Search results for: HEK293 cells
2909 Malignant Ovarian Cancer Ascites Confers Platinum Chemoresistance to Ovarian Cancer Cells: A Combination Treatment with Crizotinib and 2 Hydroxyestradiol Restore Platinum Sensitivity
Authors: Yifat Koren Carmi, Abed Agbarya, Hazem Khamaisi, Raymond Farah, Yelena Shechtman, Roman Korobochka, Jacob Gopas, Jamal Mahajna
Abstract:
Ovarian cancer (OC), the second most common form of gynecological malignancy, has a poor prognosis and is frequently identified in its late stages. The recommended treatment for OC typically includes a platinum-based chemotherapy, like carboplatin. Nonetheless, OC treatment has proven challenging due to toxicity and development of acquired resistance to therapy. Chemoresistance is a significant obstacle to a long-lasting response in OC patients, believed to arise from alterations within the cancer cells as well as within the tumor microenvironments (TME). Malignant ascites is a presenting feature in more than one-third of OC patients. It serves as a reservoir for a complex mixture of soluble factors, metabolites, and cellular components, providing a pro-inflammatory and tumor-promoting microenvironment for the OC cells. Malignant ascites is also associated with metastasis and chemoresistance. In an attempt to elucidate the role of TME in chemoresistance of OC, we monitored the ability of soluble factors derived from ascites fluids to affect platinum sensitivity of OC cells. This research, compared ascites fluids from non-malignant cirrhotic patients to those from OC patients in terms of their ability to alter the platinum sensitivity of OC cells. Our findings indicated that exposure to OC ascites induces platinum chemoresistance on OC cells in 11 out of 13 cases (85%). In contrast, 75% of cirrhosis ascites (3 out of 4) failed to confer platinum chemoresistance to OC cells. Cytokine array analysis revealed that IL-6, and to a lesser extent HGF were enriched in OC ascites, whereas IL-22 was enriched in cirrhosis ascites. Pharmaceutical inhibitors that target the IL-6/JAK signaling pathway were mildly effective in overcoming the platinum chemoresistance induced by malignant ascites. In contrast, Crizotinib an HGF/c-MET inhibitor, and 2-hydroxyestradiol (2HE2) were effective in restoring platinum chemoresistance to OC. Our findings demonstrate the importance of OC ascites in supporting platinum chemoresistance as well as the potential of a combination therapy with Crizotinib and the estradiol metabolite 2HE2 to regain OC cells chemosensitivity.Keywords: ovarian cancer, platinum chemoresistance, malignant ascites, tumor microenvironment, IL-6, 2-hydroxyestradiol, HGF, crizotinib
Procedia PDF Downloads 692908 Mutational and Evolutionary Analysis of Interleukin-2 Gene in Four Pakistani Goat Breeds
Authors: Tanveer Hussain, Misbah Hussain, Masroor Ellahi Babar, Muhammad Traiq Pervez, Fiaz Hussain, Sana Zahoor, Rashid Saif
Abstract:
Interleukin 2 (IL-2) is a cytokine which is produced by activated T cells, play important role in immune response against antigen. It act in both autocrine and paracrine manner. It can stimulate B cells and various other phagocytic cells like monocytes, lymphokine-activated killer cells and natural killer cells. Acting in autocrine fashion, IL-2 protein plays a crucial role in proliferation of T cells. IL-2 triggers the release of pro and anti- inflammatory cytokines by activating several pathways. In present study, exon 1 of IL-2 gene of four local Pakistani breeds (Dera Din Panah, Beetal, Nachi and Kamori) from two provinces was amplified by using reported Ovine IL-2 primers, yielding PCR product of 501 bp. The sequencing of all samples was done to identify the polymorphisms in amplified region of IL-2 gene. Analysis of sequencing data resulted in identification of one novel nucleotide substitution (T→A) in amplified non-coding region of IL-2 gene. Comparison of IL-2 gene sequence of all four breeds with other goat breeds showed high similarity in sequence. While phylogenetic analysis of our local breeds with other mammals showed that IL-2 is a variable gene which has undergone many substitutions. This high substitution rate can be due to the decreased or increased changed selective pressure. These rapid changes can also lead to the change in function of immune system. This pioneering study of Pakistani goat breeds urge for further studies on immune system of each targeted breed for fully understanding the functional role of IL-2 in goat immunity.Keywords: interleukin 2, mutational analysis, phylogeny, goat breeds, Pakistan
Procedia PDF Downloads 6102907 In Vitro Effect of Cobalt(II) Chloride (CoCl₂)-Induced Hypoxia on Cytokine Production by Human Breast Cancer Cells
Authors: Radoslav Stojchevski, Leonid Poretsky, Dimiter Avtanski
Abstract:
Proinflammatory cytokines play an important role in cancer initiation and progression by mediating the intracellular communication between the cancer cells and tumor microenvironment. Increased tumor growth causing reduced oxygen concentration and oxygen pressure commonly result in hypoxia. Mechanistically, hypoxia is characterized by stabilization and nuclear translocation of hypoxia-inducible factor 1 alpha (HIF-1α) followed by propagation of molecular pathway cascade involving multiple downstream targets. Cobalt(II) chloride (CoCl₂) is commonly used to mimic hypoxia in experimental conditions since it directly induces the expression of HIF-1α. The aim of the present study was to investigate the in vitro effects and the molecular mechanisms by which hypoxia regulates the cytokine secretory profile of breast cancer cells. As a model for this study, we used several breast cancer cell lines bearing various molecular characteristics and metastatic potential (MDA-MB-231 (clauding low, ER-/PR-/HER²⁻), MCF-7 (luminal A, ER⁺/PR⁺/HER²⁻), and BT-474 (liminal B, ER⁺/PR⁺/HER²⁺)). We demonstrated that breast cancer cells secrete numerous cytokines and cytokine ligands, including interleukins, chemokines, and growth factors. Treatment with CoCl₂significantly modulated the breast cancer cells' cytokine expression in a concentration- and time-dependent manner. These effects were mediated via activation of several signaling pathways (JNK/SAPK1, NF-κB, STAT5A/B, and Erk/MAPK1/2). Taken together, the present data define some of the molecular mechanisms by which hypoxia affects the breast cancer cells' cytokine secretory profile, thus contributing to the development of novel therapies for metastatic breast cancer.Keywords: breast cancer, cytokines, cobalt(II) chloride (CoCl₂), hypoxia
Procedia PDF Downloads 2112906 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation
Authors: Chih-Wei Chao, Jiashing Yu
Abstract:
Microfluidic devices have recently emerged as promising tools for the fabrication of scaffolds for cell culture. To mimic the natural circumstances of organism for cells to grow, here we present three-dimensional (3D) scaffolds fabricated by microfluidics for cells cultivation. This work aims at investigating the behavior in terms of the viability and the proliferation capability of rat H9c2 cardiomyocytes in the gelatin 3D scaffolds by fluorescent images.Keywords: microfluidic device, H9c2, tissue engineering, 3D scaffolds
Procedia PDF Downloads 4222905 Steps of the Pancreatic Differentiation in the Grass Snake (Natrix natrix) Embryos
Authors: Magdalena Kowalska, Weronika Rupik
Abstract:
The pancreas is an important organ present in all vertebrate species. It contains two different tissues, exocrine and endocrine, that act as two glands in one. The development and differentiation of the pancreas in reptiles is poorly known in comparison to other vertebrates. Therefore, the aim of this study was to investigate the particular steps concerning the differentiation of the pancreas in the grass snake (Natrix natrix) embryos. For this, histological methods (including hematoxylin and eosin, and Heidenhain's AZAN staining), transmission electron microscopy and three-dimensional (3D) reconstructions from serial paraffin sections were used. The results of this study indicated that the first step of pancreas development in Natrix was the connection of the two pancreatic buds: dorsal and ventral one. Then, duct walls in both buds started to be remodeled from the multilayered to single-layered epithelium. This remodeling started in the dorsal bud and was simultaneously with the differentiation of the duct lumens which occurred by the cavition. During this process, the cells that had no contact with the mesenchyme underwent cell death named anoikis. These findings indicated that the walls of ducts in the embryonic pancreas of the grass snake were initially formed by the abundant principal and single endocrine cells. Later the basal and goblet cells differentiated. Among the endocrine cells, as the first the B and A cells differentiated, then the D and PP cells. The next step of the pancreatic development was the withdrawing of the endocrine cells from the duct walls to form the pancreatic islets. The endocrine cells and islets were found only in the dorsal part of the pancreas in Natrix embryos what is different than in other vertebrate species. The islets were formed mainly by the A cells. Simultaneously, with the differentiation of the endocrine pancreas, the acinar tissue started to differentiate. The source of the acinar cells were pancreatic ducts similar as in other vertebrates. The acini formation began at the proximal part of the pancreas and went towards the caudal direction. Differentiating pancreatic ducts developed into the branched system that can be divided into extralobular, intralobular, and intercalated ducts, similarly as in other vertebrate species. However, the pattern of branching was different. In conclusions, particular steps of the pancreas differentiation in the grass snake were different than in other vertebrates. It can be supposed that these differences are related to the specific topography of the snake’s internal organs and their taxonomy position. All specimens used in the study were captured according to the Polish regulations concerning the protection of wild species. Permission was granted by the Local Ethics Commission in Katowice (41/2010; 87/2015) and the Regional Directorate for Environmental Protection in Katowice (WPN.6401.257.2015.DC).Keywords: embryogenesis, organogenesis, pancreas, Squamata
Procedia PDF Downloads 1712904 Smart Coating for Enhanced Corneal Healing via Delivering Progranulin
Authors: Dan Yan, Yunuo Zhang, Yuhan Huang, Weijie Ouyang
Abstract:
The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects by modulating the Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.Keywords: cornea, wound healing, progranulin, corneal epithelial cells, trigeminal ganglion cells
Procedia PDF Downloads 572903 Comet Assay: A Promising Tool for the Risk Assessment and Clinical Management of Head and Neck Tumors
Authors: Sarim Ahmad
Abstract:
The Single Cell Gel Electrophoresis Assay (SCGE, known as comet assay) is a potential, uncomplicated, sensitive and state-of-the-art technique for quantitating DNA damage at individual cell level and repair from in vivo and in vitro samples of eukaryotic cells and some prokaryotic cells, being popular in its widespread use in various areas including human biomonitoring, genotoxicology, ecological monitoring and as a tool for research into DNA damage or repair in different cell types in response to a range of DNA damaging agents, cancer risk and therapy. The method involves the encapsulation of cells in a low-melting-point agarose suspension, lysis of the cells in neutral or alkaline (pH > 13) conditions, and electrophoresis of the suspended lysed cells, resulting in structures resembling comets as observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend towards the anode. This is followed by visual analysis with staining of DNA and calculating fluorescence to determine the extent of DNA damage. This can be performed by manual scoring or automatically by imaging software. The assay can, therefore, predict an individual’s tumor sensitivity to radiation and various chemotherapeutic drugs and further assess the oxidative stress within tumors and to detect the extent of DNA damage in various cancerous and precancerous lesions of oral cavity.Keywords: comet assay, single cell gel electrophoresis, DNA damage, early detection test
Procedia PDF Downloads 2922902 Mesenchymal Stem Cells on Fibrin Assemblies with Growth Factors
Authors: Elena Filova, Ondrej Kaplan, Marie Markova, Helena Dragounova, Roman Matejka, Eduard Brynda, Lucie Bacakova
Abstract:
Decellularized vessels have been evaluated as small-diameter vascular prostheses. Reseeding autologous cells onto decellularized tissue prior implantation should prolong prostheses function and make them living tissues. Suitable cell types for reseeding are both endothelial cells and bone marrow-derived stem cells, with a capacity for differentiation into smooth muscle cells upon mechanical loading. Endothelial cells assure antithrombogenicity of the vessels and MSCs produce growth factors and, after their differentiation into smooth muscle cells, they are contractile and produce extracellular matrix proteins as well. Fibrin is a natural scaffold, which allows direct cell adhesion based on integrin receptors. It can be prepared autologous. Fibrin can be modified with bound growth factors, such as basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). These modifications in turn make the scaffold more attractive for cells ingrowth into the biological scaffold. The aim of the study was to prepare thin surface-attached fibrin assemblies with bound FGF-2 and VEGF, and to evaluate growth and differentiation of bone marrow-derived mesenchymal stem cells on the fibrin (Fb) assemblies. Following thin surface-attached fibrin assemblies were prepared: Fb, Fb+VEGF, Fb+FGF2, Fb+heparin, Fb+heparin+VEGF, Fb+heparin+FGF2, Fb+heparin+FGF2+VEGF. Cell culture poly-styrene and glass coverslips were used as controls. Human MSCs (passage 3) were seeded at the density of 8800 cells/1.5 mL alpha-MEM medium with 2.5% FS and 200 U/mL aprotinin per well of a 24-well cell culture. The cells have been cultured on the samples for 6 days. Cell densities on day 1, 3, and 6 were analyzed after staining with LIVE/DEAD cytotoxicity/viability assay kit. The differentiation of MSCs is being analyzed using qPCR. On day 1, the highest density of MSCs was observed on Fb+VEGF and Fb+FGF2. On days 3 and 6, there were similar densities on all samples. On day 1, cell morphology was polygonal and spread on all sample. On day 3 and 6, MSCs growing on Fb assemblies with FGF2 became apparently elongated. The evaluation of expression of genes for von Willebrand factor and CD31 (endothelial cells), for alpha-actin (smooth muscle cells), and for alkaline phosphatase (osteoblasts) is in progress. We prepared fibrin assemblies with bound VEGF and FGF-2 that supported attachment and growth of mesenchymal stem cells. The layers are promising for improving the ingrowth of MSCs into the biological scaffold. Supported by the Technology Agency of the Czech Republic TA04011345, and Ministry of Health NT11270-4/2010, and BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund for their financial supports.Keywords: fibrin assemblies, FGF-2, mesenchymal stem cells, VEGF
Procedia PDF Downloads 3252901 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells
Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari
Abstract:
Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration
Procedia PDF Downloads 2022900 Multi-Channel Charge-Coupled Device Sensors Real-Time Cell Growth Monitor System
Authors: Han-Wei Shih, Yao-Nan Wang, Ko-Tung Chang, Lung-Ming Fu
Abstract:
A multi-channel cell growth real-time monitor and evaluation system using charge-coupled device (CCD) sensors with 40X lens integrating a NI LabVIEW image processing program is proposed and demonstrated. The LED light source control of monitor system is utilizing 8051 microprocessor integrated with NI LabVIEW software. In this study, the same concentration RAW264.7 cells growth rate and morphology in four different culture conditions (DMEM, LPS, G1, G2) were demonstrated. The real-time cells growth image was captured and analyzed by NI Vision Assistant every 10 minutes in the incubator. The image binarization technique was applied for calculating cell doubling time and cell division index. The cells doubling time and cells division index of four group with DMEM, LPS, LPS+G1, LPS+G2 are 12.3 hr,10.8 hr,14.0 hr,15.2 hr and 74.20%, 78.63%, 69.53%, 66.49%. The image magnification of multi-channel CCDs cell real-time monitoring system is about 100X~200X which compares with the traditional microscope.Keywords: charge-coupled device (CCD), RAW264.7, doubling time, division index
