Search results for: Stack Generalization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 371

Search results for: Stack Generalization

71 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET

Authors: Tyler T. Procko, Steve Collins

Abstract:

New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.

Keywords: API data access, database, JSON, .NET core, SQL server

Procedia PDF Downloads 66
70 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
69 Inter-Complex Dependence of Production Technique and Preforms Construction on the Failure Pattern of Multilayer Homo-Polymer Composites

Authors: Ashraf Nawaz Khan, R. Alagirusamy, Apurba Das, Puneet Mahajan

Abstract:

The thermoplastic-based fibre composites are acquiring a market sector of conventional as well as thermoset composites. However, replacing the thermoset with a thermoplastic composite has never been an easy task. The inherent high viscosity of thermoplastic resin reveals poor interface properties. In this work, a homo-polymer towpreg is produced through an electrostatic powder spray coating methodology. The produced flexible towpreg offers a low melt-flow distance during the consolidation of the laminate. The reduced melt-flow distance demonstrates a homogeneous fibre/matrix distribution (and low void content) on consolidation. The composite laminate has been fabricated with two manufacturing techniques such as conventional film stack (FS) and powder-coated (PC) technique. This helps in understanding the distinct response of produced laminates on applying load since the laminates produced through the two techniques are comprised of the same constituent fibre and matrix (constant fibre volume fraction). The changed behaviour is observed mainly due to the different fibre/matrix configurations within the laminate. The interface adhesion influences the load transfer between the fibre and matrix. Therefore, it influences the elastic, plastic, and failure patterns of the laminates. Moreover, the effect of preform geometries (plain weave and satin weave structure) are also studied for corresponding composite laminates in terms of various mechanical properties. The fracture analysis is carried out to study the effect of resin at the interlacement points through micro-CT analysis. The PC laminate reveals a considerably small matrix-rich and deficient zone in comparison to the FS laminate. The different load tensile, shear, fracture toughness, and drop weight impact test) is applied to the laminates, and corresponding damage behaviour is analysed in the successive stage of failure. The PC composite has shown superior mechanical properties in comparison to the FS composite. The damage that occurs in the laminate is captured through the SEM analysis to identify the prominent mode of failure, such as matrix cracking, fibre breakage, delamination, debonding, and other phenomena.

Keywords: composite, damage, fibre, manufacturing

Procedia PDF Downloads 137
68 Exploration of the Protection Theory of Chinese Scenic Heritage Based on Local Chronicles

Authors: Mao Huasong, Tang Siqi, Cheng Yu

Abstract:

The cognition and practice of Chinese landscapes have distinct uniqueness. The intergenerational inheritance of urban and rural landscapes is a common objective fact which has created a unique type of heritage in China - scenic heritage. The current generalization of the concept of scenic heritage has affected the lack of innovation in corresponding protection practices. Therefore, clarifying the concepts and connotations of scenery and scenic heritage, clarifying the protection objects of scenic heritage and the methods and approaches in intergenerational inheritance can provide theoretical support for the practice of Chinese scenic heritage and contribute Chinese wisdom to the transformation of world heritage sites. Taking ancient Shaoxing, which has a long time span and rich descriptions of scenic types and quantities, as the research object and using local chronicles as the basic research material, based on text analysis, word frequency analysis, case statistics, and historical, geographical spatial annotation methods, this study traces back to ancient scenic practices and conducts in-depth descriptions in both text and space. it have constructed a scenic heritage identification method based on the basic connotation characteristics and morphological representation characteristics of natural and cultural correlations, combined with the intergenerational and representative characteristics of scenic heritage; Summarized the bidirectional integration of "scenic spots" and "form scenic spots", "outstanding people" and "local spirits" in the formation process of scenic heritage; In inheritance, guided by Confucian values of education; In communication, the cultural interpretation constructed by scenery and the way of landscape life are used to strengthen the intergenerational inheritance of natural, artificial material elements, and intangible spirits. As a unique type of heritage in China, scenic heritage should improve its standards, values, and connotations in current protection practices and actively absorb historical experience.

