Search results for: metrics of engineering
3334 Bibliometrics of 'Community Garden' and Associated Keywords
Authors: Guilherme Reis Ranieri, Guilherme Leite Gaudereto, Michele Toledo, Luis Fernando Amato-Lourenco, Thais Mauad
Abstract:
Given the importance to urban sustainability and the growing relevance of the term ‘community garden’, this paper aims to conduct a bibliometric analysis of the term. Using SCOPUS as database, we analyzed 105 articles that contained the keywords ‘community garden’, and conducted a cluster analysis with the associated keywords. As results, we found 205 articles and 404 different keywords. Among the keywords, 334 are not repeated anytime, 44 are repeated 2 times and 9 appear 3 times. The most frequent keywords are: community food systems (74), urban activism (14), Communities of practice (6), food production (6) and public rethoric (5). Within the areas, which contains more articles are: social sciences (74), environmental science (29) and agricultural and biological sciences (24).The three main countries that concentrated the papers are United States (54), Canada (15) and Australia (12). The main journal with these keywords is Local Environment (10). The first publication was in 1999, and by 2010 concentrated 30,5% of the publications. The other 69,5% occurred 2010 to 2015, indicating an increase in frequency. We can conclude that the papers, based on the distribution of the keywords, are still scattered in various research topics and presents high variability between subjects.Keywords: bibliometrics, community garden, metrics, urban agriculture
Procedia PDF Downloads 3693333 An Application of Lean Thinking at the Cargo Transport Area
Authors: Caroline Demartin, Natalia Camaras, Nelson Maestrelli, Max Filipe Gonçalves
Abstract:
This paper presents a case study of Lean Thinking at the cargo transport area. Lean Office principles are considered the application of Lean Thinking focusing on the service area and it is based on Lean Production concepts. Lean production is a philosophy that was born and gained ground after the Second World War when the Japanese Toyota Company developed a process of identifying and eliminating waste. Many researchers show that most part of the companies decide to adopt the principles created at Toyota especially in the manufacturing sector, but until 90’s, has no major applications for the service sector. Due to increased competition and the need for competitive advantage, many companies began to observe the lean transformation and take it as reference. In this study, a key process at a cargo transport company was analyzed using Lean Office tools and methods: a current state map was developed, main wastes were identified, some metrics were used to evaluate improvements and a priority matrix was used to identify action plans. The obtained results showed that Lean Office has a great potential to be successful applied in cargo air transport companies.Keywords: lean production, lean office, logistic, service sector
Procedia PDF Downloads 1913332 Social Impact Evaluation in the Housing Sector
Authors: Edgard Barki, Tânia Modesto Veludo-de-Oliveira, Felipe Zambaldi
Abstract:
The social enterprise sector can be characterized as organizations that aim to solve social problems with financial sustainability and using market mechanisms. This sector has shown an increasing interest worldwide. Despite the growth and relevance of the sector, there is still a gap regarding the assessment of the social impact resulting from the initiatives of the organizations in this field. A number of metrics have been designed worldwide to evaluate the impact of social enterprises (e.g., IRIS, GIIRS, BACO), as well as some ad hoc studies that have been carried out, mainly in the microcredit sector, but there is still a gap to be filled in the development of research in social impact evaluation. Therefore, this research seeks to evaluate the social impact of two social enterprises (Terra Nova and Vivenda) in the area of housing in Brazil. To evaluate these impacts and their dimensions, we conducted an exploratory research, through three focus groups, thirty in-depth interviews and a survey with beneficiaries of both organizations. The results allowed us to evaluate how the two organizations were able to create a deep social impact in the populations served. Terra Nova has a more collective perspective, with a clear benefit of social inclusion and improvement of the community’s infrastructure, while Vivenda has a more individualized perspective, improving self-esteem, sociability and family coexistence.Keywords: Brazil, housing, social enterprise, social impact evaluation
Procedia PDF Downloads 4443331 Analysis of the Predictive Performance of Value at Risk Estimations in Times of Financial Crisis
Authors: Alexander Marx
Abstract:
Measuring and mitigating market risk is essential for the stability of enterprises, especially for major banking corporations and investment bank firms. To employ these risk measurement and mitigation processes, the Value at Risk (VaR) is the most commonly used risk metric by practitioners. In the past years, we have seen significant weaknesses in the predictive performance of the VaR in times of financial market crisis. To address this issue, the purpose of this study is to investigate the value-at-risk (VaR) estimation models and their predictive performance by applying a series of backtesting methods on the stock market indices of the G7 countries (Canada, France, Germany, Italy, Japan, UK, US, Europe). The study employs parametric, non-parametric, and semi-parametric VaR estimation models and is conducted during three different periods which cover the most recent financial market crisis: the overall period (2006–2022), the global financial crisis period (2008–2009), and COVID-19 period (2020–2022). Since the regulatory authorities have introduced and mandated the Conditional Value at Risk (Expected Shortfall) as an additional regulatory risk management metric, the study will analyze and compare both risk metrics on their predictive performance.Keywords: value at risk, financial market risk, banking, quantitative risk management
