Search results for: energy behavior
10855 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure
Authors: Volodymyr Rombakh
Abstract:
This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress
Procedia PDF Downloads 9210854 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints
Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno
Abstract:
Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.Keywords: battery energy storage, power system stability, system strength, weak power system
Procedia PDF Downloads 6110853 Flexural Behavior of Light-Gauge Steel Box Sections Filled with Normal and Recycled Aggregates Concrete
Authors: Rola El-Nimri, Mu’Tasime Abdel-Jaber, Yasser Hunaiti
Abstract:
The flexural behavior of light-gauge steel box sections filled with recycled concrete was assessed through an experimental program involving 15 composite beams. Recycled concrete was obtained by replacing natural aggregates (NA) with recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) with replacement levels of 20%, 40%, 60%, 80%, and 100% by the total weight of NA. In addition, RCA and RAP were incorporated in the same mixes with replacement levels of (1) 20% RCA and 80% RAP; (2) 40% RCA and 60% RAP; (3) 60% RCA and 40% RAP; and (4) 80% RCA and 20% RAP. A comparison between the experimental capacities and the theoretically predicted values according to Eurocode 4 (EC4) was made as well. Results proved that the ultimate capacity of composite beams decreased with the increase of recycled aggregate (RA) percentage and EC4 was conservative in predicting the ultimate capacity of composite beams.Keywords: flexure, light gauge, recycled asphalt pavement, recycled concrete aggregate, steel tube
Procedia PDF Downloads 19910852 The Influence of Leader’s Sources of Power on Organizational Citizenship Behaviour
Authors: Noor Azlina Mohamed Yunus, Noorlaila Yunus, Kadulliah Ghazali
Abstract:
In this an era of intense competition, Malaysia aspires to be a fully developed country by 2020 and desires its citizens to perform and execute excellent work behaviors. For that reason, organizations are focusing on employees’ positive and constructive behaviors such as organizational citizenship behavior (OCB). They expect employees to not only complete their required duties by providing excellent performance but also keenly go beyond their roles that are not specifying in their formal job descriptions to ensure organizational success. The role and duty to acquire employees to engage and connect in OCB is the responsibility of a leader. Thus, leaders can utilize their sources of power to enable subordinates to accomplish organizational objective including OCB. Therefore, this paper formulates a framework postulating leader’s sources of power as an antecedent of organizational citizenship behavior (OCB). The discussion on implications for future theory development is discussed.Keywords: organizational citizenship behaviour (OCB), leader’s sources of power, call centre industry, conceptual paper
Procedia PDF Downloads 32110851 Mechanistic Studies of Compacted and Sintered Rock Salt
Authors: Claudia H. Swanson, Jens Günster
Abstract:
This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment.Keywords: rock salt, sinter, anhydrite, nuclear safety
Procedia PDF Downloads 48910850 Effect of Operating Conditions on the Process Hydrogen Storage in Metal Hydride
Authors: A. Babou, Y. Kerboua Ziari, Y. Kerkoub
Abstract:
The risks of depletion of fossil fuel reserves and environmental problems caused by their consumption cause to consider alternative energy solutions. Hydrogen appears as a serious solution because its combustion produces only water. The objective of this study is to digitally analyze the effect of operating conditions on the process of absorption of hydrogen in a tank of metal hydride alloy Lanthanum - Nickel (LaNi 5). For this modeling of heat transfer and mass in the tank was carried .The results of numerical weather prediction are in good agreement with the experimental results.Keywords: hydrogen, storage, energy, fuel, simulation
Procedia PDF Downloads 30510849 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation
Authors: Ahmed H. Elkholy
Abstract:
The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.Keywords: sinusoidal excitation, pump, shear stress, flow
Procedia PDF Downloads 31510848 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach
Authors: Young Yoon, Jinsoo Kim
Abstract:
The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: information and communication technologies, R&D, real option, unconventional gas
Procedia PDF Downloads 22910847 The Effects of Billboard Content and Visible Distance on Driver Behavior
Authors: Arsalan Hassan Pour, Mansoureh Jeihani, Samira Ahangari
Abstract:
Distracted driving has been one of the most integral concerns surrounding our daily use of vehicles since the invention of the automobile. While much attention has been recently given to cell phones related distraction, commercial billboards along roads are also candidates for drivers' visual and cognitive distractions, as they may take drivers’ eyes from the road and their minds off the driving task to see, perceive and think about the billboard’s content. Using a driving simulator and a head-mounted eye-tracking system, speed change, acceleration, deceleration, throttle response, collision, lane changing, and offset from the center of the lane data along with gaze fixation duration and frequency data were collected in this study. Some 92 participants from a fairly diverse sociodemographic background drove on a simulated freeway in Baltimore, Maryland area and