Search results for: microbial metabolites
1035 Preparations of Fruit Nectars from Fresh Fruit Juices-Analyses before and after Storage
Authors: Youcef Amir
Abstract:
The consumption of beverages continues to grow worldwide due to increasing demography, but pure fruit juices and high-quality nectars can induce protective effects on human health because of their natural bioactive components. In contrast, sodas and gaseous drinks containing synthetic food additives are considered as responsible for consumers of several pathologies such as obesity, diabetes, and non-alcoholic fatty liver disease. The nutritional and therapeutic virtues of fruit juices are generally a remarkable antioxidant power, anti-cancer activity linked to their richness of indigestible and indigestible sugars, vitamins, mineral salts, carotenoids and phenolic compounds. The main reasons, which led us to produce these fruit derivatives, are the non-availability of the fresh fruits mentioned above all along the year and also the existence of variations in the chemical composition of these different fruits as well as for the major or minor components. We tested, therefore, the physicochemical characteristics of each fruit juice and pulp apart and afterward those of the cocktails formulated. The fresh juices used during our experiments were obtained from the following fruits from north-central Algeria: prickly pear, pomegranate, melon, red oranges. The formulations of these fruit juices were tested after several trials comprising sensorial analysis, physicochemical factors (pH, titratable acidity, Brix degree, formal index, water content, total ash, total and reducing sugars, vitamin C, carotenoids, phenolic compounds) and microbial analysis after a storage period. To the pure juices proportions, citric acid E330, sucrose, and water were added followed by pasteurisation. These products were analysed from the physicochemical, microbial and sensorial viewpoints after a storage period of one month according to national legislation to evaluate their stability. The results of the physicochemical parameters of the prepared beverages had shown good physicochemical results, acceptable sensorial characteristics and microbial stability and safety before and after a storage period. We measured appreciable amounts of minor compounds with health properties.Keywords: fruit juices, microbial analyses, nectars, physico chemical characteristics, sensorial analysis, storage period
Procedia PDF Downloads 2291034 The Biofertilizer Effect of Pseudomonas of Salt Soils of the North-West Algerian, Study of Comportment of Bean (Vicia Faba)
Authors: Djoudi Abdelhak, Djibaoui Rachid, Reguieg Yassaad Houcine
Abstract:
Our study focuses on the identification of some species of Pseudomonas (P4, P5, P7 and P8) isolated from saline soils in northwestern Algeria and the effect of their metabolites on the growth of Alternaria alternata the causative agent of the blight of the bean disease (Vicia faba). We are also interested in stimulating the growth of this plant species in saline conditions (60 mM/l NaCl) and the absence of salts. The analysis focuses on rates of inhibition of mycelial growth of Alternaria alternata strain and the rate of growth of plants inoculated with strains of Pseudomonas expressed by biometrics. According to the results of the in-vitro test, P5 and P8 species and their metabolites showed a significant effect on mycelia growth and production of spores of Alternaria alternata. The in-vivo test shows that the species P8 and P5 were significantly and positively influencing the growth in biometric parameters of the bean in saline and salt-free condition. Inoculation with strain P5 has promoted the growth of the bean in stem height, stem fresh weight and dry weight of stems of 108.59%, 115.28%, 104.33%, respectively, in the presence of salt Inoculation with strain P5 has fostered the growth of the bean stem fresh weight of 112.47% in the presence of salt The effect of Pseudomonas species on the development of Vicia faba and the growth of Alternaria alternata is considering new techniques and methods of biological production and crop protection.Keywords: pseudomonas, vicia faba, alternaria alternata, promoting of plant growth
Procedia PDF Downloads 3921033 Egyptian Soil Isolate Shows Promise as a Source of a New Broad-spectrum Antimicrobial Agent Against Multidrug-resistant Pathogens
Authors: Norhan H. Mahdally, Bathini Thissera Riham A. ElShiekh, Noha M. Elhosseiny, Mona T. Kashef, Ali M. El Halawany, Mostafa E. Rateb, Ahmed S. Attia
Abstract:
Multidrug-resistant (MDR) pathogens pose a global threat to healthcare settings. The exhaustion of the current antibiotic arsenal and the scarcity of new antimicrobials in the pipeline aggravate this threat and necessitate a prompt and effective response. This study focused on two major pathogens that can cause serious infections: carbapenem-resistant Acinetobacter baumannii (CRAB) and methicillin-resistant Staphylococcus aureus (MRSA). Multiple soil isolates were collected from several locations throughout Egypt and screened for their conventional and non-conventional antimicrobial activities against MDR pathogens. One isolate exhibited potent antimicrobial activity and was subjected to multiple rounds of fractionation. After fermentation and bio-guided fractionation, we identified pure microbial secondary metabolites with two scaffolds that exhibited promising effects against CRAB and MRSA. Scaling up and chemical synthesis of derivatives of the identified metabolite resulted in obtaining a more potent derivative, which we designated as 2HP. Cytotoxicity studies indicated that 2HP is well-tolerated by human cells. Ongoing work is focusing on formulating the new compound into a nano-formulation to enhance its delivery. Also, to have a better idea about how this compound works, a proteomic approach is currently underway. Our findings suggest that 2HP is a potential new broad-spectrum antimicrobial agent. Further studies are needed to confirm these findings and to develop 2HP into a safe and effective treatment for MDR infections.Keywords: broad-spectrum antimicrobials, carbapenem-resistant acinetobacter baumannii, drug discovery, methicillin-resistant staphylococcus aureus, multidrug-resistant, natural products