Procedia PDF Downloads 953330 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 2713329 The Role of Named Entity Recognition for Information Extraction
Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov
Abstract:
Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area
Procedia PDF Downloads 813328 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System
Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale
Abstract:
In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine
Procedia PDF Downloads 733327 The Impact of Government Subsidies to Keep Residents Studying at Home
Authors: Melissa James Maceachern
Abstract:
This study examines a financial aid program that is designed to “keep residents at home” to attend higher education by providing financial aid as an incentive or discount in their first year of university following high school graduation. This study offers insight into financial matters for higher education students that can assist in providing policy direction for student financing. In particular, this study found that students appeared to value the bursary but none of the key metrics related to participation or conversion to the home institution indicated that the bursary impacted enrolment or participation. One key metric, student loans received by direct entry high school students did indicate a decline in the number of recipients. This study also identified accessibility issues to higher education that are of importance when considering the declining youth populations, future labour market needs and the need to sustain higher education institutions. This is undoubtedly a challenging period of time given the changing social and demographic forces within Canada. A comprehensive examination of the policy and programs to address these forces needs to be undertaken. This study highlights the importance of utilizing financial aid in combination with other policy to assist students in accessing higher education.Keywords: accessibility, participation, financing, government
Procedia PDF Downloads 4163326 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG
Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna
Abstract:
The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram
Procedia PDF Downloads 1863325 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.Keywords: temporal graph network, anomaly detection, cyber security, IDS
Procedia PDF Downloads 1033324 Evaluating Performance of Value at Risk Models for the MENA Islamic Stock Market Portfolios
Authors: Abderrazek Ben Maatoug, Ibrahim Fatnassi, Wassim Ben Ayed
Abstract:
In this paper we investigate the issue of market risk quantification for Middle East and North Africa (MENA) Islamic market equity. We use Value-at-Risk (VaR) as a measure of potential risk in Islamic stock market, for long and short position, based on Riskmetrics model and the conditional parametric ARCH class model volatility with normal, student and skewed student distribution. The sample consist of daily data for the 2006-2014 of 11 Islamic stock markets indices. We conduct Kupiec and Engle and Manganelli tests to evaluate the performance for each model. The main finding of our empirical results show that (i) the superior performance of VaR models based on the Student and skewed Student distribution, for the significance level of α=1% , for all Islamic stock market indices, and for both long and short trading positions (ii) Risk Metrics model, and VaR model based on conditional volatility with normal distribution provides the best accurate VaR estimations for both long and short trading positions for a significance level of α=5%.Keywords: value-at-risk, risk management, islamic finance, GARCH models
Procedia PDF Downloads 5923323 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition
Authors: Latha Subbiah, Dhanalakshmi Samiappan
Abstract:
In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.Keywords: curvelet, decomposition, levelset, ultrasound
Procedia PDF Downloads 3433322 Quantitative Comparison Complexity and Robustness of Supply Chain Network Based on Different Configurations
Authors: Ahmadreza Rezaei, Qiong Liu
Abstract:
