahendrakar
Abstract:
Exploratory testing is a dynamic and adaptable method of software quality assurance that is frequently praised for its ability to find hidden flaws and improve the overall quality of the product. Instead of using preset test cases, exploratory testing allows testers to explore the software application dynamically. This is in contrast to scripted testing methodologies, which primarily rely on tester intuition, creativity, and adaptability. There are several tools and techniques that can aid testers in the exploratory testing process which we will be discussing in this talk.Tests of this kind are able to find bugs of this kind that are harder to find during structured testing or that other testing methods may have overlooked.The purpose of this abstract is to examine the nature and importance of exploratory testing in modern software development methods. It explores the fundamental ideas of exploratory testing, highlighting the value of domain knowledge and tester experience in spotting possible problems that may escape the notice of traditional testing methodologies. Throughout the software development lifecycle, exploratory testing promotes quick feedback loops and continuous improvement by giving testers the ability to make decisions in real time based on their observations. This abstract also clarifies the unique features of exploratory testing, like its non-linearity and capacity to replicate user behavior in real-world settings. Testers can find intricate bugs, usability problems, and edge cases in software through impromptu exploration that might go undetected. Exploratory testing's flexible and iterative structure fits in well with agile and DevOps processes, allowing for a quicker time to market without sacrificing the quality of the final product.Keywords: exploratory, testing, automation, quality
Procedia PDF Downloads 5120262 Voice over IP Quality of Service Evaluation for Mobile Ad Hoc Network in an Indoor Environment for Different Voice Codecs
Authors: Lina Abou Haibeh, Nadir Hakem, Ousama Abu Safia
Abstract:
In this paper, the performance and quality of Voice over IP (VoIP) calls carried over a Mobile Ad Hoc Network (MANET) which has a number of SIP nodes registered on a SIP Proxy are analyzed. The testing campaigns are carried out in an indoor corridor structure having a well-defined channel’s characteristics and model for the different voice codecs, G.711, G.727 and G.723.1. These voice codecs are commonly used in VoIP technology. The calls’ quality are evaluated using four Quality of Service (QoS) metrics, namely, mean opinion score (MOS), jitter, delay, and packet loss. The relationship between the wireless channel’s parameters and the optimum codec is well-established. According to the experimental results, the voice codec G.711 has the best performance for the proposed MANET topologyKeywords: wireless channel modelling, Voip, MANET, session initiation protocol (SIP), QoS
Procedia PDF Downloads 22720261 An Online Mastery Learning Method Based on a Dynamic Formative Evaluation
Authors: Jeongim Kang, Moon Hee Kim, Seong Baeg Kim
Abstract:
This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity.Keywords: online learning, dynamic formative evaluation, mastery learning, repetitive learning method, learning achievement
Procedia PDF Downloads 51020260 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators
Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros
Abstract:
Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis
Procedia PDF Downloads 13920259 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 153