Procedia PDF Downloads 801032 Antimicrobial Efficacy of 0.75% Metronidazole and 2% Chlorhexidine Gel Applied in Implant Screw Hole: A Clinical Trial
Authors: Mostafa Solati
Abstract:
Objectives: Considering the gap of information regarding the optimal antimicrobial efficacy of metronidazole for application in the implant screw hole, this study aimed to compare the antimicrobial efficacy of 0.75% metronidazole and 2% chlorhexidine (CHX) gel applied in the implant screw hole. Materials and Methods: This randomized controlled clinical trial evaluated 60 implants (20 patients, each requiring three implants) in three groups (n=20). In group 1, 0.75% metronidazole gel was applied to the implant screw hole. In group 2, 2% CHX gel was applied, and in group 3, no material was used. Microbial samples were collected from the screw holes after three months, and the microbial colonies were counted. Data were analyzed using ANOVA. Results: The number of bacteria in the control group was significantly higher than that in 0.75% metronidazole gel and 2% CHX groups (P<0.05). The CHX group caused the maximum reduction in colony count with no significant difference from the metronidazole group (P>0.05). Conclusion: The application of 0.75% metronidazole gel and 2% CHX can effectively decrease the colony count in the implant screw hole and can probably play a role in the preservation of peri-implant tissue health.Keywords: dental implant, metronidazole, CHX, screw hole
Procedia PDF Downloads 701031 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 1081030 Identifying Dominant Anaerobic Microorganisms for Degradation of Benzene
Authors: Jian Peng, Wenhui Xiong, Zheng Lu
Abstract:
An optimal recipe of amendment (nutrients and electron acceptors) was developed and dominant indigenous benzene-degrading microorganisms were characterized in this study. Lessons were learnt from the development of the optimal amendment recipe: (1) salinity and substantial initial concentration of benzene were detrimental for benzene biodegradation; (2) large dose of amendments can shorten the lag time for benzene biodegradation occurrence; (3) toluene was an essential co-substance for promoting benzene degradation activity. The stable isotope probing study identified incorporation 13C from 13C-benzene into microorganisms, which can be considered as a direct evidence of the occurrence of benzene biodegradation. The dominant mechanism for benzene removal was identified by quantitative polymerase chain reaction analysis to be nitrate reduction. Microbial analyses (denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that members of genus Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant within the microbial community and involved in the anaerobic benzene bioremediation.Keywords: benzene, enhanced anaerobic bioremediation, stable isotope probing, biosep biotrap
Procedia PDF Downloads 3411029 Study of Microbial Diversity Associated with Tarballs and Their Exploitation in Crude Oil Degradation
Authors: Varsha Shinde, Belle Damodara Shenoy
Abstract:
Tarballs are crude oil remnants found in oceans after long term weathering process and are a global concern since several decades as potential marine pollutant. Being complicated in structure microbial remediation of tarballs in natural environment is a slow process. They are rich in high molecular weight alkanes and poly aromatic hydrocarbons which are resistant to microbial attack and other environmental factors, therefore remain in environment for long time. However, it has been found that many bacteria and fungi inhabit on tarballs for nutrients and shelter. Many of them are supposed to be oil degraders, while others are supposed to be getting benefited by byproducts formed during hydrocarbon metabolism. Thus tarballs are forming special interesting ecological niche of microbes. This work aimed to study diversity of bacteria and fungi from tarballs and to see their potential application in crude oil degradation. The samples of tarballs were collected from Betul beach of south Goa (India). Different methods were used to isolate culturable fraction of bacteria and fungi from it. Those were sequenced for 16S rRNA gene and ITS for molecular level identification. The 16S rRNA gene sequence analysis revealed the presence of 13 bacterial genera/clades (Alcanivorax, Brevibacterium, Bacillus, Cellulomonas, Enterobacter, Klebsiella, Marinobacter, Nitratireductor, Pantoea, Pseudomonas, Pseudoxanthomonas, Tistrella and Vibrio), while the ITS sequence analysis placed the fungi in 8 diverse genera/ clades (Aspergillus, Byssochlamys, Monascus, Paecilomyces, Penicillium, Scytalidium/ Xylogone, Talaromyces and Trichoderma). All bacterial isolates were screened for oil degradation capacity. Potential strains were subjected to crude oil degradation experiment for quantification. Results were analyzed by GC-MS-MS.Keywords: bacteria, biodegradation, crude oil, diversity, fungi, tarballs
Procedia PDF Downloads 2221028 Allelopathic Effect of Foliar Extracts of Leucaena leucocephala on Germination and Growth Behavior of Zea mays L.
