Search results for: inventory optimisation
649 An Approach to the Assembly Line Balancing Problem with Uncertain Operation Time
Authors: Zhongmin Wang, Lin Wei, Hengshan Zhang, Tianhua Chen, Yimin Zhou
Abstract:
The assembly line balancing problems are signficant in mass production systems. In order to deal with the uncertainties that practically exist but barely mentioned in the literature, this paper develops a mathematic model with an optimisation algorithm to solve the assembly line balancing problem with uncertainty operation time. The developed model is able to work with a variable number of workstations under the uncertain environment, aiming to obtain the minimal number of workstation and minimal idle time for each workstation. In particular, the proposed approach first introduces the concept of protection time that closely works with the uncertain operation time. Four dominance rules and the mechanism of determining up and low bounds are subsequently put forward, which serve as the basis for the proposed branch and bound algorithm. Experimental results show that the proposed work verified on a benchmark data set is able to solve the uncertainties efficiently.Keywords: assembly lines, SALBP-UOT, uncertain operation time, branch and bound algorithm.
Procedia PDF Downloads 171648 The Effectiveness of Warm-Water Footbath on Fatigue in Cancer Patient Undergoing Chemotherapy
Authors: Yu-Wen Lin, Li-Ni Liu
Abstract:
Introduction: Fatigue is the most common symptoms experienced by cancer patients undergoing chemotherapy. Patients receiving anticancer therapies develop a higher proportion of fatigue compared with patients who do not receive anticancer therapies. Fatigue has significant impacts on quality of life, daily activities, mood status, and social behaviors. A warm-water footbath (WWF) at 41℃ promotes circulation and removes metabolites resulting in improving sleep and relieving fatigue. The aim of this study is to determine the effectiveness of WWF for relieving fatigue with cancer patients undergoing chemotherapy. Materials and Methods: This is a single-center, prospective, quasi-experimental design study in the oncology ward in Taiwan. Participants in this study were assigned to WWF group as experimental group and standard care group as a control group by purposive sampling. In the WWF group, the participants were asked to soak their feet in 42-43℃ water 15 minutes for consecutive 6 days at one day before chemotherapy. Each participant was evaluated for fatigue level by the Taiwanese version of the Brief Fatigue Inventory (BFI-T). BFI-T was completed for consecutive 8 days of the study. The primary outcome was compared the BFI-T score of WWF group to the standard care group. Results: There were 60 participants enrolled in this study. Thirty participants were assigned to WWF group and 30 participants were assigned to standard care group. Both groups have comparable characteristic. The BFI-T scores of both groups were increased associated with the days of chemotherapy. The highest BFI-T scores of both groups were on the day 4 of chemotherapy. The BFI-T scores of both groups were decreased since day 5 and significantly decreased in WWF group on day 5 compared to standard care group (4.17 vs. 5.7, P < .05). At the end of the study the fatigue at its worse were significantly decreased in WWF group (2.33 vs. 4.37, P < .001). There was no adverse event reported in this study. Conclusion: WWF is an easy, safe, non-invasive, and relatively inexpensive nursing intervention for improving fatigue of cancer patients undergoing chemotherapy. In summary, this study shows the WWF is a simple complementary care method, and it is effective for improving and relieving fatigue in a short time. Through improving fatigue is a way to enhance the quality of life which is important for cancer patients undergoing chemotherapy. Larger prospective randomized controlled trial and long-term effectiveness and outcomes of WWF should be performed to confirm this study.Keywords: chemotherapy, warm-water footbath, fatigue, Taiwanese version of the brief fatigue inventory
Procedia PDF Downloads 142647 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London
Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz
Abstract:
Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration
Procedia PDF Downloads 147646 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: synthetic gene network, network identification, optimization, nonlinear modeling
Procedia PDF Downloads 156645 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki
Abstract:
This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.Keywords: fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm
Procedia PDF Downloads 495644 Sales Patterns Clustering Analysis on Seasonal Product Sales Data
Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho
Abstract:
As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.Keywords: clustering, distribution, sales pattern, seasonal product
Procedia PDF Downloads 595643 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis
Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack
Abstract:
Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).Keywords: radiolysis, spent fuel, hydrogen, cyclotron