Keywords: scenic heritage, heritage protection, cultural landscape, shaoxing, chinese landscape

Procedia PDF Downloads 69
67 Influence of Spelling Errors on English Language Performance among Learners with Dysgraphia in Public Primary Schools in Embu County, Kenya

Authors: Madrine King'endo

Abstract:

This study dealt with the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools in West Embu, Embu County, Kenya. The study purposed to investigate the influence of spelling errors on the English language performance among the class three pupils with dysgraphia in public primary schools. The objectives of the study were to identify the spelling errors that learners with dysgraphia make when writing English words and classify the spelling errors they make. Further, the study will establish how the spelling errors affect the performance of the language among the study participants, and suggest the remediation strategies that teachers could use to address the errors. The study could provide the stakeholders with relevant information in writing skills that could help in developing a responsive curriculum to accommodate the teaching and learning needs of learners with dysgraphia, and probably ensure training of teachers in teacher training colleges is tailored within the writing needs of the pupils with dysgraphia. The study was carried out in Embu county because the researcher did not find any study in related literature review concerning the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools done in the area. Moreover, besides being relatively populated enough for a sample population of the study, the area was fairly cosmopolitan to allow a generalization of the study findings. The study assumed the sampled schools will had class three pupils with dysgraphia who exhibited written spelling errors. The study was guided by two spelling approaches: the connectionist stimulation of spelling process and orthographic autonomy hypothesis with a view to explain how participants with learning disabilities spell written words. Data were collected through interviews, pupils’ exercise books, and progress records, and a spelling test made by the researcher based on the spelling scope set for class three pupils by the ministry of education in the primary education syllabus. The study relied on random sampling techniques in identifying general and specific participants. Since the study used children in schools as participants, voluntary consent was sought from themselves, their teachers and the school head teachers who were their caretakers in a school setting.

Keywords: dysgraphia, writing, language, performance

Procedia PDF Downloads 154
66 Implementation of Distributor Management Solution and Its Effects on Supply Chain Performance

Authors: Charles Amoatey, Ebenezer Kumah

Abstract:

Purpose: The purpose of this paper is to assess the effects of implementation of Distributor Management Solution (DMS) on supply chain performance in the Fast Moving Consumer Goods (FMCG) industry in Ghana. Methodology: A purposive sampling approach was used in selecting the respondents for the study. Data was collected from senior management and field supervisors from sales, distribution and customer service units of the case study firm and its channel members. This study made use of systematic literature review and results of survey data analysis to assess how information system has been used to improve supply chain performance. Findings: Results from the study showed that the critical effect factors from implementation of a DMS include (1) Obtain prompt and reliable feedback from the market; (2) Building the capacity and skills levels of employees as well as 3rd Party Agents; (3) Motivated top management to invest in MIS; and (4) Performance improvement in sales route management. The most critical challenges to an effective and sustainable MIS implementation are lack of enough trained IT employees and high barriers to cultural change especially with distributors. The paper recommends consistent investment in IS infrastructure and development of IT skills. Research limitations/implications: This study contributes to the literature by exploring the effects of distribution management solution implementation and supply chain performance in a developing country context. Considering the fact that this study is based on data from only one case study firm and its channel members, generalization of the results should be treated with caution. Practical implications: The findings have confirmed the benefits of implementing a Management Information System. The result should encourage channel members to allocate adequate resources for building MIS capacity to enhance their supply chain performance. Originality/Value: In this paper, the relationship between DMS/MIS implementation and improvement in supply chain performance, in the Ghanaian context, has been established.

Keywords: distributor management solution, fast-moving consumer goods, supply chain management, information systems, Ghana

Procedia PDF Downloads 562
65 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
64 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 209
63 Language Errors Used in “The Space between Us” Movie and Their Effects on Translation Quality: Translation Study toward Discourse Analysis Approach

Authors: Mochamad Nuruz Zaman, Mangatur Rudolf Nababan, M. A. Djatmika

Abstract:

Both society and education areas teach to have good communication for building the interpersonal skills up. Everyone has the capacity to understand something new, either well comprehension or worst understanding. Worst understanding makes the language errors when the interactions are done by someone in the first meeting, and they do not know before it because of distance area. “The Space between Us” movie delivers the love-adventure story between Mars Boy and Earth Girl. They are so many missing conversations because of the different climate and environment. As the moviegoer also must be focused on the subtitle in order to enjoy well the movie. Furthermore, Indonesia subtitle and English conversation on the movie still have overlapping understanding in the translation. Translation hereby consists of source language -SL- (English conversation) and target language -TL- (Indonesia subtitle). These research gap above is formulated in research question by how the language errors happened in that movie and their effects on translation quality which is deepest analyzed by translation study toward discourse analysis approach. The research goal is to expand the language errors and their translation qualities in order to create a good atmosphere in movie media. The research is studied by embedded research in qualitative design. The research locations consist of setting, participant, and event as focused determined boundary. Sources of datum are “The Space between Us” movie and informant (translation quality rater). The sampling is criterion-based sampling (purposive sampling). Data collection techniques use content analysis and questioner. Data validation applies data source and method triangulation. Data analysis delivers domain, taxonomy, componential, and cultural theme analysis. Data findings on the language errors happened in the movie are referential, register, society, textual, receptive, expressive, individual, group, analogical, transfer, local, and global errors. Data discussions on their effects to translation quality are concentrated by translation techniques on their data findings; they are amplification, borrowing, description, discursive creation, established equivalent, generalization, literal, modulation, particularization, reduction, substitution, and transposition.

