Search results for: electrical system generation electric grid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21746

Search results for: electrical system generation electric grid

21446 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: electric vehicles, fuel cell, battery, regenerative braking, energy management

Procedia PDF Downloads 695
21445 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 329
21444 Advantages of Electrifying Offshore Compression System

Authors: Siva Sankara Arudra, Kamaruzaman Baharuddin, Ir. Ahmed Fadzil Mustafa Kamal, Ir. Abdul Latif Mohamed

Abstract:

The advancement of electrical and electronics technologies has rewarded the oil and gas industry with great opportunities to embed more environmentally solutions into design. Most offshore oil and gas producers have their engineering and production asset goals to promote greater use of environmentally friendly compression system technologies to eliminate hazardous emissions from conventional gas compressor drivers. Therefore, this paper comprehensively elaborates the parametric study conducted in integrating the latest electrical and electronics drives technology into the existing compression system. This study was conducted in aspects of layout, reliability & availability, maintainability, emission, and cost. An existing offshore facility that utilized gas turbines as the driver for gas compression was set as Conventional Case for this study. The Electrification Case will utilize electric motor drives as the driver for the compression system. Findings from this study indicate more advantages in driver electrification compared to conventional compression systems. The findings of this paper can be set as a benchmark for future offshore driver selection for gas compression systems of similar operating parameters and power range.

Keywords: turbomachinery, electrification, emission, compression system

Procedia PDF Downloads 129
21443 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part II: Case Studies

Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad

Abstract:

Power systems are innately uncertain systems. To face with such uncertain systems, robust uncertainty assessment tools are appealed. This paper inspects the uncertainty assessment formulation of the load flow (LF) problem considering different kinds of uncertainties, developed in its companion paper through some case studies. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. The load and wind power generation are considered as probabilistic uncertain variables and the electric vehicles (EVs) and gas turbine distributed generation (DG) units are considered as possibilistic uncertain variables. The cumulative distribution function (CDF) of the system output parameters obtained by the pure probabilistic method lies within the belief and plausibility functions obtained by the joint propagation approach. Furthermore, the imprecision in the DG parameters is explicitly reflected by the gap between the belief and plausibility functions. This gap, due to the epistemic uncertainty on the DG resources parameters grows as the penetration level increases.

Keywords: electric vehicles, joint possibilistic- probabilistic uncertainty modeling, uncertain load flow, wind turbine generator

Procedia PDF Downloads 412
21442 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 131
21441 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria

Authors: Okorowo Cyril Agochi

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.

Keywords: electric, power, renewable energy, solar energy, sun, tropical

Procedia PDF Downloads 526
21440 The Importance of Generating Electricity through Wind Farms in the Brazilian Electricity Matrix, from 2013 to 2020

Authors: Alex Sidarta Guglielmoni

Abstract:

Since the 1970s, sustainable development has become increasingly present on the international agenda. The present work has as general objective to analyze, discuss and bring answers to the following question, what is the importance of the generation of electric energy through the wind power plants in the Brazilian electricity matrix between 2013 and 2019? To answer this question, we analyzed the generation of renewable energy from wind farms and the consumption of electricity in Brazil during the period of January 2013 until December 2020. The specific objectives of this research are: to analyze the public data, to identify the total wind generation, to identify the total wind capacity generation, to identify the percentage participation of the generation and generation capacity of wind energy in the Brazilian electricity matrix. In order to develop this research, it was necessary a bibliographic search, collection of secondary data, tabulation of generation data, and electricity capacity by a comparative analysis between wind power and the Brazilian electricity matrix. As a result, it was possible to observe how important Brazil is for global sustainable development and how much this country can grow with this, in view of its capacity and potential for generating wind power since this percentage has grown in past few years.

Keywords: wind power, Brazilian market, electricity matrix, generation capacity

Procedia PDF Downloads 107
21439 In-Farm Wood Gasification Energy Micro-Generation System in Brazil: A Monte Carlo Viability Simulation

Authors: Erich Gomes Schaitza, Antônio Francisco Savi, Glaucia Aparecida Prates

Abstract:

The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC). This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.

Keywords: biomass, distribuited generation, small-scale, Monte Carlo

Procedia PDF Downloads 272
21438 Modelling a Distribution Network with a Hybrid Solar-Hydro Power Plant in Rural Cameroon

Authors: Contimi Kenfack Mouafo, Sebastian Klick

Abstract:

In the rural and remote areas of Cameroon, access to electricity is very limited since most of the population is not connected to the main utility grid. Throughout the country, efforts are underway to not only expand the utility grid to these regions but also to provide reliable off-grid access to electricity. The Cameroonian company Solahydrowatt is currently working on the design and planning of one of the first hybrid solar-hydropower plants of Cameroon in Fotetsa, in the western region of the country, to provide the population with reliable access to electricity. This paper models and proposes a design for the low-voltage network with a hybrid solar-hydropower plant in Fotetsa. The modelling takes into consideration the voltage compliance of the distribution network, the maximum load of operating equipment, and most importantly, the ability for the network to operate as an off-grid system. The resulting modelled distribution network does not only comply with the Cameroonian voltage deviation standard, but it is also capable of being operated as a stand-alone network independent of the main utility grid.