Authors: Guru Prasad Satsangi, Shiv Shankar Gautam
Abstract:
Allelopathy is a potential area of research for sustainable agriculture. It is environmentally safe, can conserve the available resources, and also may mitigate the problems raised by synthetic chemicals. The allelo-chemicals are secondary metabolites produced by plants, which are the byproducts of the primary metabolic process. These allelo-chemicals may be stimulatory, inhibitory, or may have no effect on the growth of the other plants. It has been observed in the present study that foliar extracts of Leucaena leucocephala showed an inhibitory effect on the germination of the test crop maize. The results revealed that at different concentrations of Leucaena leucocephala foliar extract, caused a significant inhibition in germination and growth behavior of Zea mays L. seedlings. Minimum germination and growth occurred in 100 % concentration, and an increase in extract concentrations result in a decrease in the germination. Bioassay also depicted that this inhibitory effect was proportional to the concentration of the extract as the higher concentration having a lesser stimulatory effect or vice versa. The phytochemical analysis of the secondary metabolites from foliar extracts of Leucaena leucocephala L. showed the presence of tannins, saponins, phenols, alkaloids, and flavanoids. Among various extracts, the presence of methanol extract was found in a significant amount of phytochemicals, followed by the aqueous and ethanol extracts. Leaves showed a significantly higher amount of the allelochemicals.Keywords: allelopathic effect, germination /growth behavior , foliar extracts, Leucaena leucceophala , Zea mays L.
Procedia PDF Downloads 2001027 Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to an Environmentally Safe Product: Corrosion Inhibitor and Biocide
Authors: Mohamed A. Hegazy
Abstract:
Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community.Keywords: PVC, surfactant, corrosion inhibitor, biocide, SRB
Procedia PDF Downloads 1231026 Screening of New Antimicrobial Agents from Heterocyclic Derivatives
Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah
Abstract:
The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology
Procedia PDF Downloads 3671025 Rhizoremediation of Contaminated Soils in Sub-Saharan Africa: Experimental Insights of Microbe Growth and Effects of Paspalum Spp. for Degrading Hydrocarbons in Soils
Authors: David Adade-Boateng, Benard Fei Baffoe, Colin A. Booth, Michael A. Fullen
Abstract:
Remediation of diesel fuel, oil and grease in contaminated soils obtained from a mine site in Ghana are explored using rhizoremediation technology with different levels of nutrient amendments (i.e. N (nitrogen) in Compost (0.2, 0.5 and 0.8%), Urea (0.2, 0.5 and 0.8%) and Topsoil (0.2, 0.5 and 0.8%)) for a native species. A Ghanaian native grass species, Paspalum spp. from the Poaceae family, indicative across Sub-Saharan Africa, was selected following the development of essential and desirable growth criteria. Vegetative parts of the species were subjected to ten treatments in a Randomized Complete Block Design (RCBD) in three replicates. The plant-associated microbial community was examined in Paspalum spp. An assessment of the influence of Paspalum spp on the abundance and activity of micro-organisms in the rhizosphere revealed a build-up of microbial communities over a three month period. This was assessed using the MPN method, which showed rhizospheric samples from the treatments were significantly different (P <0.05). Multiple comparisons showed how microbial populations built-up in the rhizosphere for the different treatments. Treatments G (0.2% compost), H (0.5% compost) and I (0.8% compost) performed significantly better done other treatments, while treatments D (0.2% topsoil) and F (0.8% topsoil) were insignificant. Furthermore, treatment A (0.2% urea), B (0.5% urea), C (0.8% urea) and E (0.5% topsoil) also performed the same. Residual diesel and oil concentrations (as total petroleum hydrocarbons, TPH and oil and grease) were measured using infra-red spectroscopy and gravimetric methods, respectively. The presence of single species successfully enhanced the removal of hydrocarbons from soil. Paspalum spp. subjected to compost levels (0.5% and 0.8%) and topsoil levels (0.5% and 0.8%) showed significantly lower residual hydrocarbon concentrations compared to those treated with Urea. A strong relationship (p<0.001) between the abundance of hydrocarbon degrading micro-organisms in the rhizosphere and hydrocarbon biodegradation was demonstrated for rhizospheric samples with treatment G (0.2% compost), H (0.5% compost) and I (0.8% compost) (P <0.001). The same level of amendment with 0.8% compost (N-level) can improve the application effectiveness. These findings have wide-reaching implications for the environmental management of soils contaminated by hydrocarbons in Sub-Saharan Africa. However, it is necessary to further investigate the in situ rhizoremediation potential of Paspalum spp. at the field scale.Keywords: rhizoremediation, microbial population, rhizospheric sample, treatments
Procedia PDF Downloads 3251024 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks
Procedia PDF Downloads 3951023 Chemiluminescent Detection of Microorganisms in Food/Drug Product Using Reducing Agents and Gold Nanoplates
Authors: Minh-Phuong Ngoc Bui, Abdennour Abbas
Abstract:
Microbial spoilage of food/drug has been a constant nuisance and an unavoidable problem throughout history that affects food/drug quality and safety in a variety of ways. A simple and rapid test of fungi and bacteria in food/drugs and environmental clinical samples is essential for proper management of contamination. A number of different techniques have been developed for detection and enumeration of foodborne microorganism including plate counting, enzyme-linked immunosorbent assay (ELISA), polymer chain reaction (PCR), nucleic acid sensor, electrical and microscopy methods. However, the significant drawbacks of these techniques are highly demand of operation skills and the time and cost involved. In this report, we introduce a rapid method for detection of bacteria and fungi in food/drug products using a specific interaction between a reducing agent (tris(2-carboxylethyl)phosphine (TCEP)) and the microbial surface proteins. The chemical reaction was transferred to a transduction system using gold nanoplates-enhanced chemiluminescence. We have optimized our nanoplates synthetic conditions, characterized the chemiluminescence parameters and optimized conditions for the microbial assay. The new detection method was applied for rapid detection of bacteria (E.coli sp. and Lactobacillus sp.) and fungi (Mucor sp.), with limit of detection as low as single digit cells per mL within 10 min using a portable luminometer. We expect our simple and rapid detection method to be a powerful alternative to the conventional plate counting and immunoassay methods for rapid screening of microorganisms in food/drug products.Keywords: microorganism testing, gold nanoplates, chemiluminescence, reducing agents, luminol
Procedia PDF Downloads 2991022 Consequences of Some Remediative Techniques Used in Sewaged Soil Bioremediation on Indigenous Microbial Activity
Authors: E. M. Hoballah, M. Saber, A. Turky, N. Awad, A. M. Zaghloul
Abstract:
Remediation of cultivated sewage soils in Egypt become an important aspect in last decade for having healthy crops and saving the human health. In this respect, a greenhouse experiment was conducted where contaminated sewage soil was treated with modified forms of 2% bentonite (T1), 2% kaolinite (T2), 1% bentonite+1% kaolinite (T3), 2% probentonite (T4), 2% prokaolinite (T5), 1% bentonite + 0.5% kaolinite + 0.5% rock phosphate (RP) (T6), 2% iron oxide (T7) and 1% iron oxide + 1% RP (T8). These materials were applied as remediative materials. Untreated soil was also used as a control. All soil samples were incubated for 2 months at 25°C at field capacity throughout the whole experiment. Carbon dioxide (CO2) efflux from both treated and untreated soils as a biomass indicator was measured through the incubation time and kinetic parameters of the best fitted models used to describe the phenomena were taken to evaluate the succession of sewaged soils remediation. The obtained results indicated that according to the kinetic parameters of used models, CO2 effluxes from remediated soils was significantly decreased compared to control treatment with variation in rate values according to type of remediation material applied. In addition, analyzed microbial biomass parameter showed that Ni and Zn were the most potential toxic elements (PTEs) that influenced the decreasing order of microbial activity in untreated soil. Meanwhile, Ni was the only influenced pollutant in treated soils. Although all applied materials significantly decreased the hazards of PTEs in treated soil, modified bentonite was the best treatment compared to other used materials. This work discussed different mechanisms taking place between applied materials and PTEs founded in the studied sewage soil.Keywords: remediation, potential toxic elements, soil biomass, sewage
Procedia PDF Downloads 2281021 Trial of Faecal Microbial Transplantation for the Prevention of Canine Atopic Dermatitis
Authors: Caroline F. Moeser
Abstract:
The skin-gut axis defines the relationship between the intestinal microbiota and the development of pathological skin diseases. Low diversity within the gut can predispose to the development of allergic skin conditions, and a greater diversity of the gastrointestinal microflora has been associated with a reduction of skin flares in people with atopic dermatitis. Manipulation of the gut microflora has been used as a treatment option for several conditions in people, but there is limited data available on the use of faecal transplantation as a preventative measure in either people or dogs. Six, 4-month-old pups from a litter of ten were presented for diarrhea and/or signs of skin disease (chronic scratching, otitis externa). Of these pups, two were given probiotics with a resultant resolution of diarrhea. The other four pups were given faecal transplantation, either as a sole treatment or in combination with other treatments. Follow-up on the litter of ten pups was performed at 18 months of age. At this stage, the four pups that had received faecal transplantation had resolved all clinical signs and had no recurrence of either skin or gastrointestinal symptoms. Of the remaining six pups from the litter, all had developed at least one episode of Malassezia otitis externa within the period of 5 months to 18 months of age. Two pups had developed two Malassezia otitis infections, and one had developed three Malassezia otitis infections during this period. Favrot’s criteria for the diagnosis of canine atopic dermatitis include chronic or recurrent Malassezia infections by the age of three years. Early results from this litter predict a reduction in the development of canine atopic disease in dogs given faecal microbial transplantation. Follow-up studies at three years of age and within a larger population of dogs can enhance understanding of the impact of early faecal transplantation in the prevention of canine atopic dermatitis.Keywords: canine atopic dermatitis, faecal microbial transplant, skin-gut axis, otitis
Procedia PDF Downloads 1581020 Metabolome-based Profiling of African Baobab Fruit (Adansonia Digitata L.) Using a Multiplex Approach of MS and NMR Techniques in Relation to Its Biological Activity
Authors: Marwa T. Badawy, Alaa F. Bakr, Nesrine Hegazi, Mohamed A. Farag, Ahmed Abdellatif
Abstract:
Diabetes Mellitus (DM) is a chronic disease affecting a large population worldwide. Africa is rich in native medicinal plants with myriad health benefits, though less explored towards the development of specific drug therapy as in diabetes. This study aims to determine the in vivo antidiabetic potential of the well-reported and traditionally used fruits of Baobab (Adansonia digitata L.) using STZ induced diabetic model. The in-vitro cytotoxic and antioxidant properties were examined using MTT assay on L-929 fibroblast cells and DPPH antioxidant assays, respectively. The extract showed minimal cytotoxicity with an IC50 value of 105.7 µg/mL. Histopathological and immunohistochemical investigations showed the hepatoprotective and the renoprotective effects of A. digitata fruits’ extract, implying its protective effects against diabetes complications. These findings were further supported by biochemical assays, which showed that i.p., injection of a low dose (150 mg/kg) of A. digitata twice a week lowered the fasting blood glucose levels, lipid profile, hepatic and renal markers. For a comprehensive overview of extract metabolites composition, ultrahigh performance (UHPLC) analysis coupled to high-resolution tandem mass spectrometry (HRMS/MS) in synchronization with molecular networks led to the annotation of 77 metabolites, among which 50% are reported for the first time in A. digitata fruits.Keywords: adansonia digital, diabetes mellitus, metabolomics, streptozotocin, Sprague, dawley rats
Procedia PDF Downloads 1651019 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium
Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas
Abstract:
Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides
Procedia PDF Downloads 4351018 Nematicidal Activity of the Cell Extract from Penicillium Sp EU0013 and Its Metabolite Profile Using High Performance Liquid Chromatograpy
Authors: Zafar Iqbal, Sana Irshad Khan
Abstract:
Organic extract from newly isolated plant growth promoting fungus (PGPF) Penicillium sp EU0013 was subjected to bioassays including anti fungal (disc diffusion) cytotoxicity (brine shrimp lethality), herbicidal (Lemna minor) and nematicidal activities. Metabolite profile of the extract was also assessed using HPLC analysis with the aim to identify bioactive natural products in the extract as new drug candidate(s). The extract showed anti fungal potential against tested fungal pathogens. Growth of the Wilt pathogen Fusarium oxyosproum was inhibited up to 63% when compared to negative reference. Activity against brine shrimps was weak and mortality up to 10% was observed at concentration of 200 µg. mL-1. The extract exhibited no toxicity against Lemna minor frond at 200 µg. mL-1. Nematicidal activity was observed very potent against root knot nematode and LC50 value was calculated as 52.5 ug. mL-1 using probit analysis. Methodically assessment of metabolites profile by HPLC showed the presence of kojic acid (Rt 1.4 min) and aflatoxin B1 (Rt 5.9 min) in the mycellial extract as compared with standards. The major unidentified metabolite was eluted at Rt 8.6 along with other minor peaks. The observed high toxicity against root knot nematode was attributed to the unidentified compounds that make fungal extract worthy of further exploration for isolation and structural characterization studies for development of future commercial nematicidal compound(s).Keywords: penicillium, nematicidal activity, metabolites, HPLC
Procedia PDF Downloads 4461017 In silico Statistical Prediction Models for Identifying the Microbial Diversity and Interactions Due to Fixed Periodontal Appliances
Authors: Suganya Chandrababu, Dhundy Bastola
Abstract:
Like in the gut, the subgingival microbiota plays a crucial role in oral hygiene, health, and cariogenic diseases. Human activities like diet, antibiotics, and periodontal treatments alter the bacterial communities, metabolism, and functions in the oral cavity, leading to a dysbiotic state and changes in the plaques of orthodontic patients. Fixed periodontal appliances hinder oral hygiene and cause changes in the dental plaques influencing the subgingival microbiota. However, the microbial species’ diversity and complexity pose a great challenge in understanding the taxa’s community distribution patterns and their role in oral health. In this research, we analyze the subgingival microbial samples from individuals with fixed dental appliances (metal/clear) using an in silico approach. We employ exploratory hypothesis-driven multivariate and regression analysis to shed light on the microbial community and its functional fluctuations due to dental appliances used and identify risks associated with complex disease phenotypes. Our findings confirm the changes in oral microbiota composition due to the presence and type of fixed orthodontal devices. We identified seven main periodontic pathogens, including Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Firmicutes, whose abundances were significantly altered due to the presence and type of fixed appliances used. In the case of metal braces, the abundances of Bacteroidetes, Proteobacteria, Fusobacteria, Candidatus saccharibacteria, and Spirochaetes significantly increased, while the abundance of Firmicutes and Actinobacteria decreased. However, in individuals With clear braces, the abundance of Bacteroidetes and Candidatus saccharibacteria increased. The highest abundance value (P-value=0.004 < 0.05) was observed with Bacteroidetes in individuals with the metal appliance, which is associated with gingivitis, periodontitis, endodontic infections, and odontogenic abscesses. Overall, the bacterial abundances decrease with clear type and increase with metal type of braces. Regression analysis further validated the multivariate analysis of variance (MANOVA) results, supporting the hypothesis that the presence and type of the fixed oral appliances significantly alter the bacterial abundance and composition.Keywords: oral microbiota, statistical analysis, fixed or-thodontal appliances, bacterial abundance, multivariate analysis, regression analysis
Procedia PDF Downloads 1941016 Application of Customized Bioaugmentation Inocula to Alleviate Ammonia Toxicity in CSTR Anaerobic Digesters
Authors: Yixin Yan, Miao Yan, Irini Angelidaki, Ioannis Fotidis
Abstract:
Ammonia, which derives from the degradation of urea and protein-substrates, is the major toxicant of the commercial anaerobic digestion reactors causing loses of up to 1/3 of their practical biogas production, which reflects directly on the overall revenue of the plants. The current experimental work is aiming to alleviate the ammonia inhibition in anaerobic digestion (AD) process by developing an innovative bioaugmentation method of ammonia tolerant methanogenic consortia. The ammonia tolerant consortia were cultured in batch reactors and immobilized together with biochar in agar (customized inocula). Three continuous stirred-tank reactors (CSTR), fed with the organic fraction of municipal solid waste at a hydraulic retention time of 15 days and operated at thermophilic (55°C) conditions were assessed. After an ammonia shock of 4 g NH4+-N L-1, the customized inocula were bioaugmented into the CSTR reactors to alleviate ammonia toxicity effect on AD process. Recovery rate of methane production and methanogenic activity will be assessed to evaluate the bioaugmentation performance, while 16s rRNA gene sequence will be used to reveal the difference of microbial community changes through bioaugmentation. At the microbial level, the microbial community structures of the four reactors will be analysed to find the mechanism of bioaugmentation. Changes in hydrogen formation potential will be used to predict direct interspecies electron transfer (DIET) between ammonia tolerant methanogens and syntrophic bacteria. This experimental work is expected to create bioaugmentation inocula that will be easy to obtain, transport, handled and bioaugment in AD reactors to efficiently alleviate the ammonia toxicity, without alternating any of the other operational parameters including the ammonia-rich feedstocks.Keywords: artisanal fishing waste, acidogenesis, volatile fatty acids, pH, inoculum/substrate ratio
Procedia PDF Downloads 1271015 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)
Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad
Abstract:
Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis
Procedia PDF Downloads 2631014 Screening of Antagonistic/Synergistic Effect between Lactic Acid Bacteria (LAB) and Yeast Strains Isolated from Kefir
Authors: Mihriban Korukluoglu, Goksen Arik, Cagla Erdogan, Selen Kocakoglu
Abstract:
Kefir is a traditional fermented refreshing beverage which is known for its valuable and beneficial properties for human health. Mainly yeast species, lactic acid bacteria (LAB) strains and fewer acetic acid bacteria strains live together in a natural matrix named “kefir grain”, which is formed from various proteins and polysaccharides. Different microbial species live together in slimy kefir grain and it has been thought that synergetic effect could take place between microorganisms, which belong to different genera and species. In this research, yeast and LAB were isolated from kefir samples obtained from Uludag University Food Engineering Department. The cell morphology of isolates was screened by microscopic examination. Gram reactions of bacteria isolates were determined by Gram staining method, and as well catalase activity was examined. After observing the microscopic/morphological and physical, enzymatic properties of all isolates, they were divided into the groups as LAB and/or yeast according to their physicochemical responses to the applied examinations. As part of this research, the antagonistic/synergistic efficacy of the identified five LAB and five yeast strains to each other were determined individually by disk diffusion method. The antagonistic or synergistic effect is one of the most important properties in a co-culture system that different microorganisms are living together. The synergistic effect should be promoted, whereas the antagonistic effect is prevented to provide effective culture for fermentation of kefir. The aim of this study was to determine microbial interactions between identified yeast and LAB strains, and whether their effect is antagonistic or synergistic. Thus, if there is a strain which inhibits or retards the growth of other strains found in Kefir microflora, this circumstance shows the presence of antagonistic effect in the medium. Such negative influence should be prevented, whereas the microorganisms which have synergistic effect on each other should be promoted by combining them in kefir grain. Standardisation is the most desired property for industrial production. Each microorganism found in the microbial flora of a kefir grain should be identified individually. The members of the microbial community found in the glue-like kefir grain may be redesigned as a starter culture regarding efficacy of each microorganism to another in kefir processing. The main aim of this research was to shed light on more effective production of kefir grain and to contribute a standardisation of kefir processing in the food industry.Keywords: antagonistic effect, kefir, lactic acid bacteria (LAB), synergistic, yeast
Procedia PDF Downloads 2801013 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom
Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou
Abstract:
The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.Keywords: microbial community, harmful algal bloom, ecological process, network
Procedia PDF Downloads 1141012 Association between Organophosphate Pesticides Exposure and Cognitive Behavior in Taipei Children
Authors: Meng-Ying Chiu, Yu-Fang Huang, Pei-Wei Wang, Yi-Ru Wang, Yi-Shuan Shao, Mei-Lien Chen
Abstract:
Background: Organophosphate pesticides (OPs) are the most heavily used pesticides in agriculture in Taiwan. Therefore, they are commonly detected in general public including pregnant women and children. These compounds are proven endocrine disrupters that may affect the neural development in humans. The aim of this study is to assess the OPs exposure of children in 2 years of age and to examine the association between the exposure concentrations and neurodevelopmental effects in children. Methods: In a prospective cohort of 280 mother-child pairs, urine samples of prenatal and postnatal were collected from each participant and analyzed for metabolites of OPs by using gas chromatography-mass spectrometry. Six analytes were measured including dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP). This study created a combined concentration measure for dimethyl compounds (DMs) consisting of the three dimethyl metabolites (DMP, DMTP, and DMDTP), for diethyl compounds (DEs) consisting of the three diethyl metabolites (DEP, DETP, and