Search results for: field emission electric propulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10207

Search results for: field emission electric propulsion

9907 Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy

Authors: H. Lee, Jr., L. Bo-ot, R. Tumlos, H. Ramos

Abstract:

The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates.

Keywords: plasma jet, OES, Boltzmann plots, vibrational temperatures

Procedia PDF Downloads 686
9906 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application

Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas

Abstract:

The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.

Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system

Procedia PDF Downloads 325
9905 Large-Eddy Simulations for Flow Control

Authors: Reda Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)

Procedia PDF Downloads 258
9904 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 115
9903 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode

Authors: Simrjit Singh, Neeraj Khare

Abstract:

In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.

Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃

Procedia PDF Downloads 151
9902 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum

Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu

Abstract:

Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.

Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101

Procedia PDF Downloads 14
9901 Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, M. K. G. Choudhury, Santanu Mallick, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent.

Keywords: benchmark, blast furnace, CO₂ emission, fuel rate

Procedia PDF Downloads 252
9900 Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage

Authors: Fatiha Aouabed, Abdelhafid Bayadi, Rabah Boudissa

Abstract:

Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed.

Keywords: contamination, flashover, testing, silicone rubber insulators, surface wettability, water droplets

Procedia PDF Downloads 418
9899 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.

Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation

Procedia PDF Downloads 101
9898 Ultrasonic Atomizer for Turbojet Engines

Authors: Aman Johri, Sidhant Sood, Pooja Suresh

Abstract:

This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.

Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations

Procedia PDF Downloads 216
9897 Large-Eddy Simulations for Aeronautical Systems

Authors: R. R. Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is embedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating, and cooling, etc. In this work will present an overview of the development of this field. Some examples will include Airfoil Noise Suppression: Large-Eddy Simulations (LES) is used to simulate the effect of synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In vertical takeoff of Aircrafts or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protecting the structure and payload from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aeroacoustics, flow control, aerodynamics, large eddy simulations

Procedia PDF Downloads 265
9896 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 200
9895 Electric Models for Crosstalk Predection: Analysis and Performance Evaluation

Authors: Kachout Mnaouer, Bel Hadj Tahar Jamel, Choubani Fethi

Abstract:

In this paper, three electric equivalent models to evaluate crosstalk between three-conductor transmission lines are proposed. First, electric equivalent models for three-conductor transmission lines are presented. Secondly, rigorous equations to calculate the per-unit length inductive and capacitive parameters are developed. These models allow us to calculate crosstalk between conductors. Finally, to validate the presented models, we compare the theoretical results with simulation data. Obtained results show that proposed models can be used to predict crosstalk performance.

Keywords: near-end crosstalk, inductive parameter, L, Π, T models

Procedia PDF Downloads 427
9894 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control

Authors: Hartani Kada, Merah Abdelkader

Abstract:

Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.

Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion

Procedia PDF Downloads 579
9893 Effect of Rice Cultivars and Water Regimes Application as Mitigation Strategy for Greenhouse Gases in Paddy Fields

Authors: Mthiyane Pretty, Mitsui Toshiake, Aycan Murat, Nagano Hirohiko

Abstract:

Methane (CH₄) is one of the most dangerous greenhouse gases (GHG) emitted into the atmosphere by terrestrial ecosystems, with a global warming potential (GWP) 25-34 times that of CO2 on a centennial scale. Paddy rice cultivations are a major source of methane emission and is the major driving force for climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. A study was conducted at Niigata University. And the prime objective of this research was to determine the effects of rice varieties CH4 lowland (NU1, YNU, Nipponbare, Koshihikari) and upland (Norin 1, Norin 24, Hitachihatamochi) japonica rice varieties using different growth media which was paddy field soil and artificial soil. The treatments were laid out in a split plot design. The soil moisture was kept at 40-50% and 70%, respectively. The CH₄ emission rates were determined by collecting air samples using the closed chamber technique and measuring CH₄ concentrations using a gas chromatograph. CH₄ emission rates varied with the growth, growth media type and development of the rice varieties. The soil moisture was monitored at a soil depth of 5–10 cm with an HydraGO portable soil sensor system every three days for each pot, and temperatures were be recorded by a sensitive thermometer. The lowest cumulative CH4 emission rate was observed in Norin 24, particularly under 40 to 50% soil moisture. Across the rice genotypes, 40-50% significantly reduced the cumulative CH4 , followed by irrigation of 70% soil moisture. During the tillering stage, no significant variation in tillering and plant height was observed between and 70% soil moisture. This study suggests that the cultivation of Norin 24 and Norin 1 under 70% soil irrigation could be effective at reducing the CH4 in rice fields.