Procedia PDF Downloads 521642 Expanding Learning Reach: Innovative VR-Enabled Retention Strategies
Authors: Bilal Ahmed, Muhammad Rafiq, Choongjae Im
Abstract:
The tech-savvy Gen Z's transfer towards interactive concept learning is hammering the demand for online collaborative learning environments, renovating conventional education approaches. The authors propose a novel approach to enhance learning outcomes to improve retention in 3D interactive education by connecting virtual reality (VR) and non-VR devices in the classroom and distance learning. The study evaluates students' experiences with VR interconnectivity devices in human anatomy lectures using real-time 3D interactive data visualization. Utilizing the renowned "Guo & Pooles Inventory" and the "Flow for Presence Questionnaires," it used an experimental research design with a control and experimental group to assess this novel connecting strategy's effectiveness and significant potential for in-person and online educational settings during the sessions. The experimental group's interactions, engagement levels, and usability experiences were assessed using the "Guo & Pooles Inventory" and "Flow for Presence Questionnaires," which measure their sense of presence, engagement, and immersion throughout the learning process using a 5-point Likert scale. At the end of the sessions, we used the "Perceived Usability Scale" to find our proposed system's overall efficiency, effectiveness, and satisfaction. By comparing both groups, the students in the experimental group used the integrated VR environment and VR to non-VR devices, and their sense of presence and attentiveness was significantly improved, allowing for increased engagement by giving students diverse technological access. Furthermore, learners' flow states demonstrated increased absorption and focus levels, improving information retention and Perceived Usability. The findings of this study can help educational institutions optimize their technology-enhanced teaching methods for traditional classroom settings as well as distance-based learning, where building a sense of connection among remote learners is critical. This study will give significant insights into educational technology and its ongoing progress by analyzing engagement, interactivity, usability, satisfaction, and presence.Keywords: interactive learning environments, human-computer interaction, virtual reality, computer- supported collaborative learning
Procedia PDF Downloads 65641 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 29640 The Multidisciplinary Treatment in Residence Care Clinic for Treatment of Feeding and Eating Disorders
Authors: Yuri Melis, Mattia Resteghini, Emanuela Apicella, Eugenia Dozio, Leonardo Mendolicchio
Abstract:
Aim: This retrospective study was created to analyze the psychometric, anthropometric and body composition values in patients at the beginning and the discharge of their of hospitalization in the residential care clinic for eating and feeding disorders (EFD’s). Method: The sample was composed by (N=59) patients with mean age N= 33,50, divided in subgroups: Anorexia Nervosa (AN) (N=28), Bulimia Nervosa (BN) (N=13) and Binge Eating Disorders (BED) (N=14) recruited from a residential care clinic for eating and feeding disorders. The psychometrics level was measured with self-report questionnaires: Eating Disorders Inventory-3 (EDI-3) The Body Uneasiness Test (BUT), Minnesota Multiphasic Personality Inventory (MMPI – 2). The anthropometric and nutritional values was collected by Body Impedance Assessment (B.I.A), Body mass index (B.M.I.). Measurements were made at the beginning and at the end of hospitalization, with an average time of recovery of about 8,6 months. Results: The all data analysis showed a statistical significance (p-value >0,05 | power size N=0,950) in variation from T0 (start of recovery) to T1 (end of recovery) in the clinical scales of MMPI-2, AN group (Hypocondria T0 64,14 – T1 56,39) (Depression T0 72,93 – T1 59,50) (Hysteria T0 61,29 – T1 56,17) (Psychopathic deviation T0 64,00 – T1 60,82) (Paranoia T0 63,82 – T1 56,14) (Psychasthenia T0 63,82 – T1 57,86) (Schizophrenia T0 64,68 – T1 60,43) (Obsessive T0 60,36 – T1 55,68); BN group (Hypocondria T0 64,08 – T1 47,54) (Depression T0 67,46 – T1 52,46) (Hysteria T0 60,62 – T1 47,84) (Psychopathic deviation T0 65,69 – T1 58,92) (Paranoia T0 67,46 – T1 55,23) (Psychasthenia T0 60,77 – T1 53,77) (Schizophrenia T0 64,68 – T1 60,43) (Obsessive T0 62,92 – T1 54,08); B.E.D groups (Hypocondria T0 59,43 – T1 53,14) (Depression T0 66,71 – T1 54,57) (Hysteria T0 59,86 – T1 53,82) (Psychopathic deviation T0 67,39 – T1 59,03) (Paranoia T0 58,57 – T1 53,21) (Psychasthenia T0 61,43 – T1 53,00) (Schizophrenia T0 62,29 – T1 56,36) (Obsessive T0 58,57 – T1 48,64). EDI-3 report mean value is higher than clinical cut-off at T0, in T1, there is a significant reduction of the general mean of value. The same result is present in the B.U.T. test in the difference between T0 to T1. B.M.I mean value in AN group is (T0 14,83 – T1 18,41) BN group (T0 20 – T1 21,33) BED group (T0 42,32 – T1 34,97) Phase Angle results: AN group (T0 4,78 – T1 5,64) BN (T0 6 – T1 6,53) BED group (T0 6 – T1 6,72). Discussion and conclusion: The evident presence that on the whole sample, we have an altered serious psychiatric and clinic conditions at the beginning of recovery. The interesting conclusions that we can draw from this analysis are that a multidisciplinary approach that includes the entire care of the subject: from the pharmacological treatment, analytical psychotherapy, Psychomotricity, nutritional rehabilitation, and rehabilitative, educational activities. Thus, this Multidisciplinary treatment allows subjects in our sample to be able to restore psychopathological and metabolic values to below the clinical cut-off.Keywords: feeding and eating disorders, anorexia nervosa, care clinic treatment, multidisciplinary treatment