Keywords: Cameroon, rural electrification, hybrid solar-hydro, off-grid electricity supply, network simulation

Procedia PDF Downloads 110
21437 Nonlinear Pollution Modelling for Polymeric Outdoor Insulator

Authors: Rahisham Abd Rahman

Abstract:

In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions.

Keywords: electric field distributions, pollution layer, dynamic model, polymeric outdoor insulators, finite element method (FEM)

Procedia PDF Downloads 385
21436 Feasiblity of Replacing Inductive Instrument Transformers with Non-Conventional Intrument Transformers to replace

Authors: David A. Wallace, Salakjit J. Nilboworn

Abstract:

Secure and reliable transmission and distribution of electrical power is crucial in today’s ever-increasing demand for electricity. Traditional methods of protecting the electrical grid have relied on relaying systems receiving voltage and current inputs from inductive instruments transformers (IT). This method has provided robust and stable performance throughout the years. Today with the advent of new non-conventional transformers (NCIT) and sensors, the electrical landscape is changing. These new systems have to ability to provide the same electrical performance as traditional instrument transformers with the added features of data acquisition, communication, smaller footprint, lower cost and resistance to GMD/GIC events.

Keywords: non-conventional instrument transformers, digital substations, smart grids, micro-grids

Procedia PDF Downloads 66
21435 Effect of Integrity of the Earthing System on the Rise of Earth Potential

Authors: N. Ullah, A. Haddad, F. Van Der Linde

Abstract:

This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.

Keywords: bonding, earthing, EPR, integrity, system

Procedia PDF Downloads 315
21434 Attractiveness of Cafeteria Systems as Viewed by Generation Z

Authors: Joanna Nieżurawska, Hanna Karaszewska, Anna Dziadkiewicz

Abstract:

Contemporary conditions force companies to constantly implement changes and improvements, which is connected with plasticization of their activity in all spheres. Cafeteria systems are a good example of flexible remuneration systems. Cafeteria systems are well-known and often used in the United States, Great Britain and in Western Europe. In Poland, they are hardly ever used and greater flexibility in remuneration packages refers mainly to senior managers and executives. The main aim of this article is to research the attractiveness of the cafeteria system as viewed by generation Z. The additional aim of the article is to prioritize using the importance index of particular types of cafeteria systems from the generation Z’s perspective, as well as to identify the factors which determine the development of cafeteria systems in Poland. The research was conducted in June 2015 among 185 young employees (generation Z). The paper presents some of the results.

Keywords: cafeteria, generation X, generation Y, generation Z, flexible remuneration systems, plasticization of remuneration

Procedia PDF Downloads 390
21433 Lesson Learnt from Solar Photovoltaic Power Generation in Thailand with Global Self-Consumption Experience

Authors: Tongpong Sriboon, Prapita Thanarak, Chaitawatch Khunrangabsang

Abstract:

Nowadays, the usage of power generated from photovoltaic system has been promoted significantly in Thailand. The targeted result which is to increase the Solar Power Generation in 2036 to 6000 megawatts (MW) was planned by Alternative Energy Development Plan (AEDP 2015) and Power Development Plan (PDP 2015). The solar rooftop 200 MW was promoted and supported under the Feed-in Tariff scheme (FiT) in two phases; phase I in 2012 and phase II in 2015. However, the number of people interested in supporting the projects reduced due to many reasons which range from the first process to the last that is to sell electricity back to Electricity Authority. This paper will review this situation especially in total electricity generated from solar rooftop system during the day that has been sold back to the grid utility in different capacity FiT rates. With many stakeholders involved, the regulations and criteria were established to maintain the standard of the system. Besides, lots of problems have occurred during the processes including reliability and quality. These problems were shortly followed by other irrevocably issues concerning politics, social, economic etc. In order to effectively develop solar PV power system in Thailand, the problems and solutions were compared to those from six countries including Japan, Australia. America, China, German and Malaysia. This paper particularly focuses on policies and measurement implemented to encourage the rising in solar PV system interest. This review enables one to gain insight into the nature of the changes that have taken place in each and every country mentioned above as well as the underlying reasons behind them. Brief analysis is carried out on identify key challenges and opportunities for solar PV application. This could help create a development path that is suitable with situations to enhance the overall performance of solar PV power generating system in Thailand.