DEDTP) and six dialkyl phosphate (DAPs). The Bayley Scales of Infant and Toddler Development (Bayley-III) was used to assess children's cognitive behavior at 2 years old. The association between OPs exposure and Bayley-III scale score was determined by using the Mann-Whitney U test. Results: The measurements of urine samples are still on-going. This preliminary data are the report of 56 children aged 2 from the cohort. The detection rates for DMP, DMTP, DMDTP, DEP, DETP, and DEDTP are 80.4%, 69.6%, 64.3%, 64.3%, 62.5%, and 75%, respectively. After adjusting the creatinine concentrations of urine, the median (nmol/g creatinine) of urinary DMP, DMTP, DMDTP, DEP, DETP, DEDTP, DMs, DEs, and DAPs are 153.14, 53.32, 52.13, 19.24, 141.65, 192.17, 308.8, 311.6, and 702.11, respectively. The concentrations of urine are considerably higher than that in other countries. Children’s cognitive behavior was used three scales for Bayley-III, including cognitive, language and motor. In Mann-Whitney U test, the higher levels of DEs had significantly lower motor score (p=0.037), but no significant association was found between the OPs exposure levels and the score of either cognitive or language. Conclusion: The limited sample size suggests that Taipei children are commonly exposed to OPs and OPs exposure might affect the cognitive behavior of young children. This report will present more data to verify the results. The predictors of OPs concentrations, such as dietary pattern will also be included.Keywords: biomonitoring, children, neurodevelopment, organophosphate pesticides exposure
Procedia PDF Downloads 1411011 Control of Microbial Pollution Using Biodegradable Polymer
Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Introduction: Microbial pollution is global problem threatening the human health. It is resulted by pathogenic microorganisms such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and other pathogenic strains. They cause a dangerous effect on human health, so great efforts have been exerted to produce new and effective antimicrobial agents. Nowadays, natural polysaccharides, such as chitosan and its derivatives are used as antimicrobial agents. The aim of our work is to synthesize of a biodegradable polymer such as N-quaternized chitosan (NQC) then Characterization of NQC by using different analysis techniques such as Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and using it as an antibacterial agent against different pathogenic bacteria. Methods: Synthesis of NQC using dimethylsulphate. Results: FTIR technique exhibited absorption peaks of NQC, SEM images illustrated that surface of NQC was smooth and antibacterial results showed that NQC had a high antibacterial effect. Discussion: NQC was prepared and it was proved by FTIR technique and SEM images antibacterial results exhibited that NQC was an antibacterial agent.Keywords: antimicrobial agent, N-quaternized chitosan chloride, silver nanocomposites, sodium polyacrylate
Procedia PDF Downloads 2881010 Spatial Variability of Renieramycin-M Production in the Philippine Blue Sponge, Xestospongia Sp.
Authors: Geminne Manzano, Porfirio Aliño, Clairecynth Yu, Lilibeth Salvador-Reyes, Viviene Santiago
Abstract:
Many marine benthic organisms produce secondary metabolites that serve as ecological roles to different biological and environmental factors. The secondary metabolites found in these organisms like algae, sponges, tunicates and worms exhibit variation at different scales. Understanding the chemical variation can be essential in deriving the evolutionary and ecological function of the secondary metabolites that may explain their patterns. Ecological surveys were performed on two collection sites representing from two Philippine marine biogeographic regions – in Oriental Mindoro located on the West Philippine Sea (WPS) and in Zamboanga del Sur located at Celebes Sea (CS), where a total of 39 Xestospongia sp. sponges were collected using SCUBA. The sponge samples were transported to the laboratory for taxonomic identification and chemical analysis. Biological and environmental factors were investigated to determine their relation to the abundance and distribution patterns and its spatial variability of their secondary metabolite production. Extracts were subjected to thin-layer chromatography and anti-proliferative assays to confirm the presence of Renieramycin-M and to test its cytotoxicity. The blue sponges were found to be more abundant on the WPS than in CS. Both the benthic community and the fish community in Oriental Mindoro, WPS and Zamboanga del Sur, CS sites are characterized by high species diversity and abundance and a very high biomass category. Environmental factors like depth and monsoonal exposure were also compared showing that wave exposure and depth are associated with the abundance and distribution of the sponges. Renieramycin-M presence using the TLC profiles between the sponge extracts from WPS and from CS showed differences in the Reniermycin-M presence and the presence of other functional groups were observed between the two sites. In terms of bioactivity, different responses were also exhibited by the sponge extracts coming from the different region. Different responses were also noted on its bioactivity depending on the cell lines tested. Exploring the influence of ecological parameters on the chemical variation can provide deeper chemical ecological insights in the knowledge and their potential varied applications at different scales. The results of this study provide further impetus in pursuing studies into patterns and processes of the chemical diversity of the Philippine blue sponge, Xestospongia sp. and the chemical ecological significance of the coral triangle.Keywords: chemical ecology, porifera, renieramycin-m, spatial variability, Xestospongia sp.
Procedia PDF Downloads 2101009 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents
Authors: Patrícia Branco, Catarina Prista, Helena Albergaria
Abstract:
Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts
Procedia PDF Downloads 991008 Anatomical and Histochemical Investigation of the Leaf of Vitex agnus-castus L.