Procedia PDF Downloads 123639 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase
Authors: Dengyu You, Alireza Kashani
Abstract:
This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.Keywords: concrete 3D printing, staircase, sustainability, automation
Procedia PDF Downloads 104638 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition
Authors: Michael Okeke, Andrew Blyth
Abstract:
Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)
Procedia PDF Downloads 345637 Understand the Concept of Agility for the Manufacturing SMEs
Authors: Adel H. Hejaaji
Abstract:
The need for organisations to be flexible to meet the rapidly changing requirements of their customers is now well appreciated and can be witnessed within companies with their use of techniques such as single-minute exchange of die (SMED) for machine change-over or Kanban as the visual production and inventory control for Just-in-time manufacture and delivery. What is not so well appreciated by companies is the need for agility. Put simply it is the need to be alert for a new and unexpected opportunity and quick to respond with the changes necessary in order to profit from it. This paper aims to study the literature of agility in manufacturing to understand the concept of agility and how it is important and critical for the small and medium size manufacturing organisations (SMEs), and to defined the specific benefits of moving towards agility, and thus what benefit it can bring to an organisation.Keywords: SMEs, agile manufacturing, manufacturing, industrial engineering
Procedia PDF Downloads 606636 Impact of Personality on Vengeance and Forgiveness in Young Adults
Authors: Marium Javaid Bajwa, Ruhi Khalid
Abstract:
This study aimed to identify personality traits that affect vengeful and forgiving behavior among people. Big Five Personality Inventory, Vengeance Scale and Trait Forgiveness Scale were administered to 159 male and female students to have a base-line data for the study. Overall, agreeableness trait predicted forgiveness. Vengeance showed significant negative relation with agreeableness, conscientiousness and openness. Whereas Independent T-test indicated that personality traits plays crucial role in determining vengeful and forgiving behaviors in contrast to gender in young adults.Keywords: personality, traits, vengeance, forgiveness
Procedia PDF Downloads 381635 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre
Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason
Abstract:
Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion
Procedia PDF Downloads 255634 Burnout and Personality Characteristics of University Students
Authors: Tazvin Ijaz, Rabia Khan
Abstract:
The current study was conducted to identify the predictors of burnout among university students. The sample for the study was collected through simple random sampling. The tools to measure burnout and personality characteristics included Indigenous burnout scale and Eysenck personality inventory respectively. Results indicated that neurotic personality traits significantly predicts burnout among university students while extraversion does not lead to burnout. Results also indicated female students experience more burnout than male students. It was also found that family size and birth order did not affected the level of burnout. Results of the study are discussed to explain association between etiological factors and burnout with in Pakistani cultural context.Keywords: burnout, students, neuroticism, extraversion
Procedia PDF Downloads 295633 New Concept for Real Time Selective Harmonics Elimination Based on Lagrange Interpolation Polynomials
Authors: B. Makhlouf, O. Bouchhida, M. Nibouche, K. Laidi
Abstract:
A variety of methods for selective harmonics elimination pulse width modulation have been developed, the most frequently used for real-time implementation based on look-up tables method. To address real-time requirements based in modified carrier signal is proposed in the presented work, with a general formulation to real-time harmonics control/elimination in switched inverters. Firstly, the proposed method has been demonstrated for a single value of the modulation index. However, in reality, this parameter is variable as a consequence of the voltage (amplitude) variability. In this context, a simple interpolation method for calculating the modified sine carrier signal is proposed. The method allows a continuous adjustment in both amplitude and frequency of the fundamental. To assess the performance of the proposed method, software simulations and hardware experiments have been carried out in the case of a single-phase inverter. Obtained results are very satisfactory.Keywords: harmonic elimination, Particle Swarm Optimisation (PSO), polynomial interpolation, pulse width modulation, real-time harmonics control, voltage inverter