Keywords: methane, paddy fields, rice varieties, soil moisture

Procedia PDF Downloads 61
9892 The Regulation on Human Exposure to Electromagnetic Fields for Brazilian Power System

Authors: Hugo Manoel Olivera Da Silva, Ricardo Silva Thé Pontes

Abstract:

In this work, is presented an analysis of the Brazilian regulation on human exposure to electromagnetic fields, which provides limits to electric fields, magnetic and electromagnetic fields. The regulations for the electricity sector was in charge of the Agência Nacional de Energia Elétrica-ANEEL, the Brazilian Electricity Regulatory Agency, that made it through the Normative Resolution Nº 398/2010, resulting in a series of obligations for the agents of the electricity sector, especially in the areas of generation, transmission, and distribution.

Keywords: adverse effects, electric energy, electric and magnetic fields, human health, regulation

Procedia PDF Downloads 574
9891 An Algorithm for Estimating the Stable Operation Conditions of the Synchronous Motor of the Ore Mill Electric Drive

Authors: M. Baghdasaryan, A. Sukiasyan

Abstract:

An algorithm for estimating the stable operation conditions of the synchronous motor of the ore mill electric drive is proposed. The stable operation conditions of the synchronous motor are revealed, taking into account the estimation of the q angle change and the technological factors. The stability condition obtained allows to ensure the stable operation of the motor in the synchronous mode, taking into account the nonlinear character of the mill loading. The developed algorithm gives an opportunity to present the undesirable phenomena, arising in the electric drive system. The obtained stability condition can be successfully applied for the optimal control of the electromechanical system of the mill.

Keywords: electric drive, synchronous motor, ore mill, stability, technological factors

Procedia PDF Downloads 399
9890 Approach to Functional Safety-Compliant Design of Electric Power Steering Systems for Commercial Vehicles

Authors: Hyun Chul Koag, Hyun-Sik Ahn

Abstract:

In this paper, we propose a design approach for the safety mechanism of an actuator used in a commercial vehicle’s EPS system. As the number of electric/electronic system in a vehicle increases, the importance of the functional safety has been receiving much attention. EPS(Electric Power Steering) systems for commercial vehicles require large power than passenger vehicles, and hence, dual motor can be applied to get more torque. We show how to formulate the development process for the design of hardware and software of an EPS system using dual motors. A lot of safety mechanisms for the processor, sensors, and memory have been suggested, however, those for actuators have not been fully researched. It is shown by metric analyses that the target ASIL(Automotive Safety Integrated Level) is satisfied in the point of view of hardware of EPS controller.

Keywords: safety mechanism, functional safety, commercial vehicles, electric power steering

Procedia PDF Downloads 364
9889 On the Optimality Assessment of Nano-Particle Size Spectrometry and Its Association to the Entropy Concept

Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani

Abstract:

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nano-particles under the influence of electric field in electrical mobility spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined field-diffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multi-channel EMS. The result, a cloud of particles with non-uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using computational fluid dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Keywords: aerosol nano-particle, CFD, electrical mobility spectrometer, von neumann entropy

Procedia PDF Downloads 314
9888 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 114
9887 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging

Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali

Abstract:

A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.

Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models

Procedia PDF Downloads 296
9886 Damage Analysis in Open Hole Composite Specimens by Acoustic Emission: Experimental Investigation

Authors: Youcef Faci, Ahmed Mebtouche, Badredine Maalem

Abstract:

n the present work, an experimental study is carried out using acoustic emission and DIC techniques to analyze the damage of open hole woven composite carbon/epoxy under solicitations. Damage mechanisms were identified based on acoustic emission parameters such as amplitude, energy, and cumulative account. The findings of the AE measurement were successfully identified by digital image correlation (DIC) measurements. The evolution value of bolt angle inclination during tensile tests was studied and analyzed. Consequently, the relationship between the bolt inclination angles during tensile tests associated with failure modes of fastened joints of composite materials is determined. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions are supported by microscopic visualizations of the composite specimen.