Supply chain network made based on suppliers and product architecture design. these networks are complex and vulnerable that may be expose disruption risks. any supply chain network configuration has its own related complexity and robustness that can have direct effect on its efficiency. So it's necessary to evaluate any configuration with considering complexity and robustness aspects together. However, there is a lack of research about this subject to managers can evaluate their supply chain configurations and choose configuration with balanced complexity and robustness together. In this study, developed indicators improve robustness of supply chain with using framework to evaluate relationships between complexity and robustness of supply chain network under different network configurations . this framework includes Investigation and analysis of quantitative indicators based on network characteristics. Moreover, overall metrics of Shannon entropy is presented to evaluate network topological complexity. So we will analyze two factor of complexity and robustness of networks based on supply chain configurations As result, Complexity and Robustness are two integral components of network that show network resistances under disruption. It's necessary to attain a balanced level of complexity and robustness in network configurations. the proposed framework could be used in supply chain network to improve efficiency.Keywords: supply chain design, structural complexity, robustness, supply chain configuration, Shannon entropy
Procedia PDF Downloads 103321 Attention-Based ResNet for Breast Cancer Classification
Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga
Abstract:
Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.Keywords: residual neural network, attention mechanism, positive weight, data augmentation
Procedia PDF Downloads 1043320 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 4393319 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio
Procedia PDF Downloads 1563318 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018
Authors: Mário Ernesto Sitoe, Orlando Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.Keywords: evasion and retention, cross-validation, bagging, stacking
Procedia PDF Downloads 843317 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 383316 Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks
Authors: Rania Khadim, Mohammed Erritali, Abdelhakim Maaden
Abstract:
Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost.Keywords: location based-services, routing protocols, scalability, wireless sensor networks
Procedia PDF Downloads 3733315 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures
Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh
Abstract:
Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra
Procedia PDF Downloads 1573314 An Assessment of the Hip Muscular Imbalance for Patients with Rheumatism
Authors: Anthony Bawa, Konstantinos Banitsas
Abstract:
Rheumatism is a muscular disorder that affects the muscles of the upper and lower limbs. This condition could potentially progress to impair the movement of patients. This study aims to investigate the hip muscular imbalance in patients with chronic rheumatism. A clinical trial involving a total of 15 participants, made up of 10 patients and 5 control subjects, took place in KATH Hospital between August and September. Participants recruited for the study were of age 54 ± 8years, weight 65± 8kg, and height 176 ± 8cm. Muscle signals were recorded from the rectus femoris, and vastus lateralis on the right and left hip of participants. The parameters used in determining the hip muscular imbalances were the maximum voluntary contraction (MVC%), the mean difference, and hip muscle fatigue levels. The mean signals were compared using a t-test, and the metrics for muscle fatigue assessment were based on the root mean square (RMS), mean absolute value (MAV) and mean frequency (MEF), which were computed between the hip muscles of participants. The results indicated that there were significant imbalances in the muscle coactivity between the right and left hip muscles of patients. The patients’ MVC values were observed to be above 10% when compared with control subjects. Furthermore, the mean difference was seen to be higher with p > 0.002 among patients, which indicated clear differences in the hip muscle contraction activities. The findings indicate significant hip muscular imbalances for patients with rheumatism compared with control subjects. Information about the imbalances among patients will be useful for clinicians in designing therapeutic muscle-strengthening exercises.Keywords: muscular, imbalances, rheumatism, Hip
Procedia PDF Downloads 1163313 The Usefulness of Medical Scribes in the Emengecy Department
Authors: Victor Kang, Sirene Bellahnid, Amy Al-Simaani
Abstract:
Efficient documentation and completion of clerical tasks are pillars of efficient patient-centered care in acute settings such as the emergency department (ED). Medical scribes aid physicians with documentation, navigation of electronic health records, results gathering, and communication coordination with other healthcare teams. However, the use of medical scribes is not widespread, with some hospitals even continuing to discontinue their programs. One reason for this could be the lack of studies that have outlined concrete improvements in efficiency and patient and provider satisfaction in emergency departments before and after incorporating scribes. Methods: We conducted a review of the literature concerning the implementation of a medical scribe program and emergency department performance. For this review, a narrative synthesis accompanied by textual commentaries was chosen to present the selected papers. PubMed was searched exclusively. Initially, no date limits were set, but seeing as the electronic medical record was officially implemented in Canada in 2013, studies published after this date were preferred as they provided insight into the interplay between its implementation and scribes on quality improvement. Results: Throughput, efficiency, and cost-effectiveness were the most commonly used parameters in evaluating scribes in the Emergency Department. Important throughput