Procedia PDF Downloads 503632 Wind Turbine Scaling for the Investigation of Vortex Shedding and Wake Interactions
Authors: Sarah Fitzpatrick, Hossein Zare-Behtash, Konstantinos Kontis
Abstract:
Traditionally, the focus of horizontal axis wind turbine (HAWT) blade aerodynamic optimisation studies has been the outer working region of the blade. However, recent works seek to better understand, and thus improve upon, the performance of the inboard blade region to enhance power production, maximise load reduction and better control the wake behaviour. This paper presents the design considerations and characterisation of a wind turbine wind tunnel model devised to further the understanding and fundamental definition of horizontal axis wind turbine root vortex shedding and interactions. Additionally, the application of passive and active flow control mechanisms – vortex generators and plasma actuators – to allow for the manipulation and mitigation of unsteady aerodynamic behaviour at the blade inboard section is investigated. A static, modular blade wind turbine model has been developed for use in the University of Glasgow’s de Havilland closed return, low-speed wind tunnel. The model components - which comprise of a half span blade, hub, nacelle and tower - are scaled using the equivalent full span radius, R, for appropriate Mach and Strouhal numbers, and to achieve a Reynolds number in the range of 1.7x105 to 5.1x105 for operational speeds up to 55m/s. The half blade is constructed to be modular and fully dielectric, allowing for the integration of flow control mechanisms with a focus on plasma actuators. Investigations of root vortex shedding and the subsequent wake characteristics using qualitative – smoke visualisation, tufts and china clay flow – and quantitative methods – including particle image velocimetry (PIV), hot wire anemometry (HWA), and laser Doppler anemometry (LDA) – were conducted over a range of blade pitch angles 0 to 15 degrees, and Reynolds numbers. This allowed for the identification of shed vortical structures from the maximum chord position, the transitional region where the blade aerofoil blends into a cylindrical joint, and the blade nacelle connection. Analysis of the trailing vorticity interactions between the wake core and freestream shows the vortex meander and diffusion is notably affected by the Reynold’s number. It is hypothesized that the shed vorticity from the blade root region directly influences and exacerbates the nacelle wake expansion in the downstream direction. As the design of inboard blade region form is, by necessity, driven by function rather than aerodynamic optimisation, a study is undertaken for the application of flow control mechanisms to manipulate the observed vortex phenomenon. The designed model allows for the effective investigation of shed vorticity and wake interactions with a focus on the accurate geometry of a root region which is representative of small to medium power commercial HAWTs. The studies undertaken allow for an enhanced understanding of the interplay of shed vortices and their subsequent effect in the near and far wake. This highlights areas of interest within the inboard blade area for the potential use of passive and active flow control devices which contrive to produce a more desirable wake quality in this region.Keywords: vortex shedding, wake interactions, wind tunnel model, wind turbine
Procedia PDF Downloads 235631 High Purity Germanium Detector Characterization by Means of Monte Carlo Simulation through Application of Geant4 Toolkit
Authors: Milos Travar, Jovana Nikolov, Andrej Vranicar, Natasa Todorovic
Abstract:
Over the years, High Purity Germanium (HPGe) detectors proved to be an excellent practical tool and, as such, have established their today's wide use in low background γ-spectrometry. One of the advantages of gamma-ray spectrometry is its easy sample preparation as chemical processing and separation of the studied subject are not required. Thus, with a single measurement, one can simultaneously perform both qualitative and quantitative analysis. One of the most prominent features of HPGe detectors, besides their excellent efficiency, is their superior resolution. This feature virtually allows a researcher to perform a thorough analysis by discriminating photons of similar energies in the studied spectra where otherwise they would superimpose within a single-energy peak and, as such, could potentially scathe analysis and produce wrongly assessed results. Naturally, this feature is of great importance when the identification of radionuclides, as well as their activity concentrations, is being practiced where high precision comes as a necessity. In measurements of this nature, in order to be able to reproduce good and trustworthy results, one has to have initially performed an adequate full-energy peak (FEP) efficiency