Keywords: discourse analysis, language errors, The Space between Us movie, translation techniques, translation quality instruments

Procedia PDF Downloads 219
62 Greek Teachers' Understandings of Typical Language Development and of Language Difficulties in Primary School Children and Their Approaches to Language Teaching

Authors: Konstantina Georgali

Abstract:

The present study explores Greek teachers’ understandings of typical language development and of language difficulties. Its core aim was to highlight that teachers need to have a thorough understanding of educational linguistics, that is of how language figures in education. They should also be aware of how language should be taught so as to promote language development for all students while at the same time support the needs of children with language difficulties in an inclusive ethos. The study, thus argued that language can be a dynamic learning mechanism in the minds of all children and a powerful teaching tool in the hands of teachers and provided current research evidence to show that structural and morphological particularities of native languages- in this case, of the Greek language- can be used by teachers to enhance children’s understanding of language and simultaneously improve oral language skills for children with typical language development and for those with language difficulties. The research was based on a Sequential Exploratory Mixed Methods Design deployed in three consecutive and integrative phases. The first phase involved 18 exploratory interviews with teachers. Its findings informed the second phase involving a questionnaire survey with 119 respondents. Contradictory questionnaire results were further investigated in a third phase employing a formal testing procedure with 60 children attending Y1, Y2 and Y3 of primary school (a research group of 30 language impaired children and a comparison group of 30 children with typical language development, both identified by their class teachers). Results showed both strengths and weaknesses in teachers’ awareness of educational linguistics and of language difficulties. They also provided a different perspective of children’s language needs and of language teaching approaches that reflected current advances and conceptualizations of language problems and opened a new window on how best they can be met in an inclusive ethos. However, teachers barely used teaching approaches that could capitalize on the particularities of the Greek language to improve language skills for all students in class. Although they seemed to realize the importance of oral language skills and their knowledge base on language related issues was adequate, their practices indicated that they did not see language as a dynamic teaching and learning mechanism that can promote children’s language development and in tandem, improve academic attainment. Important educational implications arose and clear indications of the generalization of findings beyond the Greek educational context.

Keywords: educational linguistics, inclusive ethos, language difficulties, typical language development

Procedia PDF Downloads 382
61 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 164
60 Knowledge, Attitude and Associated Factors of Practice towards Post Exposure Prophylaxis of HIV Infection among Health Professionals in Yeka and Kazanchis Health Center

Authors: Semira Zeru Haileslassie

Abstract:

Lack of awareness and practices of PEP treatment were observed among respondents, but they had a better attitude towards PEP. To this end, a formal training for all respondents regarding PEP for HIV prior to their clinical attachments is of utmost importance. The training ought to incorporate a brief clarification with respect to the unpleasant impact of non-adherence that essentially incorporate destitute treatment result and most prominent hazard of resistance and few given as a major cause for non-compliance to PEP, common transient side-effects of PEP and its administrations ought to be cloister educated healthcare specialists to diminish its effect on adherence. Besides, the propensity of detailing needle adhere harm was destitute that needs endeavors to progress. Progressing the culture of detailing and making the detailing handle simple is very necessary. In reality, announcing such wounds as early as conceivable will educate others not to commit same issue once more and, for the most part, will empower stakeholders to intercede the issue sometime prior to it re-occur. At long last, as distant as get up and go utilize has cleared out with so numerous bothers, risk decrease is the foremost choice. With this, taking the increased significance of protective barriers so as to decrease the hazard of exposure to HIV, distinctive stakeholders (the healing center hardware supply chain director, the HIV/ Helps clinic, the clinic chief, hardware and supply quality confirmation group, and other authoritative bodies) ought to work together in co-ordination to secure the supply and guarantee the quality of those crucial protective barriers and to advance demand health laborers to continuously wear protective barriers when exposed to HIV hazard components as well as to dispose appropriately once done. At long last, we prescribe future examiners to conduct planned multicenter studies with extra goals (counting indicator investigation) for way better generalization and result. In spite of satisfactory information and favorable state of mind towards PEP for HIV in most of the respondents, this study uncovered that there were delays in starting, low utilization, and fragmented use of the prescribed PEP. So, health care staff need to progress their practice on PEP of HIV through diverse training program related to PEP of HIV.

