Search results for: AI-powered photo editing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 519

Search results for: AI-powered photo editing

219 Synthesis and Characterization of Poly (N-(Pyridin-2-Ylmethylidene)Pyridin-2-Amine: Thermal and Conductivity Properties

Authors: Nuray Yılmaz Baran

Abstract:

The conjugated Schiff base polymers which are also called as polyazomethines are promising materials for various applications due to their good thermal resistance semiconductive, liquid crystal, fiber forming, nonlinear optical outstanding photo- and electroluminescence and antimicrobial properties. In recent years, polyazomethines have attracted intense attention of researchers especially due to optoelectronic properties which have made its usage possible in organic light emitting diodes (OLEDs), solar cells (SCs), organic field effect transistors (OFETs), and photorefractive holographic materials (PRHMs). In this study, N-(pyridin-2-ylmethylidene)pyridin-2-amine Schiff base was synthesized from condensation reaction of 2-aminopyridine with 2-pyridine carbaldehyde. Polymerization of Schiff base was achieved by polycondensation reaction using NaOCl oxidant in methanol medium at various time and temperatures. The synthesized Schiff base monomer and polymer (Poly(N-(pyridin-2-ylmethylidene)pyridin-2-amine)) was characterized by UV-vis, FT-IR, 1H-NMR, XRD techniques. Molecular weight distribution and the surface morphology of the polymer was determined by GPC and SEM-EDAX techniques. Thermal behaviour of the monomer and polymer was investigated by TG/DTG, DTA and DSC techniques.

Keywords: polyazomethines, polycondensation reaction, Schiff base polymers, thermal stability

Procedia PDF Downloads 232
218 Transcriptome and Metabolome Analysis of a Tomato Solanum Lycopersicum STAYGREEN1 Null Line Generated Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Technology

Authors: Jin Young Kim, Kwon Kyoo Kang

Abstract:

The SGR1 (STAYGREEN1) protein is a critical regulator of plant leaves in chlorophyll degradation and senescence. The functions and mechanisms of tomato SGR1 action are poorly understood and worthy of further investigation. To investigate the function of the SGR1 gene, we generated a SGR1-knockout (KO) null line via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing and conducted RNA sequencing and gas chromatography tandem mass spectrometry (GC-MS/MS) analysis to identify the differentially expressed genes. The SlSGR1 (Solanum lycopersicum SGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid content compared to wild-type (WT) fruit. Differential gene expression analysis revealed 728 differentially expressed genes (DEGs) between WT and sgr1 #1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, for which fold change was >2, and the adjusted p-value was <0.05. Most of the DEGs were related to photosynthesis and chloroplast function. In addition, the pigment, carotenoid changes in sgr1 #1-6 line was accumulated of key primary metabolites such as sucrose and its derivatives (fructose, galactinol, raffinose), glycolytic intermediates (glucose, G6P, Fru6P) and tricarboxylic acid cycle (TCA) intermediates (malate and fumarate). Taken together, the transcriptome and metabolite profiles of SGR1-KO lines presented here provide evidence for the mechanisms underlying the effects of SGR1 and molecular pathways involved in chlorophyll degradation and carotenoid biosynthesis.

Keywords: tomato, CRISPR/Cas9, null line, RNA-sequencing, metabolite profiling

Procedia PDF Downloads 125
217 Tangible Losses, Intangible Traumas: Re-envisioning Recovery Following the Lytton Creek Fire 2021 through Place Attachment Lens

Authors: Tugba Altin

Abstract:

In an era marked by pronounced climate change consequences, communities are observed to confront traumatic events that yield both tangible and intangible repercussions. Such events not only cause discernible damage to the landscape but also deeply affect the intangible aspects, including emotional distress and disruptions to cultural landscapes. The Lytton Creek Fire of 2021 serves as a case in point. Beyond the visible destruction, the less overt but profoundly impactful disturbance to place attachment (PA) is scrutinized. PA, representing the emotional and cognitive bonds individuals establish with their environments, is crucial for understanding how such events impact cultural identity and connection to the land. The study underscores the significance of addressing both tangible and intangible traumas for holistic community recovery. As communities renegotiate their affiliations with altered environments, the cultural landscape emerges as instrumental in shaping place-based identities. This renewed understanding is pivotal for reshaping adaptation planning. The research advocates for adaptation strategies rooted in the lived experiences and testimonies of the affected populations. By incorporating both the tangible and intangible facets of trauma, planning efforts are suggested to be more culturally attuned and emotionally insightful, fostering true resonance with the affected communities. Through such a comprehensive lens, this study contributes enriching the climate change discourse, emphasizing the intertwined nature of tangible recovery and the imperative of emotional and cultural healing after environmental disasters. Following the pronounced aftermath of the Lytton Creek Fire in 2021, research aims to deeply understand its impact on place attachment (PA), encompassing the emotional and cognitive bonds individuals form with their environments. The interpretive phenomenological approach, enriched by a hermeneutic framework, is adopted, emphasizing the experiences of the Lytton community and co-researchers. Phenomenology informed the understanding of 'place' as the focal point of attachment, providing insights into its formation and evolution after traumatic events. Data collection departs from conventional methods. Instead of traditional interviews, walking audio sessions and photo elicitation methods are utilized. These allow co-researchers to immerse themselves in the environment, re-experience, and articulate memories and feelings in real-time. Walking audio facilitates reflections on spatial narratives post-trauma, while photo voices captured intangible emotions, enabling the visualization of place-based experiences. The analysis is collaborative, ensuring the co-researchers' experiences and interpretations are central. Emphasizing their agency in knowledge production, the process is rigorous, facilitated by the harmonious blend of interpretive phenomenology and hermeneutic insights. The findings underscore the need for adaptation and recovery efforts to address emotional traumas alongside tangible damages. By exploring PA post-disaster, the research not only fills a significant gap but advocates for an inclusive approach to community recovery. Furthermore, the participatory methodologies employed challenge traditional research paradigms, heralding potential shifts in qualitative research norms.

Keywords: wildfire recovery, place attachment, trauma recovery, cultural landscape, visual methodologies

Procedia PDF Downloads 93
216 Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele

Authors: Ahmed Abdrabou, Medhat Abdalla

Abstract:

The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty.

Keywords: polychrome wooden stele, multispectral imaging, IR luminescence, Wood identification, Sycamore Fig, p-XRF

Procedia PDF Downloads 264
215 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique

Authors: Hiroyuki Aoki

Abstract:

The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.

Keywords: polymer materials, single molecule, super-resolution techniques, conformation

Procedia PDF Downloads 306
214 Family Photos as Catalysts for Writing: A Pedagogical Exercise in Visual Analysis with MA Students

Authors: Susana Barreto

Abstract:

This paper explores a pedagogical exercise that employs family photos as catalysts for teaching visual analysis and inspiring academic writing among MA students. The study aimed to achieve two primary objectives: to impart students with the skills of analyzing images or artifacts and to ignite their writing for research purposes. Conducted at Viana Polytechnic in Portugal, the exercise involved two classes on Arts Management and Art Education Master course comprising approximately twenty students from diverse academic backgrounds, including Economics, Design, Fine Arts, and Sociology, among others. The exploratory exercise involved selecting an old family photo, analyzing its content and context, and deconstructing the chosen images in an intuitive and systematic manner. Students were encouraged to engage in photo elicitation, seeking insights from family/friends to gain multigenerational perspectives on the images. The feedback received from this exercise was consistently positive, largely due to the personal connection students felt with the objects of analysis. Family photos, with their emotional significance, fostered deeper engagement and motivation in the learning process. Furthermore, visual analysing family photos stimulated critical thinking as students interpreted the composition, subject matter, and potential meanings embedded in the images. This practice enhanced their ability to comprehend complex visual representations and construct compelling visual narratives, thereby facilitating the writing process. The exercise also facilitated the identification of patterns, similarities, and differences by comparing different family photos, leading to a more comprehensive analysis of visual elements and themes. Throughout the exercise, students found analyzing their own photographs both enjoyable and insightful. They progressed through preliminary analysis, explored content and context, and artfully interwove these components. Additionally, students experimented with various techniques such as converting photos to black and white, altering framing angles, and adjusting sizes to unveil hidden meanings.The methodology employed included observation, documental analysis of written reports, and student interviews. By including students from diverse academic backgrounds, the study enhanced its external validity, enabling a broader range of perspectives and insights during the exercise. Furthermore, encouraging students to seek multigenerational perspectives from family and friends added depth to the analysis, enriching the learning experience and broadening the understanding of the cultural and historical context associated with the family photos Highlighting the emotional significance of these family photos and the personal connection students felt with the objects of analysis fosters a deeper connection to the subject matter. Moreover, the emphasis on stimulating critical thinking through the analysis of composition, subject matter, and potential meanings in family photos suggests a targeted approach to developing analytical skills. This improvement focuses specifically on critical thinking and visual analysis, enhancing the overall quality of the exercise. Additionally, the inclusion of a step where students compare different family photos to identify patterns, similarities, and differences further enhances the depth of the analysis. This comparative approach adds a layer of complexity to the exercise, ultimately leading to a more comprehensive understanding of visual elements and themes. The expected results of this study will culminate in a set of practical recommendations for implementing this exercise in academic settings.

