Search results for: passive thermal control
14105 Annular Hyperbolic Profile Fins with Variable Thermal Conductivity Using Laplace Adomian Transform and Double Decomposition Methods
Authors: Yinwei Lin, Cha'o-Kuang Chen
Abstract:
In this article, the Laplace Adomian transform method (LADM) and double decomposition method (DDM) are used to solve the annular hyperbolic profile fins with variable thermal conductivity. As the thermal conductivity parameter ε is relatively large, the numerical solution using DDM become incorrect. Moreover, when the terms of DDM are more than seven, the numerical solution using DDM is very complicated. However, the present method can be easily calculated as terms are over seven and has more precisely numerical solutions. As the thermal conductivity parameter ε is relatively large, LADM also has better accuracy than DDM.Keywords: fins, thermal conductivity, Laplace transform, Adomian, nonlinear
Procedia PDF Downloads 33414104 Research on Urban Thermal Environment Climate Map Based on GIS: Taking Shapingba District, Chongqing as an Example
Authors: Zhao Haoyue
Abstract:
Due to the combined effects of climate change, urban expansion, and population growth, various environmental issues, such as urban heat islands and pollution, arise. Therefore, reliable information on urban environmental climate is needed to address and mitigate the negative effects. The emergence of urban climate maps provides a practical basis for urban climate regulation and improvement. This article takes Shapingba District, Chongqing City, as an example to study the construction method of urban thermal environment climate maps based on GIS spatial analysis technology. The thermal load, ventilation potential analysis map, and thermal environment comprehensive analysis map were obtained. Based on the classification criteria obtained from the climate map, corresponding protection and planning mitigation measures have been proposed.Keywords: urban climate, GIS, heat island analysis, urban thermal environment
Procedia PDF Downloads 11314103 The Usage of Thermal Regions as a Air Navigation Rule for Unmanned Aircraft Systems
Authors: Resul Fikir
Abstract:
Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier .One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drug. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wing which can use of thermals like birds and gliders. Thermal regions, which is area of 2-3 NM, exist all around the world. It is free and clean source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.Keywords: unmanned aircraft systems, Air4All, thermals, gliders
Procedia PDF Downloads 40014102 Polygeneration Solar Thermal System
Authors: S. K. Deb, B. C. Sarma
Abstract:
The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it’s focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it’s aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system.Keywords: concentrator, polygeneration, aperture, renewable energy, exergy, solar energy
Procedia PDF Downloads 52814101 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions
Authors: M. Y. Malik, Farzana Khan
Abstract:
In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity
Procedia PDF Downloads 42314100 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt
Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem
Abstract:
The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies
Procedia PDF Downloads 39914099 Thermal Performance of Reheat, Regenerative, Inter-Cooled Gas Turbine Cycle
Authors: Milind S. Patil, Purushottam S. Desale, Eknath R. Deore
Abstract:
Thermal analysis of reheat, regenerative, inter-cooled gas turbine cycle is presented. Specific work output, thermal efficiency and SFC is simulated with respect to operating conditions. Analytical formulas were developed taking into account the effect of operational parameters like ambient temperature, compression ratio, compressor efficiency, turbine efficiency, regenerator effectiveness, pressure loss in inter cooling, reheating and regenerator. Calculations were made for wide range of parameters using engineering equation solver and the results were presented here. For pressure ratio of 12, regenerator effectiveness 0.95, and maximum turbine inlet temperature 1200 K, thermal efficiency decreases by 27% with increase in ambient temperature (278 K to 328 K). With decrease in regenerator effectiveness thermal efficiency decreases linearly. With increase in ambient temperature (278 K to 328 K) for the same maximum temperature and regenerator effectiveness SFC decreases up to a pressure ratio of 10 and then increases. Sharp rise in SFC is noted for higher ambient temperature. With increase in isentropic efficiency of compressor and turbine, thermal efficiency increases by about 40% for low ambient temperature (278 K to 298 K) however, for higher ambient temperature (308 K to 328 K) thermal efficiency increases by about 70%.Keywords: gas turbine, reheating, regeneration, inter-cooled, thermal analysis
Procedia PDF Downloads 33714098 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market
Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette
Abstract:
The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation
Procedia PDF Downloads 12514097 A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror
Authors: Pinghe Wang
Abstract:
In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength.Keywords: fiber laser, dissipative soliton resonance, mode locking, tunable
Procedia PDF Downloads 23714096 Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System
Authors: Seung-Ho Yoo, Jong-Ryeul Sohn
Abstract:
An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other.Keywords: radiant heating and cooling ceiling, asymmetric radiation, thermal comfort, thermal sensation vote
Procedia PDF Downloads 51614095 Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES)
Authors: Hamidreza Sharifan, Audra Morse
Abstract:
Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed.Keywords: passive sampler, water contaminants, PES-transfer rate, contaminant concentrations
Procedia PDF Downloads 45514094 Using Data Mining in Automotive Safety
Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler
Abstract:
Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact
Procedia PDF Downloads 38214093 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation
Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne
Abstract:
One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model
Procedia PDF Downloads 21714092 Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate
Authors: Bongsu Choi, Tae-Ho Song
Abstract:
Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m•K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.Keywords: envelope, edge conduction, thermal conductivity, vacuum insulation panel
Procedia PDF Downloads 40514091 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater
Authors: Abhishek Priyam, Prabha Chand
Abstract:
Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.Keywords: channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency
Procedia PDF Downloads 37214090 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice
Authors: T. Ewetumo, K. D. Adedayo, Festus Ben
Abstract:
Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation
Procedia PDF Downloads 35714089 Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction
Authors: Isha Rathore, Peeyush Jain, Elangovan Rajasekar
Abstract:
The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented.Keywords: thermal capacity, tuning, peak demand reduction, parametric analysis
Procedia PDF Downloads 18414088 Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN
Authors: Zakarya Kourdi, Mohammed Khaouani, Benyounes Bouazza, Ahlam Guen-Bouazza, Amine Boursali
Abstract:
In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places.Keywords: HEMT, Thermal Effect, Silvaco, InAlN/GaN
Procedia PDF Downloads 46714087 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation
Authors: Yongjian Gu
Abstract:
Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ
Procedia PDF Downloads 19614086 Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application
Authors: Pemika Ketsuwan, Pitt Supaphol, Manit Nithitanakul
Abstract:
A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone.Keywords: ethylene methyl acrylate, HPMC, Silica, Thermal stability
Procedia PDF Downloads 12214085 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System
Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari
Abstract:
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency
Procedia PDF Downloads 40514084 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids
Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim
Abstract:
In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water
Procedia PDF Downloads 26114083 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 29214082 Thermal Conductivity and Optical Absorption of GaAsPN/GaP for Tandem Solar Cells: Effect of Rapid Thermal Annealing
Authors: S. Ilahi, S. Almosni, F. Chouchene, M. Perrin, K. Zelazna, N. Yacoubi, R. Kudraweic, P. Rale, L. Lombez, J. F. Guillemoles, O. Durand, C. Cornet
Abstract:
Great efforts have been dedicated to obtain high quality of GaAsPN. The properties of GaAsPN have played a great part on the development of solar cells devices based in Si substrate. The incorporation of N in GaAsPN that having a band gap around of 1.7 eV is of special interest in view of growing in Si substrate. In fact, post-growth and rapid thermal annealing (RTA) could be an effective way to improve the quality of the layer. Then, the influence of growth conditions and post-growth annealing on optical and thermal parameters is considered. We have used Photothermal deflection spectroscopy PDS to investigate the impact of rapid thermal annealing on thermal and optical properties of GaAsPN. In fact, the principle of the PDS consists to illuminate the sample by a modulated monochromatic light beam. Then, the absorbed energy is converted into heat through the nonradiative recombination process. The generated thermal wave propagates into the sample and surrounding media creating a refractive-index gradient giving rise to the deflection of a laser probe beam skimming the sample surface. The incident light is assumed to be uniform, and only the sample absorbs the light. In conclusion, the results are promising revealing an improvement in absorption coefficient and thermal conductivity.Keywords: GaAsPN absorber, photothermal defelction technique PDS, photonics on silicon, thermal conductivity
Procedia PDF Downloads 35414081 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate
Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim
Abstract:
The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.Keywords: micro grid, energy storage systems, ramp rate, control strategy
Procedia PDF Downloads 39214080 Thermal Insulation, Sound Insulation, and Tensile Properties of Epoxy-Silica Aerogel and Epoxy-Polystyrene Composites
Authors: Mehmet Ucar, Nuray Ucar
Abstract:
Both thermal insulation and sound insulation play a key role in energy saving and the quality of life. In this study, the effects of different fillers, such as silica aerogel and polystyrene, on the tensile strength, thermal insulation, and sound insulation of epoxy composites have been analyzed. Results from the experimental studies show that both tensile strength and insulation properties (sound and thermal insulation) of the epoxy composite increased by the use of silica aerogel additive. Polystyrene additive significantly increases the sound absorption coefficient of the epoxy composite. Such composites offer great potential for many applications.Keywords: epoxy composite, silica aerogel, polystyrene, tensile strength, thermal insulation, sound insulation
Procedia PDF Downloads 1614079 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 27914078 An Integrated Tailoring Method for Thermal Cycling Tests of Spacecraft Electronics
Authors: Xin-Yan Ji, Jing Wang, Chang Liu, Yan-Qiang Bi, Zhong-Xu Xu, Xi-Yuan Li
Abstract:
Thermal tests of electronic units are critically important for the reliability validation and performance demonstration of the spacecraft hard-wares. The tailoring equation in MIL-STD-1540 is based on fatigue of solder date. In the present paper, a new test condition tailoring expression is proposed to fit different thermo-mechanical fatigue and different subsystems, by introducing an integrated evaluating method for the fatigue acceleration exponent. The validate test has been accomplished and the data has been analyzed and compared with that from the MIL-STD-1540 tailoring equations. The results are encouraging and reasonable.Keywords: thermal cycling test, thermal fatigue, tailoring equation, test condition planning
Procedia PDF Downloads 45914077 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete
Authors: Farzad Danaei, Yilmaz Akkaya
Abstract:
In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient
Procedia PDF Downloads 7714076 Three Dimensional Analysis of Cubesat Thermal Vacuum Test
Authors: Maged Assem Soliman Mossallam
Abstract:
Thermal vacuum testing target is to qualify the space system and ensure its operability under harsh space environment. The functionality of the cubesat was checked at extreme orbit conditions. Test was performed for operational and nonoperational modes. Analysis is done to simulate the cubesat thermal cycling inside thermal vacuum chamber. Comsol Multiphysics finite element is used to solve three dimensional problem for the cubesat inside TVAC. Three dimensional CAD model is done using Autodesk Inventor program. The boundary conditions were applied from the actual shroud temperature. The input heat load variation with time is considered to solve the transient three dimensional problem. Results show that the simulated temperature profiles are within an acceptable range from the real testing data.Keywords: cubesat, thermal vacuum test, testing simulation, finite element analysis
Procedia PDF Downloads 151