Keywords: HIV infection, prophylaxis, knowledge, attitude

Procedia PDF Downloads 195
59 A Linguistic Analysis of the Inconsistencies in the Meaning of Some -er Suffix Morphemes

Authors: Amina Abubakar

Abstract:

English like any other language is rich by means of arbitrary, conventional, symbols which lend it to lot of inconsistencies in spelling, phonology, syntax, and morphology. The research examines the irregularities prevalent in the structure and meaning of some ‘er’ lexical items in English and its implication to vocabulary acquisition. It centers its investigation on the derivational suffix ‘er’, which changes the grammatical category of word. English language poses many challenges to Second Language Learners because of its irregularities, exceptions, and rules. One of the meaning of –er derivational suffix is someone or somebody who does something. This rule often confuses the learners when they meet with the exceptions in normal discourse. The need to investigate instances of such inconsistencies in the formation of –er words and the meanings given to such words by the students motivated this study. For this purpose, some senior secondary two (SS2) students in six randomly selected schools in the metropolis were provided a large number of alphabetically selected ‘er’ suffix ending words, The researcher opts for a test technique, which requires them to provide the meaning of the selected words with- er. The marking of the test was scored on the scale of 1-0, where correct formation of –er word and meaning is scored one while wrong formation and meaning is scored zero. The number of wrong and correct formations of –er words meaning were calculated using percentage. The result of this research shows that a large number of students made wrong generalization of the meaning of the selected -er ending words. This shows how enormous the inconsistencies are in English language and how are affect the learning of English. Findings from the study revealed that though students mastered the basic morphological rules but the errors are generally committed on those vocabulary items that are not frequently in use. The study arrives at this conclusion from the survey of their textbook and their spoken activities. Therefore, the researcher recommends that there should be effective reappraisal of language teaching through implementation of the designed curriculum to reflect on modern strategies of teaching language, identification, and incorporation of the exceptions in rigorous communicative activities in language teaching, language course books and tutorials, training and retraining of teachers on the strategies that conform to the new pedagogy.

Keywords: ESL(English as a second language), derivational morpheme, inflectional morpheme, suffixes

Procedia PDF Downloads 377
58 A Semi-Automated GIS-Based Implementation of Slope Angle Design Reconciliation Process at Debswana Jwaneng Mine, Botswana

Authors: K. Mokatse, O. M. Barei, K. Gabanakgosi, P. Matlhabaphiri

Abstract:

The mining of pit slopes is often associated with some level of deviation from design recommendations, and this may translate to associated changes in the stability of the excavated pit slopes. Therefore slope angle design reconciliations are essential for assessing and monitoring compliance of excavated pit slopes to accepted slope designs. These associated changes in slope stability may be reflected by changes in the calculated factors of safety and/or probabilities of failure. Reconciliations of as-mined and slope design profiles are conducted periodically to assess the implications of these deviations on pit slope stability. Currently, the slope design reconciliation process being implemented in Jwaneng Mine involves the measurement of as-mined and design slope angles along vertical sections cut along the established geotechnical design section lines on the GEOVIA GEMS™ software. Bench retentions are calculated as a percentage of the available catchment area, less over-mined and under-mined areas, to that of the designed catchment area. This process has proven to be both tedious and requires a lot of manual effort and time to execute. Consequently, a new semi-automated mine-to-design reconciliation approach that utilizes laser scanning and GIS-based tools is being proposed at Jwaneng Mine. This method involves high-resolution scanning of targeted bench walls, subsequent creation of 3D surfaces from point cloud data and the derivation of slope toe lines and crest lines on the Maptek I-Site Studio software. The toe lines and crest lines are then exported to the ArcGIS software where distance offsets between the design and actual bench toe lines and crest lines are calculated. Retained bench catchment capacity is measured as distances between the toe lines and crest lines on the same bench elevations. The assessment of the performance of the inter-ramp and overall slopes entails the measurement of excavated and design slope angles along vertical sections on the ArcGIS software. Excavated and design toe-to-toe or crest-to-crest slope angles are measured for inter-ramp stack slope reconciliations. Crest-to-toe slope angles are also measured for overall slope angle design reconciliations. The proposed approach allows for a more automated, accurate, quick and easier workflow for carrying out slope angle design reconciliations. This process has proved highly effective and timeous in the assessment of slope performance in Jwaneng Mine. This paper presents a newly proposed process for assessing compliance to slope angle designs for Jwaneng Mine.