Keywords: visual analysis, academic writing, pedagogical exercise, family photos

Procedia PDF Downloads 60
213 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: halloysite, palygorskite, photocatalysis, titanium dioxide

Procedia PDF Downloads 315
212 IAM Smart – A Sustainable Way to Reduce Plastics in Organizations

Authors: Krithika Kumaragurubaran, Mannu Thareja

Abstract:

Saving our planet Earth is the responsibility of every human being. Global warming and carbon emissions are killing our planet. We must adopt sustainable practices to give our future generations an equal opportunity to enjoy this planet Earth, our home. One of the most used unsustainable materials is plastic. Plastics are used everywhere. They are cheap, durable, strong, waterproof, non-corrosive with a long life. So longthat it makes plastic unsustainable. With this paper, we want to bring awareness on the usage of plastic in the organizations and how to reduce it by adopting sustainable practices powered by technology. We have taken a case study on the usage of photo ID cards, which are commonly used for authentication and authorization. These ID cards are used by employees or visitors to get access to the restricted areas inside the office buildings. The scale of these plastic cards can be in thousands for a bigger organization. This paper proposes smart alternatives to Identity and Access Management (IAM) which could replace the traditional method of using plastic ID cards. Further, the proposed solution is secure with multi-factor authentication (MFA), cost effective as there is no need to manage the supply chain of ID cards, provides instant IAM with self-service, and has the convenience of smart phone. Smart IAM is not only user friendly however also environment friendly.

Keywords: sustainability, reduce plastic, IAM (Identity and Access Management), multi-factor authentication

Procedia PDF Downloads 110
211 Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs

Authors: Ashish Soni, Suman Kalyan Pal

Abstract:

Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices.

Keywords: transient absorption, optoelectronics, 2D materials, TMDCs, exciton

Procedia PDF Downloads 68
210 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving

Authors: Dimassi Wissem

Abstract:

In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.

Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation

Procedia PDF Downloads 396
209 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells

Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah

Abstract:

Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.

Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell

Procedia PDF Downloads 284
208 Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System

Authors: Qasem A. Alyazji

Abstract:

One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system.

Keywords: SPECT, scintillation, PMTs, SiPMT, PSPMTs, APDs, semiconductor (solid state)

Procedia PDF Downloads 168
207 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application

Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom

Abstract:

Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).

Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide

Procedia PDF Downloads 196
206 Saudi Teachers’ Perceptions of Rough and Tumble Play in Early Learning

Authors: Rana Alghamdi

Abstract:

This study explored teachers’ perceptions of rough-and-tumble (R&T) play in early childhood education in Saudi Arabia. The literature on rough-and-tumble play in Saudi Arabia is limited in scope, and more research is needed to explore teachers’ perceptions on this type of play for early learners. The pertinent literature reveals that R&T play, which includes running, jumping, fighting, wrestling, chasing, pulling, pushing, and climbing, among other rough playful activities, can positively impact learning and development across psychosocial, emotional, and cognitive domains. Teachers’ understanding of R & T play is key, and the attitudes of Saudi early childhood teachers who are responsible for implementing curriculum-based play have not been fully researched. Four early childhood teachers from an urban Saudi preschool participated in the study. The data collected in this study were interpreted through a sociocultural lens. Data sources included in-depth interviews, photo-elicitation interviews, and participant-generated drawings. Three overarching themes emerged: teachers’ concerns about rough-and-tumble play, teachers’ perceptions about the benefits of rough-and-tumble play, and teachers’ expression of gender roles in R & T play as contextualized within Saudi culture. Saudi teachers’ perceptions are discussed in detail, and implications of the findings and recommendations for future research are put forth.

Keywords: rough and tumble play, gender, culture, early childhood, Saudi Arabia

Procedia PDF Downloads 134
205 ‘BEST BARK’ Dog Care and Owner Consultation System

Authors: Shalitha Jayasekara, Saluk Bawantha, Dinithi Anupama, Isuru Gunarathne, Pradeepa Bandara, Hansi De Silva

Abstract:

Dogs have been known as "man's best friend" for generations, providing friendship and loyalty to their human counterparts. However, due to people's busy lives, they are unaware of the ailments that can affect their pets. However, in recent years, mobile technologies have had a significant impact on our lives, and with technological improvements, a rule-based expert system allows the end-user to enable new types of healthcare systems. The advent of Android OS-based smartphones with more user-friendly interfaces and lower pricing opens new possibilities for continuous monitoring of pets' health conditions, such as healthy dogs, dangerous ingestions, and swallowed objects. The proposed ‘Best Bark’ Dog care and owner consultation system is a mobile application for dog owners. Four main components for dog owners were implemented after a questionnaire was distributed to the target group of audience and the findings were evaluated. The proposed applications are widely used to provide health and clinical support to dog owners, including suggesting exercise and diet plans and answering queries about their dogs. Additionally, after the owner uploads a photo of the dog, the application provides immediate feedback and a description of the dog's skin disease.

Keywords: Convolution Neural Networks, Artificial Neural Networks, Knowledgebase, Sentimental Analysis.

Procedia PDF Downloads 154
204 Preparation, Physical and Photoelectrochemical Characterization of Ag/CuCo₂O₄: Application to Solar Light Oxidation of Methyl Orange

Authors: Radia Bagtache, Karima Boudjedien, Ahmed Malek Djaballah, Mohamed Trari

Abstract:

The compounds with a spinel structure have received special attention because of their numerous applications in electronics, magnetism, catalysis, electrocatalysis, photocatalysis, etc. Among these oxides, CuCo₂O₄ was selected because of its optimal band gap, very close to the ideal value for solar devices, its low cost, and a potential candidate in the field of energy storage. Herein, we reported the junction Ag/CuCo₂O₄ (5/95 % wt.) prepared by co-precipitation, characterized physically and photo electrochemically. Moreover, its performance was evaluated for the oxidation of methyl orange (MO) under solar light. The X-ray diffraction exhibited narrow peaks ascribed to the spinel CuCo₂O₄ and Ag. The SEM analysis displayed grains with regular shapes. The band gap of CuCo₂O₄ (1.38 eV) was deducted from the diffuse reflectance, and this value decreased down to 1.15 eV due to the synergy effect in the junction. The current-potential (J-E) curve plotted in Na₂SO₄ electrolyte showed a medium hysteresis, characteristic of good chemical stability. The capacitance-2 – potential (C⁻² – E) graph displayed that the spinel behaves as a p-type semiconductor, a property supported by chrono-amperometry. The conduction band, located at 4.05 eV (-0.94 VNHE), was made up of Co³⁺: 3d orbital. The result showed a total discoloration of MO after 2 h of illumination under solar light.