calibration of the used equipment. However, experimental determination of the response, i.e., efficiency curves for a given detector-sample configuration and its geometry, is not always easy and requires a certain set of reference calibration sources in order to account for and cover broader energy ranges of interest. With the goal of overcoming these difficulties, a lot of researches turned towards the application of different software toolkits that implement the Monte Carlo method (e.g., MCNP, FLUKA, PENELOPE, Geant4, etc.), as it has proven time and time again to be a very powerful tool. In the process of creating a reliable model, one has to have well-established and described specifications of the detector. Unfortunately, the documentation that manufacturers provide alongside the equipment is rarely sufficient enough for this purpose. Furthermore, certain parameters tend to evolve and change over time, especially with older equipment. Deterioration of these parameters consequently decreases the active volume of the crystal and can thus affect the efficiencies by a large margin if they are not properly taken into account. In this study, the optimisation method of two HPGe detectors through the implementation of the Geant4 toolkit developed by CERN is described, with the goal of further improving simulation accuracy in calculations of FEP efficiencies by investigating the influence of certain detector variables (e.g., crystal-to-window distance, dead layer thicknesses, inner crystal’s void dimensions, etc.). Detectors on which the optimisation procedures were carried out were a standard traditional co-axial extended range detector (XtRa HPGe, CANBERRA) and a broad energy range planar detector (BEGe, CANBERRA). Optimised models were verified through comparison with experimentally obtained data from measurements of a set of point-like radioactive sources. Acquired results of both detectors displayed good agreement with experimental data that falls under an average statistical uncertainty of ∼ 4.6% for XtRa and ∼ 1.8% for BEGe detector within the energy range of 59.4−1836.1 [keV] and 59.4−1212.9 [keV], respectively.Keywords: HPGe detector, γ spectrometry, efficiency, Geant4 simulation, Monte Carlo method
Procedia PDF Downloads 119630 An Analysis of the Relation between Need for Psychological Help and Psychological Symptoms
Authors: İsmail Ay
Abstract:
In this study, it was aimed to determine the relations between need for psychological help and psychological symptoms. The sample of the study consists of 530 university students getting educated in University of Atatürk in 2015-2016 academic years. Need for Psychological Help Scale and Brief Symptom Inventory were used to collect data in the study. In data analysis, correlation analysis and structural equation model with latent variables were used. Normality and homogeneity analyses were used to analyze the basic conditions of parametric tests. The findings obtained from the study show that as the psychological symptoms increase, need for psychological help also increases. The findings obtained through the study were approached according to the literature.Keywords: psychological symptoms, need for psychological help, structural equation model, correlation
Procedia PDF Downloads 368629 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning
Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah
Abstract:
In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.Keywords: 3D imaging, shotcrete, surface model, tunnel stability
Procedia PDF Downloads 290628 A Framework for Supply Chain Efficiency Evaluation of Mass Customized Automobiles
Authors: Arshia Khan, Hans-Dietrich Haasis
Abstract:
Different tools of the supply chain should be managed very efficiently in mass customization. In the automobile industry, there are different strategies to manage these tools. We need to investigate which strategies among the different ones are successful and which are not. There is lack in literature regarding such analysis. Keeping this in view, the purpose of this paper is to construct a framework and model which can help to analyze the supply chain of mass customized automobiles quantitatively for future studies. Furthermore, we will also consider that which type of data can be used for the suggested model and where it can be taken from. Such framework can help to bring insight for future analysis.Keywords: mass customization, supply chain, inventory, distribution, automobile industry
Procedia PDF Downloads 375627 Median-Based Nonparametric Estimation of Returns in Mean-Downside Risk Portfolio Frontier
Authors: H. Ben Salah, A. Gannoun, C. de Peretti, A. Trabelsi
Abstract:
The Downside Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical mean-variance model concerning the asymetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developped a new recurcive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents an appearance which is not very smooth. In order to overcome that, Athayde (2003) proposed a mean kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which we had continuous observations. In this paper, taking advantage on the the robustness of the median, we replace the mean estimator in Athayde's model by a nonparametric median estimator of the returns. Then, we give a new version of the former algorithm (of Athayde (2001, 2003)). We eventually analyse the properties of this improved portfolio frontier and apply this new method on real examples.Keywords: Downside Risk, Kernel Method, Median, Nonparametric Estimation, Semivariance