Keywords: solar PV rooftop, PV policy, self-consumption, solar PV power generation

Procedia PDF Downloads 295
21432 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems

Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari

Abstract:

The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.

Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters

Procedia PDF Downloads 135
21431 A Finite Memory Residual Generation Filter for Fault Detection

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults.

Keywords: residual generation filter, finite memory structure, kalman filter, fast detection

Procedia PDF Downloads 678
21430 Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling

Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Nemanja Sarovic

Abstract:

A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs.

Keywords: assembly, automotive industry, battery system, battery concept

Procedia PDF Downloads 283
21429 A High Efficiency Reduced Rules Neuro-Fuzzy Based Maximum Power Point Tracking Controller for Photovoltaic Array Connected to Grid

Authors: Lotfi Farah, Nadir Farah, Zaiem Kamar

Abstract:

This paper achieves a maximum power point tracking (MPPT) controller using a high-efficiency reduced rules neuro-fuzzy inference system (HE2RNF) for a 100 kW stand-alone photovoltaic (PV) system connected to the grid. The suggested HE2RNF based MPPT seeks the optimal duty cycle for the boost DC-DC converter, making the designed PV system working at the maximum power point (MPP), then transferring this power to the grid via a three levels voltage source converter (VSC). PV current variation and voltage variation are chosen as HE2RNF-based MPPT controller inputs. By using these inputs with the duty cycle as the only single output, a six rules ANFIS is generated. The high performance of the proposed HE2RNF numerically in the MATLAB/Simulink environment is shown. The 0.006% steady-state error, 0.006s of tracking time, and 0.088s of starting time prove the robustness of this six reduced rules against the widely used twenty-five ones.

Keywords: PV, MPPT, ANFIS, HE2RNF-based MPPT controller, VSC, grid connection

Procedia PDF Downloads 164
21428 Grid Computing for Multi-Objective Optimization Problems

Authors: Aouaouche Elmaouhab, Hassina Beggar

Abstract:

Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.

Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing

Procedia PDF Downloads 465
21427 One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet

Authors: Fang Li, Xie-Yuan Yin, Xie-Zhen Yin

Abstract:

Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets.

Keywords: non linear instability, one-dimensional models, radial electric fields, viscoelastic liquid jets

Procedia PDF Downloads 374
21426 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 305
21425 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products

Authors: Maciej Jedrzejczyk, Karolina Marzantowicz

Abstract:

Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.

Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids

Procedia PDF Downloads 280
21424 The LIP’s Electric Propulsion Development for Chinese Spacecraft

Authors: Zhang Tianping, Jia Yanhui, Li Juan, Yang Le, Yang Hao, Yang Wei, Sun Xiaojing, Shi Kai, Li Xingda, Sun Yunkui

Abstract:

Lanzhou Institute of Physics (LIP) is the major supplier of electric propulsion subsystems for Chinese satellite platforms. The development statuses of these electric propulsion subsystems were summarized including the LIPS-200 ion electric propulsion subsystem (IEPS) for DFH-3B platform, the LIPS-300 IEPS for DFH-5 and DFH-4SP platform, the LIPS-200+ IEPS for DFH-4E platform and near-earth asteroid exploration spacecraft, the LIPS-100 IEPS for small satellite platform, the LHT-100 hall electric propulsion subsystem (HEPS) for flight test on XY-2 satellite, the LHT-140 HEPS for large LEO spacecraft, the LIPS-400 IEPS for deep space exploration mission and other EPS for other Chinese spacecraft.

Keywords: ion electric propulsion, hall electric propulsion, satellite platform, LIP

Procedia PDF Downloads 695
21423 The Potential and Economic Viability Analysis of Grid-Connected Solar PV Power in Kenya

Authors: Remember Samu, Kathy Kiema, Murat Fahrioglu

Abstract:

This present study is aimed at minimizing the dependence on fossil fuels thus reducing greenhouse gas (GHG) emissions and also to curb for the rising energy demands in Kenya. In this analysis, 35 locations were each considered for their techno-economic potential of installation of a 10MW grid-connected PV plant. The sites are scattered across the country but are mostly concentrated in the eastern region and were selected based on their accessibility to the national grid and availability of their meteorological parameters from NASA Solar Energy Dataset. RETScreen software 4.0 version will be employed for the analysis in this present paper. The capacity factor, simple payback, equity payback, the net present value (NPV), annual life cycle savings, energy production cost, net annual greenhouse gas emission reduction and the equivalent barrels of crude oil not consumed are outlined. Energy accounting is performed and compared to the existing grid tariff for an effective feasibility argument of this 10MW grid-connected PV power system.