Keywords: slope angle designs, slope design recommendations, slope performance, slope stability

Procedia PDF Downloads 237
57 ¹⁸F-FDG PET/CT Impact on Staging of Pancreatic Cancer

Authors: Jiri Kysucan, Dusan Klos, Katherine Vomackova, Pavel Koranda, Martin Lovecek, Cestmir Neoral, Roman Havlik

Abstract:

Aim: The prognosis of patients with pancreatic cancer is poor. The median of survival after establishing diagnosis is 3-11 months without surgical treatment, 13-20 months with surgical treatment depending on the disease stage, 5-year survival is less than 5%. Radical surgical resection remains the only hope of curing the disease. Early diagnosis with valid establishment of tumor resectability is, therefore, the most important aim for patients with pancreatic cancer. The aim of the work is to evaluate the contribution and define the role of 18F-FDG PET/CT in preoperative staging. Material and Methods: In 195 patients (103 males, 92 females, median age 66,7 years, 32-88 years) with a suspect pancreatic lesion, as part of the standard preoperative staging, in addition to standard examination methods (ultrasonography, contrast spiral CT, endoscopic ultrasonography, endoscopic ultrasonographic biopsy), a hybrid 18F-FDG PET/CT was performed. All PET/CT findings were subsequently compared with standard staging (CT, EUS, EUS FNA), with peroperative findings and definitive histology in the operated patients as reference standards. Interpretation defined the extent of the tumor according to TNM classification. Limitations of resectability were local advancement (T4) and presence of distant metastases (M1). Results: PET/CT was performed in a total of 195 patients with a suspect pancreatic lesion. In 153 patients, pancreatic carcinoma was confirmed and of these patients, 72 were not indicated for radical surgical procedure due to local inoperability or generalization of the disease. The sensitivity of PET/CT in detecting the primary lesion was 92.2%, specificity was 90.5%. A false negative finding in 12 patients, a false positive finding was seen in 4 cases, positive predictive value (PPV) 97.2%, negative predictive value (NPV) 76,0%. In evaluating regional lymph nodes, sensitivity was 51.9%, specificity 58.3%, PPV 58,3%, NPV 51.9%. In detecting distant metastases, PET/CT reached a sensitivity of 82.8%, specificity was 97.8%, PPV 96.9%, NPV 87.0%. PET/CT found distant metastases in 12 patients, which were not detected by standard methods. In 15 patients (15.6%) with potentially radically resectable findings, the procedure was contraindicated based on PET/CT findings and the treatment strategy was changed. Conclusion: PET/CT is a highly sensitive and specific method useful in preoperative staging of pancreatic cancer. It improves the selection of patients for radical surgical procedures, who can benefit from it and decreases the number of incorrectly indicated operations.

Keywords: cancer, PET/CT, staging, surgery

Procedia PDF Downloads 247
56 Machine Translation Analysis of Chinese Dish Names

Authors: Xinyu Zhang, Olga Torres-Hostench

Abstract:

This article presents a comparative study evaluating and comparing the quality of machine translation (MT) output of Chinese gastronomy nomenclature. Chinese gastronomic culture is experiencing an increased international acknowledgment nowadays. The nomenclature of Chinese gastronomy not only reflects a specific aspect of culture, but it is related to other areas of society such as philosophy, traditional medicine, etc. Chinese dish names are composed of several types of cultural references, such as ingredients, colors, flavors, culinary techniques, cooking utensils, toponyms, anthroponyms, metaphors, historical tales, among others. These cultural references act as one of the biggest difficulties in translation, in which the use of translation techniques is usually required. Regarding the lack of Chinese food-related translation studies, especially in Chinese-Spanish translation, and the current massive use of MT, the quality of the MT output of Chinese dish names is questioned. Fifty Chinese dish names with different types of cultural components were selected in order to complete this study. First, all of these dish names were translated by three different MT tools (Google Translate, Baidu Translate and Bing Translator). Second, a questionnaire was designed and completed by 12 Chinese online users (Chinese graduates of a Hispanic Philology major) in order to find out user preferences regarding the collected MT output. Finally, human translation techniques were observed and analyzed to identify what translation techniques would be observed more often in the preferred MT proposals. The result reveals that the MT output of the Chinese gastronomy nomenclature is not of high quality. It would be recommended not to trust the MT in occasions like restaurant menus, TV culinary shows, etc. However, the MT output could be used as an aid for tourists to have a general idea of a dish (the main ingredients, for example). Literal translation turned out to be the most observed technique, followed by borrowing, generalization and adaptation, while amplification, particularization and transposition were infrequently observed. Possibly because that the MT engines at present are limited to relate equivalent terms and offer literal translations without taking into account the whole context meaning of the dish name, which is essential to the application of those less observed techniques. This could give insight into the post-editing of the Chinese dish name translation. By observing and analyzing translation techniques in the proposals of the machine translators, the post-editors could better decide which techniques to apply in each case so as to correct mistakes and improve the quality of the translation.