metrics, specifically door-to-doctor and disposition time, were significantly decreased in emergency departments that utilized scribes. Of note, this was shown to be the case in community hospitals, where the burden of documentation and clerical tasks would fall directly upon the attending physician. Academic centers differ in that they rely heavily on residents and students; so the implementation of scribes has been shown to have limited effect on these metrics. However, unique to academic centers was the provider’s perception of incrased time for teaching was unique to academic centers. Consequently, providers express increased work satisfaction in relation to time spent with patients and in teaching. Patients, on the other hand, did not demonstrate a decrease in satisfaction in regards to the care that was provided, but there was no significant increase observed either. Of the studies we reviewed, one of the biggest limitations was the lack of significance in the data. While many individual studies reported that medical scribes in emergency rooms improved relative value units, patient satisfaction, provider satisfaction, and increased number of patients seen, there was no statistically significant improvement in the above criteria when compiled in a systematic review. There is also a clear publication bias; very few studies with negative results were published. To prove significance, data from more emergency rooms with scribe programs would need to be compiled which also includes emergency rooms who did not report noticeable benefits. Furthermore, most data sets focused only on scribes in academic centers. Conclusion: Ultimately, the literature suggests that while emergency room physicians who have access to medical scribes report higher satisfaction due to lower clerical burdens and can see more patients per shift, there is still variability in terms of patient and provider satisfaction. Whether or not this variability exists due to differences in training (in-house trainees versus contractors), population profile (adult versus pediatric), setting (academic versus community), or which shifts scribe work cannot be determined based on the studies that exist. Ultimately, more scribe programs need to be evaluated to determine whether these variables affect outcomes and prove whether scribes significantly improve emergency room efficiency.Keywords: emergency medicine, medical scribe, scribe, documentation
Procedia PDF Downloads 903312 Analysing Waste Management Options in the Printing Industry: Case of a South African Company
Authors: Stanley Fore
Abstract:
The case study company is one of the leading newsprint companies in South Africa. The company has achieved this status through operational expansion, diversification and investing in cutting-edge technology. They have a reputation for the highest quality and personalised service that transcends borders and industries. The company offers a wide variety of small and large scales printing services. The company is faced with the challenge of significant waste production during normal operations. The company generates 1200 kg of plastic waste and 60 – 70 tonnes of paper waste per month. The company operates a waste management process currently, whereby waste paper is sold, at low cost, to recycling firms for further processing. Having considered the quantity of waste being generated, the company has embarked on a venture to find a more profitable solution to its current waste production. As waste management and recycling is not the company’s core business, the aim of the venture is to implement a secondary profitable waste process business. The venture will be expedited as a strategic project. This research aims to estimate the financial feasibility of a selected solution as well as the impact of non-financial considerations thereof. The financial feasibility is analysed using metrics such as Payback period; internal rate of return and net present value.Keywords: waste, printing industry, up-cycling, management
Procedia PDF Downloads 2623311 Exergetic and Sustainability Evaluation of a Building Heating System in Izmir, Turkey
Authors: Nurdan Yildirim, Arif Hepbasli
Abstract:
Heating, cooling and lighting appliances in buildings account for more than one third of the world’s primary energy demand. Therefore, main components of the building heating systems play an essential role in terms of energy consumption. In this context, efficient energy and exergy utilization in HVAC-R systems has been very essential, especially in developing energy policies towards increasing efficiencies. The main objective of the present study is to assess the performance of a family house with a volume of 326.7 m3 and a net floor area of 121 m2, located in the city of Izmir, Turkey in terms of energetic, exergetic and sustainability aspects. The indoor and exterior air temperatures are taken as 20°C and 1°C, respectively. In the analysis and assessment, various metrics (indices or indicators) such as exergetic efficiency, exergy flexibility ratio and sustainability index are utilized. Two heating options (Case 1: condensing boiler and Case 2: air heat pump) are considered for comparison purposes. The total heat loss rate of the family house is determined to be 3770.72 W. The overall energy efficiencies of the studied cases are calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall exergy efficiencies, the flexibility factor and the sustainability index of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034, respectively.Keywords: buildings, exergy, low exergy, sustainability, efficiency, heating, renewable energy