Keywords: photovoltaics, project viability analysis, PV module, renewable energy

Procedia PDF Downloads 301
21422 Harmonic Distortion Analysis in Low Voltage Grid with Grid-Connected Photovoltaic

Authors: Hedi Dghim, Ahmed El-Naggar, Istvan Erlich

Abstract:

Power electronic converters are being introduced in low voltage (LV) grids at an increasingly rapid rate due to the growing adoption of power electronic-based home appliances in residential grid. Photovoltaic (PV) systems are considered one of the potential installed renewable energy sources in distribution power systems. This trend has led to high distortion in the supply voltage which consequently produces harmonic currents in the network and causes an inherent voltage unbalance. In order to investigate the effect of harmonic distortions, a case study of a typical LV grid configuration with high penetration of 3-phase and 1-phase rooftop mounted PV from southern Germany was first considered. Electromagnetic transient (EMT) simulations were then carried out under the MATLAB/Simulink environment which contain detailed models for power electronic-based loads, ohmic-based loads as well as 1- and 3-phase PV. Note that, the switching patterns of the power electronic circuits were considered in this study. Measurements were eventually performed to analyze the distortion levels when PV operating under different solar irradiance. The characteristics of the load-side harmonic impedances were analyzed, and their harmonic contributions were evaluated for different distortion levels. The effect of the high penetration of PV on the harmonic distortion of both positive and negative sequences was also investigated. The simulation results are presented based on case studies. The current distortion levels are in agreement with relevant standards, otherwise the Total Harmonic Distortion (THD) increases under low PV power generation due to its inverse relation with the fundamental current.

Keywords: harmonic distortion analysis, power quality, PV systems, residential distribution system

Procedia PDF Downloads 247
21421 Heuristics for Optimizing Power Consumption in the Smart Grid

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.

Keywords: heuristics, optimization, smart grid, peak demand, power supply

Procedia PDF Downloads 74
21420 Electricity Market Reforms Towards Clean Energy Transition andnd Their Impact in India

Authors: Tarun Kumar Dalakoti, Debajyoti Majumder, Aditya Prasad Das, Samir Chandra Saxena

Abstract:

India’s ambitious target to achieve a 50 percent share of energy from non-fossil fuels and the 500-gigawatt (GW) renewable energy capacity before the deadline of 2030, coupled with the global pursuit of sustainable development, will compel the nation to embark on a rapid clean energy transition. As a result, electricity market reforms will emerge as critical policy instruments to facilitate this transition and achieve ambitious environmental targets. This paper will present a comprehensive analysis of the various electricity market reforms to be introduced in the Indian Electricity sector to facilitate the integration of clean energy sources and will assess their impact on the overall energy landscape. The first section of this paper will delve into the policy mechanisms to be introduced by the Government of India and the Central Electricity Regulatory Commission to promote clean energy deployment. These mechanisms include extensive provisions for the integration of renewables in the Indian Electricity Grid Code, 2023. The section will also cover the projection of RE Generation as highlighted in the National Electricity Plan, 2023. It will discuss the introduction of Green Energy Market segments, the waiver of Inter-State Transmission System (ISTS) charges for inter-state sale of solar and wind power, the notification of Promoting Renewable Energy through Green Energy Open Access Rules, and the bundling of conventional generating stations with renewable energy sources. The second section will evaluate the tangible impact of these electricity market reforms. By drawing on empirical studies and real-world case examples, the paper will assess the penetration rate of renewable energy sources in India’s electricity markets, the decline of conventional fuel-based generation, and the consequent reduction in carbon emissions. Furthermore, it will explore the influence of these reforms on electricity prices, the impact on various market segments due to the introduction of green contracts, and grid stability. The paper will also discuss the operational challenges to be faced due to the surge of RE Generation sources as a result of the implementation of the above-mentioned electricity market reforms, including grid integration issues, intermittency concerns with renewable energy sources, and the need for increasing grid resilience for future high RE in generation mix scenarios. In conclusion, this paper will emphasize that electricity market reforms will be pivotal in accelerating the global transition towards clean energy systems. It will underscore the importance of a holistic approach that combines effective policy design, robust regulatory frameworks, and active participation from market actors. Through a comprehensive examination of the impact of these reforms, the paper will shed light on the significance of India’s sustained commitment to a cleaner, more sustainable energy future.

Keywords: renewables, Indian electricity grid code, national electricity plan, green energy market

Procedia PDF Downloads 24
21419 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation

Authors: A. T. Kuda, J. J. Dayya, A. Jimoh

Abstract:

This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.

Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations

Procedia PDF Downloads 284
21418 Energy Trading for Cooperative Microgrids with Renewable Energy Resources

Authors: Ziaullah, Shah Wahab Ali

Abstract:

Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.

Keywords: distributed energy management, information and communication technologies, microgrid, energy management

Procedia PDF Downloads 360
21417 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System

Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.

Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device

Procedia PDF Downloads 527