Keywords: junction Ag/CuCo₂O₄, semiconductor, environment, sunlight, characterization, depollution

Procedia PDF Downloads 70
203 Sono- and Photocatalytic Degradation of Indigocarmine in Water Using ZnO

Authors: V. Veena, Suguna Yesodharan, E. P. Yesodharan

Abstract:

Two Advanced Oxidation Processes (AOP) i.e., sono- and photo-catalysis mediated by semiconductor oxide catalyst, ZnO has been found effective for the removal of trace amounts of the toxic dye pollutant Indigocarmine (IC) from water. The effect of various reaction parameters such as concentration of the dye, catalyst dosage, temperature, pH, dissolved oxygen etc. as well as the addition of oxidisers and presence of salts in water on the rate of degradation has been evaluated and optimised. The degradation follows variable kinetics depending on the concentration of the substrate, the order of reaction varying from 1 to 0 with increase in concentration. The reaction proceeds through a number of intermediates and many of them have been identified using GCMS technique. The intermediates do not affect the rate of degradation significantly. The influence of anions such as chloride, sulphate, fluoride, carbonate, bicarbonate, phosphate etc. on the degradation of IC is not consistent and does not follow any predictable pattern. Phosphates and fluorides inhibit the degradation while chloride, sulphate, carbonate and bicarbonate enhance. Adsorption studies of the dye in the absence as well as presence of these anions show that there may not be any direct correlation between the adsorption of the dye on the catalyst and the degradation. Oxidants such as hydrogen peroxide and persulphate enhance the degradation though the combined effect and it is less than the cumulative effect of individual components. COD measurements show that the degradation proceeds to complete mineralisation. The results will be presented and probable mechanism for the degradation will be discussed.

Keywords: AOP, COD, indigocarmine, photocatalysis, sonocatalysis

Procedia PDF Downloads 337
202 The Significance of Translating Folklore in Teaching and Learning Open Distance e-Learning

Authors: M. A. Mabasa, O. Ramokolo, M. Z. Mnikathi, D. Mathabatha, T. Manyapelo

Abstract:

The study examines the importance of translating South African folklore from Oral into Written Literature in a Multilingual Education. Therefore, the study postulates that translation can be regarded as a valuable tool when oral and written literature is transmitted from one generation to another. The study entails that translation does not take place in a haphazard fashion; for that reason, skills such as translation principles are required to translate folklore significantly and effectively. The purpose of the study is to indicate the significance of using translation relating to folklore in teaching and learning. The study also observed that Modernism in literature should be shared amongst varieties of cultures because folklore is interactive in narrating stories, folktales and myths to sharpen the reader’s knowledge and intellect because they are informative and educative in nature. As a technological tool, the study points out that translation is of paramount importance in the sense that the meanings of different data can be made available in all South African official languages using oral and written forms of folklore. The study opines that tradition and customary beliefs and practices in the institution of higher learning. The study envisages the way in which literature of folklore can be juxtaposed to ensure that translated folklore is of quality assured standards. The study alludes that well-translated folklore can serve as oral and written literature, which may contribute to the child’s learning and acquisition of knowledge and insights during cognitive development toward maturity. Methodologically, the study selects a qualitative research approach and selects content analysis as an instrument for data gathering, which will be analyzed qualitatively in consideration of the significance of translating folklore as written and spoken literature in a documented way. The study reveals that the translation of folktales promotes functional multilingualism in high-function formal contexts like a university. The study emphasizes that translated and preserved literary folklore may serve as a language repository from one generation to another because of the archival and storage of information in the form of a term bank.

Keywords: translation, editing, teaching, learning, folklores

Procedia PDF Downloads 35
201 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode

Authors: Simrjit Singh, Neeraj Khare

Abstract:

In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.

Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃

Procedia PDF Downloads 171
200 Iron and/or Titanium Containing Microporous Silico-Alumino-Phosphates as a Photocatalyst for Hydrogen Production by Water Splitting

Authors: I. Ben Kaddour, S. Larbaoui

Abstract:

Since their first synthesis, the Silicoaluminophosphates materials have proved their efficiency as a good adsorbent and catalyst in several environmental and energetic applications. In this work, the photocatalytic hydrogen production from water splitting reactions has been conducted under visible radiations in the presence of a series of iron and/or titanium-containing microporous silico-alumino-phosphates materials synthesized by hydrothermal method, using triethylamine as an organic structuring agent to obtain the AFI structure type. These photo-catalysts were then characterized by various physicochemical methods to determine their structural, textural and morphological properties such as X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with X rays microanalysis, nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), and X-rays photoelectron spectroscopy (XPS) and the analysis revealed that these materials have significant photocatalytic properties. The hydrogen production process has been followed by photoelectrochemical characterization (PEC). The results showed that hydrogen is the only gas produced, and the reaction takes place in the conduction band where water is reduced to hydrogen. The electron recombination has also been avoided, as holes are entrapped using hole scavengers. In addition, these catalysts have been shown to remain stable during reuse for up to five cycles.