Procedia PDF Downloads 492626 Syngas From Polypropylene Gasification in a Fluidized Bed
Authors: Sergio Rapagnà, Alessandro Antonio Papa, Armando Vitale, Andre Di Carlo
Abstract:
In recent years the world population has enormously increased the use of plastic products for their living needs, in particular for transporting and storing consumer goods such as food and beverage. Plastics are widely used in the automotive industry, in construction of electronic equipment, clothing and home furnishings. Over the last 70 years, the annual production of plastic products has increased from 2 million tons to 460 million tons. About 20% of the last quantity is mismanaged as waste. The consequence of this mismanagement is the release of plastic waste into the terrestrial and marine environments which represents a danger to human health and the ecosystem. Recycling all plastics is difficult because they are often made with mixtures of polymers that are incompatible with each other and contain different additives. The products obtained are always of lower quality and after two/three recycling cycles they must be eliminated either by thermal treatment to produce heat or disposed of in landfill. An alternative to these current solutions is to obtain a mixture of gases rich in H₂, CO and CO₂ suitable for being profitably used for the production of chemicals with consequent savings fossil sources. Obtaining a hydrogen-rich syngas can be achieved by gasification process using the fluidized bed reactor, in presence of steam as the fluidization medium. The fluidized bed reactor allows the gasification process of plastics to be carried out at a constant temperature and allows the use of different plastics with different compositions and different grain sizes. Furthermore, during the gasification process the use of steam increase the gasification of char produced by the first pyrolysis/devolatilization process of the plastic particles. The bed inventory can be made with particles having catalytic properties such as olivine, capable to catalyse the steam reforming reactions of heavy hydrocarbons normally called tars, with a consequent increase in the quantity of gases produced. The plant is composed of a fluidized bed reactor made of AISI 310 steel, having an internal diameter of 0.1 m, containing 3 kg of olivine particles as a bed inventory. The reactor is externally heated by an oven up to 1000 °C. The hot producer gases that exit the reactor, after being cooled, are quantified using a mass flow meter. Gas analyzers are present to measure instantly the volumetric composition of H₂, CO, CO₂, CH₄ and NH₃. At the conference, the results obtained from the continuous gasification of polypropylene (PP) particles in a steam atmosphere at temperatures of 840-860 °C will be presented.Keywords: gasification, fluidized bed, hydrogen, olivine, polypropyle
Procedia PDF Downloads 27625 Optimisation of Intermodal Transport Chain of Supermarkets on Isle of Wight, UK
Authors: Jingya Liu, Yue Wu, Jiabin Luo
Abstract:
This work investigates an intermodal transportation system for delivering goods from a Regional Distribution Centre to supermarkets on the Isle of Wight (IOW) via the port of Southampton or Portsmouth in the UK. We consider this integrated logistics chain as a 3-echelon transportation system. In such a system, there are two types of transport methods used to deliver goods across the Solent Channel: one is accompanied transport, which is used by most supermarkets on the IOW, such as Spar, Lidl and Co-operative food; the other is unaccompanied transport, which is used by Aldi. Five transport scenarios are studied based on different transport modes and ferry routes. The aim is to determine an optimal delivery plan for supermarkets of different business scales on IOW, in order to minimise the total running cost, fuel consumptions and carbon emissions. The problem is modelled as a vehicle routing problem with time windows and solved by genetic algorithm. The computing results suggested that accompanied transport is more cost efficient for small and medium business-scale supermarket chains on IOW, while unaccompanied transport has the potential to improve the efficiency and effectiveness of large business scale supermarket chains.Keywords: genetic algorithm, intermodal transport system, Isle of Wight, optimization, supermarket
Procedia PDF Downloads 369624 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation
Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy
Abstract:
The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis
Procedia PDF Downloads 406623 Modelling and Optimisation of Floating Drum Biogas Reactor
Authors: L. Rakesh, T. Y. Heblekar
Abstract:
This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.Keywords: biogas, floating drum reactor, neural network model, optimization