Keywords: tensile test, damage, acoustic emission, digital image correlation

Procedia PDF Downloads 48
9885 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant

Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro

Abstract:

The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.

Keywords: acoustic impact, industrial noise, mitigation, rocket noise

Procedia PDF Downloads 119
9884 Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm

Authors: Mahendran Samykano, Ram Mohan, Shyam Aravamudhan

Abstract:

The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.

Keywords: anodic alumina oxide, electrodeposition, nanowires, nickel

Procedia PDF Downloads 254
9883 A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures

Authors: Chul Park, Youngseok Kim, Sangsik Choi

Abstract:

This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn.

Keywords: underwater structure, SONAR, safety inspection, resolution

Procedia PDF Downloads 238
9882 A Range of Steel Production in Japan towards 2050

Authors: Reina Kawase

Abstract:

Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050.

Keywords: goods trade scenario, steel making process selection scenario, steel production, global warming

Procedia PDF Downloads 358
9881 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 360
9880 Spectroscopic Relation between Open Cluster and Globular Cluster

Authors: Robin Singh, Mayank Nautiyal, Priyank Jain, Vatasta Koul, Vaibhav Sharma

Abstract:

The curiosity to investigate the space and its mysteries was dependably the main impetus of human interest, as the particle of livings exists from the "debut de l'Univers" (beginning of the Universe) typified with its few other living things. The sharp drive to uncover the secrets of stars and their unusual deportment was dependably an ignitor of stars investigation. As humankind lives in civilizations and states, stars likewise live in provinces named ‘clusters’. Clusters are separates into 2 composes i.e. open clusters and globular clusters. An open cluster is a gathering of thousand stars that were moulded from a comparable goliath sub-nuclear cloud and for the most part; contain Propulsion I (extremely metal-rich) and Propulsion II (mild metal-rich), where globular clusters are around gathering of more than thirty thousand stars that circles a galactic focus and basically contain Propulsion III (to a great degree metal-poor) stars. Futurology of this paper lies in the spectroscopic investigation of globular clusters like M92 and NGC419 and open clusters like M34 and IC2391 in different color bands by using software like VIREO virtual observatory, Aladin, CMUNIWIN, and MS-Excel. Assessing the outcome Hertzsprung-Russel (HR) diagram with exemplary cosmological models like Einstein model, De Sitter and Planck survey demonstrate for a superior age estimation of respective clusters. Colour-Magnitude Diagram of these clusters was obtained by photometric analysis in g and r bands which further transformed into BV bands which will unravel the idea of stars exhibit in the individual clusters.

Keywords: color magnitude diagram, globular clusters, open clusters, Einstein model

Procedia PDF Downloads 202
9879 Strong Down-Conversion Emission of Sm3+ Doped Borotellurite Glass under the 480nm Excitation Wavelength

Authors: M. R. S. Nasuha, K. Azman, H. Azhan, S. A. Senawi, A. Mardhiah

Abstract:

Studies on Samarium doped glasses possess lot of interest due to their potential applications for high-density optical memory, optical communication device, the design of laser and color display etc. Sm3+ doped borotellurite glasses of the system (70-x) TeO2-20B2O3-10ZnO-xSm2O3 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) have been prepared using melt-quenching method. Their physical properties such as density, molar volume and oxygen packing density as well as the optical measurements by mean of their absorption and emission characteristic have been carried out at room temperature using UV/VIS and photoluminescence spectrophotometer. The results of physical properties are found to vary with respect to Sm3+ ions content. Meanwhile, three strong absorption peaks are observed and are well resolved in the ultra violet and visible regions due to transitions between the ground state and various excited state of Sm3+ ions. Thus, the photoluminescence spectra exhibit four emission bands from the initial state, which correspond to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 fluorescence transitions at 562 nm, 599 nm, 645 nm and 706 nm respectively.

Keywords: absorption, borotellurite, down-conversion, emission

Procedia PDF Downloads 663
9878 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological

Procedia PDF Downloads 526