Keywords: Chinese dish names, cultural references, machine translation, translation techniques

Procedia PDF Downloads 137
55 Trends in Preoperative Self-Disclosure of Cannabis Use in Adult and Adolescent Orthopedic Surgical Patients: An Institutional Retrospective Study

Authors: Spencer Liu, William Chan, Marlena Komatz, Tommy Ramos, Mark Trentalange, Faye Rim, Dae Kim, Mary Kelly, Samuel Schuessler, Roberta Stack, Justas Lauzadis, Kathryn DelPizzo, Seth Waldman, Alexandra Sideris

Abstract:

Background & Significance: The increasing prevalence of cannabis use in the United States has important safety considerations in the perioperative setting, as chronic or heavy preoperative cannabis use may increase the risk of intraoperative complications, postoperative nausea and vomiting (PONV), increased postoperative pain levels, and acute side effects associated with cannabis use cessation. In this retrospective chart review study, we sought to determine the prevalence of self-reported cannabis use in the past 5-years at a single institution in New York City. We hypothesized that there is an increasing prevalence of preoperative self-reported cannabis use among adult and adolescent patients undergoing orthopedic surgery. Methods: After IRB approval for this retrospective study, surgical cases performed on patients 12 years of age and older at the hospital’s main campus and two ambulatory surgery centers between January 1st, 2018, and December 31st, 2023, with preoperatively self-disclosed cannabis use entered in the social history intake form were identified using the tool SlicerDicer in Epic. Case and patient characteristics were extracted, and trends in utilization over time were assessed by the Cochran-Armitage trend test. Results: Overall, the prevalence of self-reported cannabis use increased from 6.6% in 2018 to 10.6% in 2023. By age group, the prevalence of self-reported cannabis use among adolescents remained consistently low (2018: 2.6%, 2023: 2.6%) but increased with significant evidence for a linear trend (p < 0.05) within every adult age group. Among adults, patients who were 18-24 years old (2018: 18%, 2023: 20.5%) and 25-34 years old (2018: 15.9%, 2023: 24.2%) had the highest prevalences of disclosure, whereas patients who were 75 years of age or older had the lowest prevalence of disclosure (2018: 1.9%, 2023: 4.6%). Patients who were 25-34 years old had the highest percent difference in disclosure rates of 8.3%, which corresponded to a 52.2% increase from 2018 to 2023. The adult age group with the highest percent change was patients who were 75 years of age or older, with a difference of 2.7%, which corresponded to a 142.1% increase from 2018 to 2023. Conclusions: These trends in preoperative self-reported cannabis use among patients undergoing orthopedic surgery have important implications for perioperative care and clinical outcomes. Efforts are underway to refine and standardize cannabis use data capture at our institution.

Keywords: orthopedic surgery, cannabis, postoperative pain, postoperative nausea

Procedia PDF Downloads 45
54 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System

Authors: Nareshkumar Harale, B. B. Meshram

Abstract:

The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.

Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design

Procedia PDF Downloads 227
53 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 121
52 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.

Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter

Procedia PDF Downloads 330
51 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 490
50 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 65
49 Combining the Production of Radiopharmaceuticals with the Department of Radionuclide Diagnostics

Authors: Umedov Mekhroz, Griaznova Svetlana

Abstract:

In connection with the growth of oncological diseases, the design of centers for diagnostics and the production of radiopharmaceuticals is the most relevant area of healthcare facilities. The design of new nuclear medicine centers should be carried out from the standpoint of solving the following tasks: the availability of medical care, functionality, environmental friendliness, sustainable development, improving the safety of drugs, the use of which requires special care, reducing the rate of environmental pollution, ensuring comfortable conditions for the internal microclimate, adaptability. The purpose of this article is to substantiate architectural and planning solutions, formulate recommendations and principles for the design of nuclear medicine centers and determine the connections between the production and medical functions of a building. The advantages of combining the production of radiopharmaceuticals and the department of medical care: less radiation activity is accumulated, the cost of the final product is lower, and there is no need to hire a transport company with a special license for transportation. A medical imaging department is a structural unit of a medical institution in which diagnostic procedures are carried out in order to gain an idea of the internal structure of various organs of the body for clinical analysis. Depending on the needs of a particular institution, the department may include various rooms that provide medical imaging using radiography, ultrasound diagnostics, and the phenomenon of nuclear magnetic resonance. The production of radiopharmaceuticals is an object intended for the production of a pharmaceutical substance containing a radionuclide and intended for introduction into the human body or laboratory animal for the purpose of diagnosis, evaluation of the effectiveness of treatment, or for biomedical research. The research methodology includes the following subjects: study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research; An integrated approach to the study of existing international experience of PET / CT scan centers and the production of radiopharmaceuticals; Elaboration of graphical analysis and diagrams based on the system analysis of the processed information; Identification of methods and principles of functional zoning of nuclear medicine centers. The result of the research is the identification of the design principles of nuclear medicine centers with the functions of the production of radiopharmaceuticals and the department of medical imaging. This research will be applied to the design and construction of healthcare facilities in the field of nuclear medicine.

Keywords: architectural planning solutions, functional zoning, nuclear medicine, PET/CT scan, production of radiopharmaceuticals, radiotherapy

Procedia PDF Downloads 89
48 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 205
47 Mapping Intertidal Changes Using Polarimetry and Interferometry Techniques

Authors: Khalid Omari, Rene Chenier, Enrique Blondel, Ryan Ahola

Abstract:

Northern Canadian coasts have vulnerable and very dynamic intertidal zones with very high tides occurring in several areas. The impact of climate change presents challenges not only for maintaining this biodiversity but also for navigation safety adaptation due to the high sediment mobility in these coastal areas. Thus, frequent mapping of shorelines and intertidal changes is of high importance. To help in quantifying the changes in these fragile ecosystems, remote sensing provides practical monitoring tools at local and regional scales. Traditional methods based on high-resolution optical sensors are often used to map intertidal areas by benefiting of the spectral response contrast of intertidal classes in visible, near and mid-infrared bands. Tidal areas are highly reflective in visible bands mainly because of the presence of fine sand deposits. However, getting a cloud-free optical data that coincide with low tides in intertidal zones in northern regions is very difficult. Alternatively, the all-weather capability and daylight-independence of the microwave remote sensing using synthetic aperture radar (SAR) can offer valuable geophysical parameters with a high frequency revisit over intertidal zones. Multi-polarization SAR parameters have been used successfully in mapping intertidal zones using incoherence target decomposition. Moreover, the crustal displacements caused by ocean tide loading may reach several centimeters that can be detected and quantified across differential interferometric synthetic aperture radar (DInSAR). Soil moisture change has a significant impact on both the coherence and the backscatter. For instance, increases in the backscatter intensity associated with low coherence is an indicator for abrupt surface changes. In this research, we present primary results obtained following our investigation of the potential of the fully polarimetric Radarsat-2 data for mapping an inter-tidal zone located on Tasiujaq on the south-west shore of Ungava Bay, Quebec. Using the repeat pass cycle of Radarsat-2, multiple seasonal fine quad (FQ14W) images are acquired over the site between 2016 and 2018. Only 8 images corresponding to low tide conditions are selected and used to build an interferometric stack of data. The observed displacements along the line of sight generated using HH and VV polarization are compared with the changes noticed using the Freeman Durden polarimetric decomposition and Touzi degree of polarization extrema. Results show the consistency of both approaches in their ability to monitor the changes in intertidal zones.