Procedia PDF Downloads 143622 Numerical Simulation of Air Flow, Exhaust and Their Mixture in a Helicopter Exhaust Injective Cooler
Authors: Mateusz Paszko, Konrad Pietrykowski, Krzysztof Skiba
Abstract:
Due to low-altitude and relatively low flight speed, today’s combat assets like missile weapons equipped with infrared guidance systems are one of the most important threats to the helicopters performing combat missions. Especially meaningful in helicopter aviation is infrared emission by exhaust gases, regressed to the surroundings. Due to high temperature, exhaust gases are a major factor in detectability of a helicopter performing air combat operations. This study presents the results of simulating the flow of the mixture of exhaust and air in the flow duct of an injective exhaust cooler, adapted to cooperate with the PZL 10W turbine engine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted for set flight conditions of the PZL W-3 Falcon helicopter. The conclusions resulting from the conducted numerical computations should allow for optimisation of the flow duct geometry in the cooler, in order to achieve the greatest possible temperature reduction of exhaust exiting into the surroundings. It is expected that the obtained results should be useful for further works related to the development of the final version of exhaust cooler for the PZL W-3 Falcon helicopter.Keywords: exhaust cooler, helicopter, numerical simulation, stealth
Procedia PDF Downloads 150621 A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies
Authors: Saba Shams Bidhendi, Steven Goh, Andrew Wandel
Abstract:
The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author’s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers’ resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies.Keywords: lean manufacturing, lean strategies, manufacturing wastes, manufacturing performance, optimisation, decision making
Procedia PDF Downloads 192620 Health Behaviours of Patients Qualified for Bariatric Surgery
Authors: A. Gazdzinska, P. Jagielski, E. Kaniewska, S. P. Gazdzinski, M. Wylezol
Abstract:
Background: In the multi-factor etiology of obesity, an increasing degree of importance is attributed to behavioral factors. Lifestyle and health-oriented behaviors heavily influence the treatment of multiple diseases, including obesity. However, only a few studies evaluated health-related behaviors exhibited by patients qualified for bariatric surgery. None of them was performed in Polish population. Aim: Assessment of health behaviors of obese patients according to the degree of mood disorders. Method: The study involved 93 patients (66 females) who were qualified for bariatric surgery in the Department of Surgery of the Military Institute of Aviation Medicine in Warsaw. Diagnostic instrument was the Juczynski’s Inventory of Health Behavior (HBI), which evaluates health behavior in four categories, i.e. proper nutrition habits (PNH), preventive behavior (PH), health practices (HP) and positive mental attitude (PMA). The average HBI falls in the range between 24 and 120 points, for each category of health behaviors fall between 1 and 5 (higher score means higher severity declared healthy behaviors). The depressive symptoms in patients were assessed with Beck Depression Inventory (BDI). All analyses were conducted using STATISTICA 12. Results: The average age was 44.2 ± 11.5 years, mean BMI was 44.3 ± 10.5 kg/m2 and 46.8 ± 7.6 kg/m2, in females and males respectively. According to BDI, 32% patients had mild level of depression, 10% moderate and 14% severe depression. BDI scores were not different between females and males. Low results with regard to the health behaviors declared were obtained by 35.5 % of patients, medium by 44.0%, while high ones by only 20.5%. On average, patients gained 3.28 points in PNH, 3.37 points in PH, 3.29 points in HP, while 3.42 in the PMA category, showing average intensity of these behaviors. These health behaviors were practiced significantly more often by women (p = 0.04). The average HBI was 80.2; with average score of 81.5 for females and 76.6 for males, respectively (p = 0.03). Women were better in the PNH category (p = 0.02). A positive correlation was found between age and all categories of health behaviors, in particular PNH (R = 0.38; p = 0.001), PH (R = 0.26; p = 0.01), HP (R = 0.27; p = 0.01) and PMA (R = 0.24; p = 0.02), independent of gender. The severity of depression had a significant impact only on the behaviors associated with proper eating habits, which saw a negative correlation between BDI scores and the PNH (R = -0.21; p = 0.04). Conclusions: Majority of morbidly obese patients qualified for bariatric surgery obtained low to average scores in health behavior questionnaire. However, these results are similar in comparison with the Polish adult population. In accordance to these results, it seems that healthy behaviors, among them eating behaviors, do not appear to be a cause of obesity epidemic or they might be acquired when the disease is already underway. Female gender and age had a positive effect, and depression had a negative effect on the level of health behaviors among patients qualified for bariatric surgery.Keywords: depression, habits, health behaviours, obesity
Procedia PDF Downloads 285