Keywords: photocatalysis, SAPO-5, hydrothermal synthesis, hydrogen production

Procedia PDF Downloads 65
199 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses

Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi

Abstract:

Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.

Keywords: fire detector, rack, response characteristic, warehouse

Procedia PDF Downloads 747
198 Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application

Authors: Wided Zerguine, Farid Habelhames

Abstract:

The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite.

Keywords: photocurrent density, organic nanostructures, hybrid coating, conducting polymer, titanium dioxide

Procedia PDF Downloads 329
197 Nuclear Energy: The Reorientations of the French Public Perception

Authors: Aurélia Jandot

Abstract:

With the oil and economic crises which began in the 1970’s, it has progressively appeared necessary to convince the French “general public“ that a use of new energy sources was essential. In this field, nuclear energy represented the future and concentrated lots of hopes. However, the discourse about nuclear energy has progressively seen negative arguments growing in the French media. The gradual changes in the perception of nuclear energy will be studied here through the arguments given in the main French weekly newsmagazines, which had a great impact on the readers, thus on the “general public“, from the 1970’s to the end of the 1980’s. Indeed, to understand better these changes will be taken into account the major international events, the reorientations of the French domestic policy, and the evolutions of the nuclear technology. As this represents a considerable amount of copies and thus of information, will be selected here the main articles which emphasize the “mental images“ aiming to direct the thought of the readers, and which have led the public awareness and acceptance to evolve. From the 1970’s to the end of the 1980’s, two dichotomous trends are in confrontation : one is promoting the perception of the nuclear energy, the other is discrediting it. Moreover, these two trends are organized in two axes. The first axis is about the engineerings evolutions, such as the main French media represent them, with its approximations, its exaggerations, its fictions sometimes. Is added the will to make accessible to the “general public“ some concepts which are quite difficult to understand for the largest number. The second axis rests on the way the major accidents of the period are approached, including those of Three Mile Island and Chernobyl. Thanks to these accidents and because of the international relations evolutions, the ecologist movements and their impacts have progressively grown, with evident consequences on the public perception of nuclear energy and on the way the successive governments can implement new power plants in France. Then, in both cases, over the period considered, the language has changed, as the perceptible objectives of the communication, allowing to discern the deepest intentions of the newsmagazines editing. This is all these changes that will be emphasized, over a period where the nuclear energy technology, to there a field for specialists, bearing mystery and secret, has become a social issue seemingly open to all.

Keywords: social issues, public acceptance, mediatization, discourse changes

Procedia PDF Downloads 292
196 New Chinese Landscapes in the Works of the Chinese Photographer Yao Lu

Authors: Xiaoling Dai

Abstract:

Many Chinese artists have used digital photography to create works with features of Chinese landscape paintings since the 20th century. The ‘New Mountains and Water’ works created by digital techniques reflect the fusion of photographic techniques and traditional Chinese aesthetic thoughts. Borrowing from Chinese landscape paintings in the Song Dynasty, the Chinese photographer Yao Lu uses digital photography to reflect contemporary environmental construction in his series New Landscapes. By portraying a variety of natural environments brought by urbanization in the contemporary period, Lu deconstructs traditional Chinese paintings and reconstructs contemporary photographic practices. The primary object of this study is to investigate how Chinese photographer Yao Lu redefines and re-interprets the relationship between tradition and contemporaneity. In this study, Yao Lu’s series work New Landscapes is used for photo elicitation, which seeks to broaden understanding of the development of Chinese landscape photography. Furthermore, discourse analysis will be used to evaluate how Chinese social developments influence the creation of photographic practices. Through visual and discourse analysis, this study aims to excavate the relationship between tradition and contemporaneity in Lu’s works. According to New Landscapes, the study argues that in Lu’s interpretations of landscapes, tradition and contemporaneity are seen to establish a new relationship. Traditional approaches to creation do not become obsolete over time. On the contrary, traditional notions and styles of creation can shed new light on contemporary issues or techniques.