Procedia PDF Downloads 3582899 Influence of La on Increasing the ORR Activity of LaNi Supported with N and S Co-doped Carbon Black Electrocatalyst for Fuel Cells and Batteries
Authors: Maryam Kiani
Abstract:
Non-precious electrocatalysts play a crucial role in the oxygen reduction reaction (ORR) for regenerative fuel cells and rechargeable metal-air batteries. To enhance ORR activity, La (a less active element) is added to modify the activity of Ni. This addition increases the surface contents of Ni2+, N, and S species in LaNi/N-S-C, while still maintaining a substantial specific surface area and hierarchical porosity. Therefore, the additional La is essential for the successful ORR process.In addition, the presence of extra La in the LaNi/N-S-C electrocatalyst enhances the efficiency of charge transfer and improves the surface acid-base characteristics, facilitating the adsorption of oxygen molecules during the ORR process. As a result, this superior and desirable electrocatalyst exhibits significantly enhanced ORR bifunctional activity. In fact, its ORR activity is comparable to that of the 20 wt% Pt/C.Keywords: fuel cells, batteries, dual-doped carbon black, ORR
Procedia PDF Downloads 1032898 Brain Atrophy in Alzheimer's Patients
Authors: Tansa Nisan Gunerhan
Abstract:
Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality.Keywords: Alzheimer, amyloid-beta, brain atrophy, neuron, shrinkage
Procedia PDF Downloads 952897 Analyses of Defects in Flexible Silicon Photovoltaic Modules via Thermal Imaging and Electroluminescence
Authors: S. Maleczek, K. Drabczyk, L. Bogdan, A. Iwan
Abstract:
It is known that for industrial applications using solar panel constructed from silicon solar cells require high-efficiency performance. One of the main problems in solar panels is different mechanical and structural defects, causing the decrease of generated power. To analyse defects in solar cells, various techniques are used. However, the thermal imaging is fast and simple method for locating defects. The main goal of this work was to analyze defects in constructed flexible silicon photovoltaic modules via thermal imaging and electroluminescence method. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. Thermal behavior was observed using thermographic camera (VIGOcam v50, VIGO System S.A, Poland) using a DC conventional source. Electroluminescence was observed by Steinbeis Center Photovoltaics (Stuttgart, Germany) equipped with a camera, in which there is a Si-CCD, 16 Mpix detector Kodak KAF-16803type. The camera has a typical spectral response in the range 350 - 1100 nm with a maximum QE of 60 % at 550 nm. In our work commercial silicon solar cells with the size 156 × 156 mm were cut for nine parts (called single solar cells) and used to create photovoltaic modules with the size of 160 × 70 cm (containing about 80 single solar cells). Flexible silicon photovoltaic modules on polyamides or polyester fabric were constructed and investigated taking into consideration anomalies on the surface of modules. Thermal imaging provided evidence of visible voltage-activated conduction. In electro-luminescence images, two regions are noticeable: darker, where solar cell is inactive and brighter corresponding with correctly working photovoltaic cells. The electroluminescence method is non-destructive and gives greater resolution of images thereby allowing a more precise evaluation of microcracks of solar cell after lamination process. Our study showed good correlations between defects observed by thermal imaging and electroluminescence. Finally, we can conclude that the thermographic examination of large scale photovoltaic modules allows us the fast, simple and inexpensive localization of defects at the single solar cells and modules. Moreover, thermographic camera was also useful to detection electrical interconnection between single solar cells.Keywords: electro-luminescence, flexible devices, silicon solar cells, thermal imaging
Procedia PDF Downloads 3162896 Implementation of Tissue Engineering Technique to Nursing of Unhealed Diabetic Foot Lesion
Authors: Basuki Supartono
Abstract:
Introduction: Diabetic wound risks limb amputation, and the healing remains challenging. Chronic Hyperglycemia caused the insufficient inflammatory response and impaired ability of the cells to regenerate. Tissue Engineering Technique is mandatory. Methods: Tissue engineering (TE)-based therapy Utilizing mononuclear cells, plasma rich platelets, and collagen applied on the damaged tissue Results: TE technique resulting in acceptable outcomes. The wound healed completely in 2 months. No adverse effects. No allergic reaction. No morbidity and mortality Discussion: TE-based therapy utilizing mononuclear cells, plasma rich platelets, and collagen are safe and comfortable to fix damaged tissues. These components stop the chronic inflammatory process and increase cells' ability for regeneration and restoration of damaged tissues. Both of these allow the wound to regenerate and heal. Conclusion: TE-based therapy is safe and effectively treats unhealed diabetic lesion.Keywords: diabetic foot lesion, tissue engineering technique, wound healing, stemcells
Procedia PDF Downloads 792895 Evaluation of Tumor Microenvironment Using Molecular Imaging
Authors: Fakhrosadat Sajjadian, Ramin Ghasemi Shayan
Abstract:
The tumor microenvironment plays an fundamental part in tumor start, movement, metastasis, and treatment resistance. It varies from ordinary tissue in terms of its extracellular network, vascular and lymphatic arrange, as well as physiological conditions. The clinical application of atomic cancer imaging is regularly prevented by the tall commercialization costs of focused on imaging operators as well as the constrained clinical applications and little showcase measure of a few operators. . Since numerous cancer types share comparable characteristics of the tumor microenvironment, the capacity to target these biomarkers has the potential to supply clinically translatable atomic imaging advances for numerous types encompassing cancer and broad clinical applications. Noteworthy advance has been made in focusing on the tumor microenvironment for atomic cancer imaging. In this survey, we summarize the standards and methodologies of later progresses in atomic imaging of the tumor microenvironment, utilizing distinctive imaging modalities for early discovery and conclusion of cancer. To conclude, The tumor microenvironment (TME) encompassing tumor cells could be a profoundly energetic and heterogeneous composition of safe cells, fibroblasts, forerunner cells, endothelial cells, flagging atoms and extracellular network (ECM) components.Keywords: molecular, imaging, TME, medicine
Procedia PDF Downloads 452894 HIV-1 Nef Mediates Host Invasion by Differential Expression of Alpha-Enolase
Authors: Reshu Saxena, R. K. Tripathi
Abstract:
HIV-1 transmission and spread involves significant host-virus interaction. Potential targets for prevention of HIV-1 lies at the site of mucosal barriers. Thus a better understanding of how HIV-1 infects target cells at such sites and lead their invasion is required, with prime focus on the host determinants regulating HIV-1 spread. HIV-1 Nef is important for viral infectivity and pathogenicity. It promotes HIV-1 replication, facilitating immune evasion by interacting with various host factors and altering cellular pathways via multiple protein-protein interactions. In this study nef was sequenced from HIV-1 patients, and showed specific mutations revealing sequence variability in nef. To explore the difference in Nef functionality based on sequence variability we have studied the effects of HIV-1 Nef in human SupT1 T cell line and (THP-1) monocyte-macrophage cell lines through proteomics approach. 2D-Gel Electrophoresis in control and Nef-transfected SupT1 cells demonstrated several differentially expressed proteins with significant modulation of alpha-enolase. Through further studies, effects of Nef on alpha-enolase regulation were found to be cell lineage-specific, being stimulatory in macrophages/monocytes, inhibitory in T cells and without effect in HEK-293 cells. Cell migration and invasion studies were employed to determine biological function affected by Nef mediated regulation of alpha-enolase. Cell invasion was enhanced in THP-1 cells but was inhibited in SupT1 cells by wildtype nef. In addition, the modulation of enolase and cell invasion remained unaffected by a unique nef variant. These results indicated that regulation of alpha-enolase expression and invasive property of host cells by Nef is sequence specific, suggesting involvement of a particular motif of Nef. To precisely determine this site, we designed a heptapeptide including the suggested alpha-enolase regulating sequence of nef and a nef mutant with deletion of this site. Macrophages/monocytes being the major cells affected by HIV-1 at mucosal barriers, were particularly investigated by the nef mutant and peptide. Both the nef mutant and heptapeptide led to inhibition of enhanced enolase expression and increased invasiveness in THP-1 cells. Together, these findings suggest a possible mechanism of host invasion by HIV-1 through Nef mediated regulation of alpha-enolase and identifies a potential therapeutic target for HIV-1 entry at mucosal barriers.Keywords: HIV-1 Nef, nef variants, host-virus interaction, tissue invasion
Procedia PDF Downloads 4112893 Shikonin Reduces Endometriosis by Inhibiting RANTES Secretion and Mononuclear Macrophage Chemotaxis
Authors: Dong-ping Yuan, Lin Gu, Jun Long, Jie Chen, Ni Jie, Ying-Li Shi
Abstract:
Endometriosis is a common disease in women of reproductive age, whose classic characteristic is mononuclear cell infiltration into lesions. Shikonin is an anti-inflammatory phytocompound from Lithospermum erythrorhizon, whose potential therapeutic effects for the endometriosis remain unclear. The working hypothesis was that shikonin can inhibit the development of endometriosis by the inhibition of chemotactic effect. Shikonin significantly inhibited the growth of human endometrial tissue implanted into mice (P<0.05). No observable adverse effects were found. The mouse regulated upon activation normal T-cell expressed and secreted (mRANTES) level in peritoneal fluid of animal endometriosis model was higher than that in normal SCID mice (P<0.05), and decreased dramatically after shikonin treatment in a dose-dependent manner (P<0.05). Peritoneal fluid from NOD/SCID mice treated with shikonin inhibited monocytes chemotaxis, which could be abolished by mRANTES antibody. In vitro, shikonin significantly inhibited RANTES expression of U937 cells cultured alone or co-cultured with human methothelail cells and endometrial stromal cells, and inhibited RANTES-induced chemotaxis of U937 cells (P<0.05). The present results suggest that shikonin can inhibit the development of endometriosis by mechanisms that at least include the inhibition of RANTES expression and decreased migration of mononuclear cells to lesions. Shikonin may be a useful and safe new approach for treating endometriosis.Keywords: endometriosis, shikonin, RANTES chemotaxis