were exposed to three different billboards to investigate the effects of billboards on drivers’ behavior. Participants glanced at the billboards several times with different frequencies, the maximum of which occurred on the billboard with the highest cognitive load. About 74% of the participants didn’t look at billboards for more than two seconds at each glance except for the billboard with a short visible area. Analysis of variance (ANOVA) was performed to find the variations in driving behavior when they are invisible, readable, and post billboards area. The results show a slight difference in speed, throttle, brake, steering velocity, and lane changing, among different areas. Brake force and deviation from the center of the lane increased in the readable area in comparison with the visible area, and speed increased right after each billboard. The results indicated that billboards have a significant effect on driving performance and visual attention based on their content and visibility status. Generalized linear model (GLM) analysis showed no connection between participants’ age and driving experience with gaze duration. However, the visible distance of the billboard, gender, and billboard content had a significant effect on gaze duration.Keywords: ANOVA, billboards, distracted driving, drivers' behavior, driving simulator, eye-Tracking system, GLM
Procedia PDF Downloads 12810846 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors
Authors: Ali H. Daraji, Ye Jianqiao
Abstract:
The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.Keywords: energy harvesting, optimisation, sensor, wing
Procedia PDF Downloads 30210845 Child Molesters’ Perceptions of Their Abusive Behavior in a Greek Prison
Authors: Polychronis Voultsos, Theodora Pandelidou, Alexandra K. Tsaroucha
Abstract:
Aim: To explore child molesters' perceptions of their sexually offensive behavior in Greece. To our knowledge, there is a relative research gap on this topic. Method: A prospective qualitative study using in-depth interviews with eight child molesters who were convicted and imprisoned in a Greek prison. The research was conducted in May 2022. Results: Child molesters' cognitive distortions including justifications, rationalizations and minimizations emerged from our data analysis (content analysis). Importantly, child molesters. adopted a particularly daring ‘role reversal’. Participants reported themselves as being ‘victims’. They said that the children (namely, their victims) were the ones who made the first move and got them in the mood for having sex with the children. Furthermore, we discuss our results in the context of the existing international academic literature on the area of this research. Conclusions: Child molesters' different cognitive distortions emerged from our data analysis, with ‘role reversal’ being prevalent.Keywords: child molesters, sex offenders, cognitive distortions, Greece
Procedia PDF Downloads 12510844 Analysis of Causality between Economic Growth and Carbon Emissions: The Case of Mexico 1971-2011
Authors: Mario Gómez, José Carlos Rodríguez
Abstract:
This paper analyzes the Environmental Kuznets Curve (EKC) hypothesis to test the causality relationship between economic activity, trade openness and carbon dioxide emissions in Mexico (1971-2011). The results achieved in this research show that there are three long-run relationships between production, trade openness, energy consumption and carbon dioxide emissions. The EKC hypothesis was not verified in this research. Indeed, it was found evidence of a short-term unidirectional causality from GDP and GDP squared to carbon dioxide emissions, from GDP, GDP squared and TO to EC, and bidirectional causality between TO and GDP. Finally, it was found evidence of long-term unidirectional causality from all variables to carbon emissions. These results suggest that a reduction in energy consumption, economic activity, or an increase in trade openness would reduce pollution.Keywords: causality, cointegration, energy consumption, economic growth, environmental Kuznets curve
Procedia PDF Downloads 35110843 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch
Authors: M. Talebzadegan, S. Bina, I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: Solar energy, Heat Demand, Renewable , Pollution
Procedia PDF Downloads 25210842 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia
Authors: Benedictus Asriparusa
Abstract:
Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.Keywords: estimation, solar radiation power, REST 2, solar transmittance
Procedia PDF Downloads 42710841 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis
Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh
Abstract:
In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance
Procedia PDF Downloads 45510840 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells
Authors: Saheed O. Akinwale, Olufemi A. Koya
Abstract:
Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness
Procedia PDF Downloads 23210839 Effects of Compensation on Distribution System Technical Losses
Authors: B. Kekezoglu, C. Kocatepe, O. Arikan, Y. Hacialiefendioglu, G. Ucar
Abstract:
One of the significant problems of energy systems is to supply economic and efficient energy to consumers. Therefore studies has been continued to reduce technical losses in the network. In this paper, the technical losses analyzed for a portion of European side of Istanbul MV distribution network for different compensation scenarios by considering real system and load data and results are presented. Investigated system is modeled with CYME Power Engineering Software and optimal capacity placement has been proposed to minimize losses.Keywords: distribution system, optimal capacitor placement, reactive power compensation, technical losses