Authors: S. Mamoucha, J. Rahul, N. Christodoulakis
Abstract:
Introduction: Nature has been the source of medicinal agents since the dawn of the human existence on Earth. Currently, millions of people, in the developing world, rely on medicinal plants for primary health care, income generation and lifespan improvement. In Greece, more than 5500 plant taxa are reported while about 250 of them are considered to be of great pharmaceutical importance. Among the plants used for medical purposes, Vitex agnus-castus L. (Verbenaceae) is known since ancient times. It is a small tree or shrub, widely distributed in the Mediterranean basin up to the Central Asia. It is also known as chaste tree or monks pepper. Theophrastus mentioned the shrub several times, as ‘agnos’ in his ‘Enquiry into Plants’. Dioscorides mentioned the use of V. agnus-castus for the stimulation of lactation in nursing mothers and the treatment of several female disorders. The plant has important medicinal properties and a long tradition in folk medicine as an antimicrobial, diuretic, digestive and insecticidal agent. Materials and methods: Leaves were cleaned, detached, fixed, sectioned and investigated with light and Scanning Electron Microscopy (SEM). Histochemical tests were executed as well. Specific histochemical reagents (osmium tetroxide, H2SO4, vanillin/HCl, antimony trichloride, Wagner’ s reagent, Dittmar’ s reagent, potassium bichromate, nitroso reaction, ferric chloride and di methoxy benzaldehyde) were used for the sub cellular localization of secondary metabolites. Results: Light microscopical investigations of the elongated leaves of V. agnus-castus revealed three layers of palisade parenchyma, just below the single layered adaxial epidermis. The spongy parenchyma is rather loose. Adaxial epidermal cells are larger in magnitude, compared to those of the abaxial epidermis. Four different types of capitate, secreting trichomes, were localized among the abaxial epidermal cells. Stomata were observed at the abaxial epidermis as well. SEM revealed the interesting arrangement of trichomes. Histochemical treatment on fresh and plastic embedded tissue sections revealed the nature and the sites of secondary metabolites accumulation (flavonoids, steroids, terpenes). Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.Keywords: Vitex agnus-castus, leaf anatomy, histochemical reagents, secondary metabolites
Procedia PDF Downloads 3861007 Nitrogen Fixation in Hare Gastrointestinal Tract
Authors: Tatiana A. Kuznetsova, Maxim V. Vechersky, Natalia V. Kostina, Marat M. Umarov, Elena I. Naumova
Abstract:
One of the main problems of nutrition of phytophagous animals is the insufficiency of protein in their forage. Usually, symbiotic microorganisms highly contribute both to carbohydrates and nitrogen compounds of the food. But it is not easy to utilize microbial biomass in the large intestine and caecum for the animals with hindgut fermentation. So that, some animals, as well hares, developed special mechanism of contribution of such biomass - obligate autocoprophagy, or reingestion. Hares have two types of feces - the hard and the soft. Hard feces are excreted at night, while hares are vigilance ("foraging period"), and the soft ones (caecotrophs) are produced and reingested in the day-time during hares "resting-period". We examine the role of microbial digestion in providing nitrogen nutrition of hare (Lepus europaeus). We determine the ability of nitrogen fixation in fornix and stomach body, small intestine, caecum and colon of hares' gastro-intestinal tract in two main period of hares activity - "resting-period" (day time) and "foraging period" (late-evening and very-early-morning). We use gas chromatography to measure levels of nitrogen fixing activity (acetylene reduction). Nitrogen fixing activity was detected in the contents of all analyzed parts of the gastrointestinal tract. Maximum values were recorded in the large intestine. Also daily dynamics of the process was detected. Thus, during hare “resting-period” (caecotrophs formation) N2-fixing activity was significantly higher than during “foraging period”, reaching 0,3 nmol C2H4/g*h. N2-fixing activity in the gastrointestinal tract can allocate to significant contribution of nitrogen fixers to microbial digestion in hare and confirms the importance of coprophagy as a nitrogen source in lagomorphs.Keywords: coprophagy, gastrointestinal tract, lagomorphs, nitrogen fixation
Procedia PDF Downloads 3641006 Heat and Humidity Induced Plastic Changes in Body Lipids and Starvation Resistance in the Tropical Zaprionus indianus of Wet-Dry Seasons
Authors: T. N. Girish, B. E. Pradeep, Ravi Parkash
Abstract:
Insects from tropical wet or dry seasons are likely to cope starvation stress through seasonal phenotypic plasticity in energy metabolites. Accordingly, we analyzed such plastic changes in Zaprionus indianus flies reared under wet or dry season-specific conditions; and also after adult acclimation at 32℃ for 1 to 6 days; and to low (40% RH) or high (70% RH) humidity. Both thermal or humidity acclimation revealed significant accumulation of body lipids for wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Developmental and adult acclimation showed sex specific differences i.e., starvation resistance and body lipids were higher in the males of dry season but in females of wet season. We found seasonal and sex specific differences in the relative level for body lipids at death; and in the rates of accumulation or utilization of energy metabolites (body lipids, carbohydrates and proteins). Body lipids constitute the preferred energy source under starvation for flies of both the seasons. However, utilization of carbohydrates (~20% to 30%) and proteins (~20% to 25%) was evident only in dry season flies. Higher starvation resistance after thermal or humidity acclimation is achieved by increased accumulation of lipids. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity despite reduction in fecundity under starvation. Thus, thermal or humidity induced plastic responses in body lipids support starvation resistance under wet or dry seasons.Keywords: heat or humidity acclimation, plastic changes in body lipids and starvation resistance, tropical drosophilid, Wet- or Dry seasons, Zaprionus indianus
Procedia PDF Downloads 153