Keywords: SAR, degree of polarization, DInSAR, Freeman-Durden, polarimetry, Radarsat-2

Procedia PDF Downloads 137
46 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 161
45 Process Safety Management Digitalization via SHEQTool based on Occupational Safety and Health Administration and Center for Chemical Process Safety, a Case Study in Petrochemical Companies

Authors: Saeed Nazari, Masoom Nazari, Ali Hejazi, Siamak Sanoobari Ghazi Jahani, Mohammad Dehghani, Javad Vakili

Abstract:

More than ever, digitization is an imperative for businesses to keep their competitive advantages, foster innovation and reduce paperwork. To design and successfully implement digital transformation initiatives within process safety management system, employees need to be equipped with the right tool, frameworks, and best practices. we developed a unique full stack application so-called SHEQTool which is entirely dynamic based on our extensive expertise, experience, and client feedback to help business processes particularly operations safety management. We use our best knowledge and scientific methodologies published by CCPS and OSHA Guidelines to streamline operations and integrated them into task management within Petrochemical Companies. We digitalize their main process safety management system elements and their sub elements such as hazard identification and risk management, training and communication, inspection and audit, critical changes management, contractor management, permit to work, pre-start-up safety review, incident reporting and investigation, emergency response plan, personal protective equipment, occupational health, and action management in a fully customizable manner with no programming needs for users. We review the feedback from main actors within petrochemical plant which highlights improving their business performance and productivity as well as keep tracking their functions’ key performance indicators (KPIs) because it; 1) saves time, resources, and costs of all paperwork on our businesses (by Digitalization); 2) reduces errors and improve performance within management system by covering most of daily software needs of the organization and reduce complexity and associated costs of numerous tools and their required training (One Tool Approach); 3) focuses on management systems and integrate functions and put them into traceable task management (RASCI and Flowcharting); 4) helps the entire enterprise be resilient to any change of your processes, technologies, assets with minimum costs (through Organizational Resilience); 5) reduces significantly incidents and errors via world class safety management programs and elements (by Simplification); 6) gives the companies a systematic, traceable, risk based, process based, and science based integrated management system (via proper Methodologies); 7) helps business processes complies with ISO 9001, ISO 14001, ISO 45001, ISO 31000, best practices as well as legal regulations by PDCA approach (Compliance).

Keywords: process, safety, digitalization, management, risk, incident, SHEQTool, OSHA, CCPS

Procedia PDF Downloads 68
44 Corporate Female Entrepreneurship, Moving Boundaries

Authors: Morena Paulisic, Marli Gonan Bozac

Abstract:

Business organization and management in theory are typically presented as gender- neutral. Although in practice female contribution to corporation is not questionable, gender diversity in top management of corporation is and that especially in emerging countries like Croatia. This paper brings insights into obstacles and problems which should be overcome. Furthermore, gives an introspective view on the most important promotion and motivation factors of powerful female CEOs in Croatia. The goal was to clarify perception and performance of female CEOs that contributed to their success and to determine mutual characteristics of women in corporate entrepreneurship regarding the motivation. For our study we used survey instrument that was developed for this research. The research methods used were: table research, field research, generalization method, comparative method, and statistical method (descriptive statistics and Pearson’s Chi-square test). Some result showed us that today even more women in corporations are not likely to accept more engagement at work if it harms their families (2003 – 31.9% in 2013 – 33.8%) although their main motivating factor is still interested job (2003 – 95.8%; in 2013-100%). It is also significant that 78.8 % of Croatian top managers (2013) think that women managers in Croatia are insufficiently spoken and written about, and that the reasons for this are that: (1) the society underestimates their ability (37.9%); (2) women underestimate themselves (22.4%); (3) the society still mainly focuses on male managers (20.7%) and (4) women managers avoid interviews and appearing on front pages (19%). The environment still “blocks” the natural course of advancement of women managers in organisations (entrepreneurship in general) and the main obstacle is that women must always or almost always be more capable than men in order to succeed (96.6%). Based on survey results on longitudinal research conducted in 2003 (return rate 30,8%) and 2013 (return rate 29,2%) in Croatia we expand understanding of determination indicators of corporate female entrepreneurship. Theoretically in practice gender structure at the management level (executive management, management board and supervisory board) throw years (2011- 2014) have positive score but still women remain significantly underrepresented at those positions. Findings from different sources have shown that diversity at the top of corporations’ correlates with better performance. In this paper, we have contributed to research on gender in corporate entrepreneurship by offering experiences from successful female CEOs and explanation why in social responsible society women with their characteristics can support needed changes and construct different way forward for corporations. Based on research result we can conclude that in future underrepresentation of female in corporate entrepreneurship should be overcome.

Keywords: Croatia, female entrepreneurship, glass ceiling, motivation

Procedia PDF Downloads 330
43 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 74
42 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 43