Procedia PDF Downloads 3443310 Analyzing Migration Patterns Using Public Disorder Event Data
Authors: Marie E. Docken
Abstract:
At some point in the lifecycle of a country, patterns of political and social unrest of varying degrees are observed. Events involving public disorder or civil disobedience may produce effects that range a wide spectrum of varying outcomes, depending on the level of unrest. Many previous studies, primarily theoretical in nature, have attempted to measure public disorder in answering why or how it occurs in society by examining causal factors or underlying issues in the social or political position of a population. The main objective in doing so is to understand how these activities evolve or seek some predictive capability for the events. In contrast, this research involves the fusion of analytics and social studies to provide more knowledge of the public disorder and civil disobedience intensity in populations. With a greater understanding of the magnitude of these events, it is believed that we may learn how they relate to extreme actions such as mass migration or violence. Upon establishing a model for measuring civil unrest based upon empirical data, a case study on various Latin American countries is performed. Interpretations of historical events are combined with analytical results to provide insights regarding the magnitude and effect of social and political activism.Keywords: public disorder, civil disobedience, Latin America, metrics, data analysis
Procedia PDF Downloads 1473309 A Graph-Based Retrieval Model for Passage Search
Authors: Junjie Zhong, Kai Hong, Lei Wang
Abstract:
Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model
Procedia PDF Downloads 1553308 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks
Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith
Abstract:
Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN
Procedia PDF Downloads 1333307 Digital Wellbeing: A Multinational Study and Global Index
Authors: Fahad Al Beyahi, Justin Thomas, Md Mamunur Rashid
Abstract:
Various definitions of digital well-being have emerged in recent years, most of which center on the impacts -beneficial and detrimental- of digital technology on health and well-being (psychological, social, and financial). Other definitions go further, emphasizing the attainment of balance, viewing digital well-being as wholly subjective, the individual’s perception of optimal balance between the benefits and ills associated with online connectivity. Based on this broad conceptualization of digital well-being, we undertook a global survey measuring various dimensions of this emerging construct. The survey was administered across 35 nations and 7 world regions, with 1000 participants within each territory (N= 35000). Along with attitudinal, behavioral, and sociodemographic variables, the survey included measures of depression, anxiety, problematic social media use, gaming disorder, and other relevant metrics. Coupled with nation-level policy audits, these data were used to create a multinational (global) digital well-being index. Nations are ranked based on various dimensions of digital well-being, and predictive models are used to identify resilience and risk factors for problem technology use. In this paper, we will discuss key findings from the survey and the index. This work can inform public policy and shape our responses to the emerging implications of lives increasingly lived online and interconnected with digital technology.Keywords: technology, health, behavioral addiction, digital wellbeing
Procedia PDF Downloads 813306 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment
Authors: Seun Mayowa Sunday
Abstract:
Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud
Procedia PDF Downloads 1373305 Enhanced Arabic Semantic Information Retrieval System Based on Arabic Text Classification
Authors: A. Elsehemy, M. Abdeen , T. Nazmy
Abstract:
Since the appearance of the Semantic web, many semantic search techniques and models were proposed to exploit the information in ontology to enhance the traditional keyword-based search. Many advances were made in languages such as English, German, French and Spanish. However, other languages such as Arabic are not fully supported yet. In this paper we present a framework for ontology based information retrieval for Arabic language. Our system consists of four main modules, namely query parser, indexer, search and a ranking module. Our approach includes building a semantic index by linking ontology concepts to documents, including an annotation weight for each link, to be used in ranking the results. We also augmented the framework with an automatic document categorizer, which enhances the overall document ranking. We have built three Arabic domain ontologies: Sports, Economic and Politics as example for the Arabic language. We built a knowledge base that consists of 79 classes and more than 1456 instances. The system is evaluated using the precision and recall metrics. We have done many retrieval operations on a sample of 40,316 documents with a size 320 MB of pure text. The results show that the semantic search enhanced with text classification gives better performance results than the system without classification.Keywords: Arabic text classification, ontology based retrieval, Arabic semantic web, information retrieval, Arabic ontology
Procedia PDF Downloads 526