Procedia PDF Downloads 3952892 The Functionality of Ovarian Follicle on Steroid Hormone Secretion under Heat Stress
Authors: Petnamnueng Dettipponpong, Shuen E. Chen
Abstract:
Heat stress is known to have negative effects on reproductive functions, such as follicular development and ovulation. This study aimed to investigate the specific effects of heat stress on steroid hormone secretion of ovarian follicle cells, particularly in relation to the expression of Apolipoprotein B (ApoB) and microsomal triglyceride transfer protein (MTP). The aim of the study was to understand the impact of heat stress on steroid hormone secretion in ovarian follicle cells and to explore the role of ApoB and MTP in this process. Primary granulosa and theca cells were collected from follicles and cultured under heat stress conditions (42 °C) for various time periods. Controls were maintained under normal conditions (37.5 °C ). The culture medium was collected at different time points to measure levels of progesterone and estradiol using ELISA kits. ApoB and MTP expression levels were analyzed using homemade antibodies and western blot. Data were assessed by a one-way ANOVA comparison test with Duncan’s new multiple-range test. Results were expressed as mean±S.E. Difference was considered significant at P<0.05. The results showed that heat stress significantly increased progesterone secretion in granulosa cells, with the peak observed after 13 hours of recovery under thermoneutral conditions. Estradiol secretion by theca cells was not affected. Heat stress also had a significant negative effect on granulosa cell viability. Additionally, the expression of ApoB and MTP was found to be differentially regulated by heat stress. ApoB expression in theca cells was transiently promoted, while ApoB expression in granulosa cells was consistently suppressed. MTP expression increased after 5 hours of recovery in both cell types. These findings suggest a mechanism by which chicken follicle cells export cellular lipids as very low-density lipoprotein (VLDL) in response to thermal stress. These contribute to our understanding of the role of ApoB and MTP steroidogenesis and lipid metabolism under heat stress conditions. The study involved the collection of primary granulosa and theca cells, culture under different temperature conditions, and analysis of the culture medium for hormone levels using ELISA kits. ApoB and MTP expression levels were assessed using homemade antibodies and western blot. This study aimed to address the effects of heat stress on steroid hormone secretion in ovarian follicle cells, as well as the role of ApoB and MTP in this process. The study demonstrates that heat stress stimulates steroidogenesis in granulosa cells, affecting progesterone secretion. ApoB and MTP expression were found to be differentially regulated by heat stress, indicating a potential mechanism for the export of cellular lipids in response to thermal stress.Keywords: heat stress, granulosa cells, theca cells, steroidogenesis, chicken, apolipoprotein B, microsomal triglyceride transfer protein
Procedia PDF Downloads 752891 A Natural Killer T Cell Subset That Protects against Airway Hyperreactivity
Authors: Ya-Ting Chuang, Krystle Leung, Ya-Jen Chang, Rosemarie H. DeKruyff, Paul B. Savage, Richard Cruse, Christophe Benoit, Dirk Elewaut, Nicole Baumgarth, Dale T. Umetsu
Abstract:
We examined characteristics of a Natural Killer T (NKT) cell subpopulation that developed during influenza infection in neonatal mice, and that suppressed the subsequent development of allergic asthma in a mouse model. This NKT cell subset expressed CD38 but not CD4, produced IFN-γ, but not IL-17, IL-4 or IL-13, and inhibited the development of airway hyperreactivity (AHR) through contact-dependent suppressive activity against helper CD4 T cells. The NKT subset expanded in the lungs of neonatal mice after infection with influenza, but also after treatment of neonatal mice with a Th1-biasing α-GalCer glycolipid analogue, Nu-α-GalCer. These results suggest that early/neonatal exposure to infection or to antigenic challenge can affect subsequent lung immunity by altering the profile of cells residing in the lung and that some subsets of NKT cells can have direct inhibitory activity against CD4+ T cells in allergic asthma. Importantly, our results also suggest a potential therapy for young children that might provide protection against the development of asthma.Keywords: NKT subset, asthma, airway hyperreactivity, hygiene hypothesis, influenza
Procedia PDF Downloads 2402890 Synthesis and Cytotoxic Activity of New Quinazolinone-Based Compounds against Human Breast Cancer Cell Line MCF-7
Authors: Maryam Zahedifard, Fadhil Lafta Faraj, Maryam Hajrezaie, Nazia Abdul Majid, Mahmood Ameen Abdulla, Hapipah Mohd Ali
Abstract:
In the current study, we prepared two new quinazoline schiff bases through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The chemical structures of both newly synthesized compounds (1 and 2) were confirmed by FT-IR and X-ray crystallography studies. The cytotoxic effect of compounds was investigated against MCF-7 human breast cancer cells. MTT results showed that (1) and (2) decreased the viability of MCF-7 cells in a time-dependent manner, exhibiting an IC50 value of 3.23 ± 0.28 µg/mL and 3.41 ± 0.34 µg/mL, respectively, after a 72-hours treatment period. In contrast, they did not show significant anti-proliferative effect towards MCF-10A normal breast cells and WRL-68 normal liver cells. We found a perturbation in mitochondrial membrane potential and increased cytochrome c release from the mitochondria to the cytosol, suggesting an activation of apoptosis by compounds, which was confirmed by activation of the initiator caspase-9 and the executioner caspases-3/7. (1) was also able to trigger extrinsic pathway via activation of caspase-8 and inhibition of NF-κB translocation. The acute toxicity test showed no toxicity effect of the compounds in rats. Our results showed that the selected synthesized compounds are highly potent to induce apoptosis in MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway.Keywords: Quinazoline Schiff base, apoptosis, MCF-7 human breast cancer cell line, caspase, NF-κB translocation
Procedia PDF Downloads 4922889 Expression of Interferon-Lambda Receptor-(IFN-λRα) in Mononuclear Phagocyte Cells (MPCs) Is Influenced by the Levels of Newly Discovered Type III IFN-λ4 in Vitro
Authors: Hashaam Akhtar
Abstract:
IFNλR1 and IL10R2 collectively construct a heterodimer, which is an acknowledged functional receptor for all type III interferons (IFNs). Expression of IFNλR1 is highly tissue specific, which can help in making type III IFNs a drug of choice as comparable to its analogue, type I IFNs, for treating hepatitis C in the near future. Although, expression of IFNλR1 also varies with the concentration of type I IFNs, but in this study it was shown that the expression of IFNλR1 varies with the protein titers of IFN-α, IFN-λ3 and the newly discovered IFN-λ4. High dosage of IFN-α reduces the expression of IFNλR1 in HepG2 cells, which can affect the antiviral activity of type III IFNs in vivo. We premeditated an experimental strategy to differentiate monocytes into dendritic cells (DCs), type I and type II macrophages in vitro and quantified the expression of the IFNλR1 by qPCR. The exposure of newly discovered IFN-λ4 to macrophages and DCs also raised the expression of its own receptor, which shows that expression of IFN-λ4 protein in hepatitis C patient may augment type I treatment and help ease off viral titers. The results of this study may contribute in some understanding towards the mechanisms involved in the selective expression of IFNLR1 and exceptionalities associated with the receptor.Keywords: IFNLR1, Interferon Lambda 4 (IFN-λ4), Mononuclear Phagocyte Cells (MPCs), expression
Procedia PDF Downloads 3852888 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model
Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer
Abstract:
Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy
Procedia PDF Downloads 1812887 Investigation of Polymer Solar Cells Degradation Behavior Using High Defect States Influence Over Various Polymer Absorber Layers
Authors: Azzeddine Abdelalim, Fatiha Rogti
Abstract:
The degradation phenomenon in polymer solar cells (PCSs) has not been clearly explained yet. In fact, there are many causes that show up and influence these cells in a variety of ways. Also, there has been a growing concern over this degradation in the photovoltaic community. One of the main variables deciding PSCs photovoltaic output is defect states. In this research, devices modeling is carried out to analyze the multiple effects of degradation by applying high defect states (HDS) on ideal PSCs, mainly poly(3-hexylthiophene) (P3HT) absorber layer. Besides, a comparative study is conducted between P3HT and other PSCs by a simulation program called Solar Cell Capacitance Simulator (SCAPS). The adjustments to the defect parameters in several absorber layers explain the effect of HDS on the total output properties of PSCs. The performance parameters for HDS, quantum efficiency, and energy band were therefore examined. This research attempts to explain the degradation process of PSCs and the causes of their low efficiency. It was found that the defects often affect PSCs performance, but defect states have a little effect on output when the defect level is less than 1014cm-3, which gives similar performance values with P3HT cells when these defects is about 1019cm-3. The high defect states can cause up to 11% relative reduction in conversion efficiency of ideal P3HT. In the center of the band gap, defect states become more noxious. This approach is for one of the degradation processes potential of PSCs especially that use fullerene derivative acceptors.Keywords: degradation, high defect states, polymer solar cells, SCAPS-1D
Procedia PDF Downloads 912886 The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells
Authors: A. Guechi, M. Chegaar
Abstract:
This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass.Keywords: AlGaAs/GaAs, solar cells, environmental parameters, spectral variation, SMARTS
Procedia PDF Downloads 3972885 IL-23, an Inflammatory Cytokine, Decreased by Shark Cartilage and Vitamin A Oral Treatment in Patient with Gastric Cancer
Authors: Razieh Zarei, Hassan zm, Abolghasem Ajami, Darush Moslemi, Narges Afsary, Amrollah Mostafa-zade
Abstract:
Introduction: IL-23 is responsible for the differentiation and expansion of Th17/ThIL-17 cells from naive CD4+ T cells. Therefore, may be IL-23/IL17 axis involve in a variety of allergic and autoimmune diseases, such as RA, MS, inflammatory bowel disease (IBD), and asthma. TGF-β is also share for the differentiation Th17 producing IL-17 and CD4+CD25+Foxp3hiT regulatory cells from naïve CD4+ T cells which are involved in the regulation of immune response, maintaining immunological self-tolerance and immune homeostasis ,and the control of autoimmunity and cancer surveillance. Therefore, T regulatory cells play a key role in autoimmunity, allergy, cancer, infectious disease, and the induction of transplantation tolerance. Vitamin A and it's derivatives (retinoids) inhibit or reverse the carcinogenic process in some types of cancers in oral cavity,head and neck, breast, skin, liver, and blood cells. Shark is a murine organism and its cartilage has antitumor peptides to prevent angiogenesis, in vitro. Our purpose is whether simultaneous oral treatment vitamin A and shark cartilage can modulate IL-23/IL-17 and CD4CD25Foxp3 T regulatory cell/TGF-β pathways and Th1/Th2 immunity in patients with gastric cancer. Materials and Methods: First investigated an imbalanced supernatant of cytokines exist in patients with gastric cancer by ELISA. Associated with cytokines measuring such as IL-23,IL-17,TGF-β,IL-4 and γ-IFN, then flow cytometry was employed to determine whether the peripheral blood mononuclear cells such as CD4+CD25+Foxp3highT regulatory cells in patients with gastric cancer were changed correspondingly. Results: An imbalance between IL-17 secretion and TGF-β/Foxp3 t regulatory cell pathway and so, Th1 immunity (γ-IFN production) and TH2 immunity (IL-4 secretion) was not seen in patients with gastric cancer treated by vitamin A and shark cartilage. But, the simultaneously presented down-regulation of IL-23 indicated, at least cytokine level. Conclusion: Il-23, as a pro-angiogenesis cytokine, probably, help to tumor growth. Hence, suggested that down-regulation of IL-23, at least cytokine level, is useful for anti-tumor immune responses in patients with gastric cancer.Keywords: IL-23/IL17 axis, TGF-β/CD4CD25Foxp3 T regulatory pathway, γ-IFN, IL-4, shark cartilage and gastric cancer
Procedia PDF Downloads 3952884 Discriminant Function Based on Circulating Tumor Cells for Accurate Diagnosis of Metastatic Breast Cancer
Authors: Hatem A. El-Mezayen, Ahmed Abdelmajeed, Fatehya Metwally, Usama Elsaly, Salwa Atef
Abstract:
Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of metastatic breast cancer. Methods: Cytokeratin 18 (CK18), Cytokeratin 19 (CK19), and CA15.3 were assayed in metastatic breast cancer (MBC) patients (75), non-MBC patients (50) and healthy control (20). Results: Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named MBC-CTCs = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1– 510. That function correctly classified 87% of metastatic breast cancer at cut-off value = 0.55. (i.e great than 0.55 indicates patients with metastatic breast cancer and less than 0.55 indicates patients with non-metastatic breast cancer). Conclusion: MBC-CTCs is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer.Keywords: metastatic breast cancer, circulating tumor cells, cytokeratin, EpiCam
Procedia PDF Downloads 2142883 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 1902882 Study of a Cross-Flow Membrane to a Kidney Encapsulation Engineering Structures for Immunosuppression Filter
Authors: Sihyun Chae, Ryoto Arai, Waldo Concepcion, Paula Popescu
Abstract:
The kidneys perform an important role in the human hormones that regulate the blood pressure, produce an active form of vitamin D and control the production of red blood cells. Kidney disease can cause health problems, such as heart disease. Also, increase the chance of having a stroke or heart attack. There are mainly to types of treatments for kidney disease, dialysis, and kidney transplant. For a better quality of life, the kidney transplant is desirable. However, kidney transplant can cause antibody reaction and patients’ body would be attacked by immune system of their own. For solving that issue, patients with transplanted kidney always take immunosuppressive drugs which can hurt kidney as side effects. Patients willing to do a kidney transplant have a waiting time of 3.6 years in average searching to find an appropriate kidney, considering there are almost 96,380 patients waiting for kidney transplant. There is a promising method to solve these issues: bioartificial kidney. Our membrane is specially designed with unique perforations capable to filter the blood cells separating the white blood cells from red blood cells. White blood cells will not pass through the encapsulated kidney preventing the immune system to attack the new organ and eliminating the need of a matching donor. It is possible to construct life-time long encapsulation without needing pumps or a power supply on the cell’s separation method preventing futures surgeries due the Cross-Channel Flow inside the device. This technology allows the possibility to use an animal kidney, prevent cancer cells to spread through the body, arm and leg transplants in the future. This project aims to improve the quality of life of patients with kidney disease.Keywords: kidney encapsulation, immunosuppression filter, leukocyte filter, leukocyte
Procedia PDF Downloads 2012881 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol
Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya
Abstract:
Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol
Procedia PDF Downloads 2582880 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation
Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi
Abstract:
For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)
Procedia PDF Downloads 260