Keywords: Chinese aesthetics, Yao Lu, new landscapes, tradition, contemporaneity

Procedia PDF Downloads 79
195 Microfluidic Chambers with Fluid Walls for Cell Biology

Authors: Cristian Soitu, Alexander Feuerborn, Cyril Deroy, Alfonso Castrejon-Pita, Peter R. Cook, Edmond J. Walsh

Abstract:

Microfluidics now stands as an academically mature technology after a quarter of a century research activities have delivered a vast array of proof of concepts for many biological workflows. However, translation to industry remains poor, with only a handful of notable exceptions – e.g. digital PCR, DNA sequencing – mainly because of biocompatibility issues, limited range of readouts supported or complex operation required. This technology exploits the domination of interfacial forces over gravitational ones at the microscale, replacing solid walls with fluid ones as building blocks for cell micro-environments. By employing only materials used by biologists for decades, the system is shown to be biocompatible, and easy to manufacture and operate. The method consists in displacing a continuous fluid layer into a pattern of isolated chambers overlaid with an immiscible liquid to prevent evaporation. The resulting fluid arrangements can be arrays of micro-chambers with rectangular footprint, which use the maximum surface area available, or structures with irregular patterns. Pliant, self-healing fluid walls confine volumes as small as 1 nl. Such fluidic structures can be reconfigured during the assays, giving the platform an unprecedented level of flexibility. Common workflows in cell biology are demonstrated – e.g. cell growth and retrieval, cloning, cryopreservation, fixation and immunolabeling, CRISPR-Cas9 gene editing, and proof-of-concept drug tests. This fluid-shaping technology is shown to have potential for high-throughput cell- and organism-based assays. The ability to make and reconfigure on-demand microfluidic circuits on standard Petri dishes should find many applications in biology, and yield more relevant phenotypic and genotypic responses when compared to standard microfluidic assays.

Keywords: fluid walls, micro-chambers, reconfigurable, freestyle

Procedia PDF Downloads 193
194 Crowdsourced Economic Valuation of the Recreational Benefits of Constructed Wetlands

Authors: Andrea Ghermandi

Abstract:

Constructed wetlands have long been recognized as sources of ancillary benefits such as support for recreational activities. To date, there is a lack of quantitative understanding of the extent and welfare impact of such benefits. Here, it is shown how geotagged, passively crowdsourced data from online social networks (e.g., Flickr and Panoramio) and Geographic Information Systems (GIS) techniques can: (1) be used to infer annual recreational visits to 273 engineered wetlands worldwide; and (2) be integrated with non-market economic valuation techniques (e.g., travel cost method) to infer the monetary value of recreation in these systems. Counts of social media photo-user-days are highly correlated with the number of observed visits in 62 engineered wetlands worldwide (Pearson’s r = 0.811; p-value < 0.001). The estimated, mean willingness to pay for access to 115 wetlands ranges between $5.3 and $374. In 50% of the investigated wetlands providing polishing treatment to advanced municipal wastewater, the present value of such benefits exceeds that of the capital, operation and maintenance costs (lifetime = 45 years; discount rate = 6%), indicating that such systems are sources of net societal benefits even before factoring in benefits derived from water quality improvement and storage. Based on the above results, it is argued that recreational benefits should be taken into account in the design and management of constructed wetlands, as well as when such green infrastructure systems are compared with conventional wastewater treatment solutions.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, social media

Procedia PDF Downloads 132
193 The Significance of Awareness about Gender Diversity for the Future of Work: A Multi-Method Study of Organizational Structures and Policies Considering Trans and Gender Diversity

Authors: Robin C. Ladwig

Abstract:

The future of work becomes less predictable, which requires increasing the adaptability of organizations to social and work changes. Society is transforming regarding gender identity in the sense that more people come forward to identify as trans and gender diverse (TGD). Organizations are ill-equipped to provide a safe and encouraging work environment by lacking inclusive organizational structures. The qualitative multi-method research about TGD inclusivity in the workplace explores the enablers and barriers for TGD individuals to satisfactory engage in the work environment and organizational culture. Furthermore, these TGD insights are analyzed about their organizational implications and awareness from a leadership and management perspective. The semi-structured online interviews with TGD individuals and the photo-elicit open-ended questionnaire addressed to leadership and management in diversity, career development, and human resources have been analyzed with a critical grounded theory approach. Findings demonstrated the significance of TGD voices, the support of leadership and management, as well as the synergy between voices and leadership. Hence, it indicates practical implications such as the revision of exclusive language used in policies, data collection, or communication and reconsideration of organizational decision-making by leaders to include TGD voices.

Keywords: future of work, occupational identity, organisational decision-making, trans and gender diverse identity

Procedia PDF Downloads 128
192 Photocatalytic Degradation of Phenolic Compounds in Wastewater Using Magnetically Recoverable Catalyst

Authors: Ahmed K. Sharaby, Ahmed S. El-Gendy

Abstract:

Phenolic compounds (PCs) exist in the wastewater effluents of some industries such as oil refinery, pharmaceutical and cosmetics. Phenolic compounds are extremely hazardous pollutants that can cause severe problems to the aquatic life and human beings if disposed of without treatment. One of the most efficient treatment methods of PCs is photocatalytic degradation. The current work studies the performance of composite nanomaterial of titanium dioxide with magnetite as a photo-catalyst in the degradation of PCs. The current work aims at optimizing the synthesized photocatalyst dosage and contact time as part of the operational parameters at different initial concentrations of PCs and pH values in the wastewater. The study was performed in a lab-scale batch reactor under fixed conditions of light intensity and aeration rate. The initial concentrations of PCs and the pH values were in the range of (10-200 mg/l) and (3-9), respectively. Results of the study indicate that the dosage of the catalyst and contact time for total mineralization is proportional to the initial concentrations of PCs, while the optimum pH conditions for highly efficient degradation is at pH 3. Exceeding the concentration levels of the catalyst beyond certain limits leads to the decrease in the degradation efficiency due to the dissipation of light. The performance of the catalyst for degradation was also investigated in comparison to the pure TiO2 Degussa (P-25). The dosage required for the synthesized catalyst for photocatalytic degradation was approximately 1.5 times that needed from the pure titania.

Keywords: industrial, optimization, phenolic compounds, photocatalysis, wastewater

Procedia PDF Downloads 317
191 Adaptive Power Control Topology Based Photovoltaic-Battery Microgrid System

Authors: Rajat Raj, Rohini S. Hallikar

Abstract:

The ever-increasing integration of renewable energy sources in the power grid necessitates the development of efficient and reliable microgrid systems. Photovoltaic (PV) systems coupled with energy storage technologies, such as batteries, offer promising solutions for sustainable and resilient power generation. This paper proposes an adaptive power control topology for a PV-battery microgrid system, aiming to optimize the utilization of available solar energy and enhance the overall system performance. In order to provide a smooth transition between the OFF-GRID and ON-GRID modes of operation with proportionate power sharing, a self-adaptive control method for a microgrid is proposed. Three different modes of operation are discussed in this paper, i.e., GRID connected, the transition between Grid-connected and Islanded State, and changing the irradiance of PVs and doing the transitioning. The simulation results show total harmonic distortion to be 0.08, 1.43 and 2.17 for distribution generation-1 and 4.22,3.92 and 2.10 for distribution generation-2 in the three modes, respectively which helps to maintain good power quality. The simulation results demonstrate the superiority of the adaptive power control topology in terms of maximizing renewable energy utilization, improving system stability and ensuring a seamless transition between grid-connected and islanded modes.

Keywords: islanded modes, microgrids, photo voltaic, total harmonic distortion

Procedia PDF Downloads 175
190 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium

Authors: Shyam Ranjan Kumar, Shashikant Rajpal

Abstract:

Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.

Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe

Procedia PDF Downloads 194