Procedia PDF Downloads 67410838 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid
Authors: Abdulla Rahil, Rupert Gammon, Neil Brown
Abstract:
The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen
Procedia PDF Downloads 23210837 Development of a Program for the Evaluation of Thermal Performance Applying the Centre Scientifique et Techniques du Bâtiment Method Case Study: Classroom
Authors: Iara Rezende, Djalma Silva, Alcino Costa Neto
Abstract:
Considering the transformations of the contemporary world linked to globalization and climate changes caused by global warming, the environmental and energy issues have been increasingly present in the decisions of the world scenario. Thus, the aim of reducing the impacts caused by human activities there are the energy efficiency measures, which are also applicable in the scope of Civil Engineering. Considering that a large part of the energy demand from buildings is related to the need to adapt the internal environment to the users comfort and productivity, measures capable of reducing this need can minimize the climate changes impacts and also the energy consumption of the building. However, these important measures are currently little used by civil engineers, either because of the interdisciplinarity of the subject, the time required to apply certain methods or the difficult interpretation of the results obtained by computational programs that often have a complex and little applied approach. Thus, it was proposed the development of a Java application with a simpler and applied approach to evaluate the thermal performance of a building in order to obtain results capable of assisting the civil engineers in the decision making related to the users thermal comfort. The program was built in Java programming language and the method used for the evaluation was the Center Scientifique et Technique du Batiment (CSTB) method. The program was used to evaluate the thermal performance of a university classroom. The analysis was carried out from simulations considering the worst climatic situation of the building occupation. Thus, at the end of the process, the favorable result was obtained regarding the classroom comfort zone and the feasibility of using the program, thus achieving the proposed objectives.Keywords: building occupation, CSTB method, energy efficiency measures, Java application, thermal comfort
Procedia PDF Downloads 13110836 Finite Element Analysis of RC Frames with Retrofitted Infill Walls
Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu
Abstract:
The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.Keywords: finite element analysis, infilled RC frames, infill wall, strengthening
Procedia PDF Downloads 53010835 Reliability and Validity Examinations of the Child Behavior Checklist (CBCL): One of the Achenbach System of Empirically Based Assessment
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
In this study, three Chinese versions of the Achenbach systems of empirically based assessment (ASEBA) scales were used to examine adolescent psychological and behavioral problems. These three scales are CBCL, TRF, and YSR. In order to further understand the robustness of these scales, their reliability and construct validity have been examined. Each scale consists of about 113 items plus relevant background variables. These 113 items were further classified into 8 psychological and behavioral problems: emotionally reactive, anxious/depressed, somatic complaints, withdrawn, attention problems, aggressive behavior, social problems, thought problems, and association problems. The study explored the item and construct correlation relations and the correlations between the corresponding constructs among three scales. The results indicated that the associations between item and constructs varied. The construct validities were very robust.Keywords: ASEBA, construct validity, psychological and behavioral problems, reliability
Procedia PDF Downloads 69310834 Effect of Transition Metal Addition on Aging Behavior of Invar Alloy
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight per cent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.Keywords: Invar alloy, transition metals, phase equilibrium, aging behavior, microstructure, hardness
Procedia PDF Downloads 53210833 Study on Natural Light Distribution Inside the Room by Using Sudare as an Outside Horizontal Blind in Tropical Country of Indonesia
Authors: Agus Hariyadi, Hiroatsu Fukuda
Abstract:
In tropical country like Indonesia, especially in Jakarta, most of the energy consumption on building is for the cooling system, the second one is from lighting electric consumption. One of the passive design strategy that can be done is optimizing the use of natural light from the sun. In this area, natural light is always available almost every day around the year. Natural light have many effect on building. It can reduce the need of electrical lighting but also increase the external load. Another thing that have to be considered in the use of natural light is the visual comfort from occupant inside the room. To optimize the effectiveness of natural light need some modification of façade design. By using external shading device, it can minimize the external load that introduces into the room, especially from direct solar radiation which is the 80 % of the external energy load that introduces into the building. It also can control the distribution of natural light inside the room and minimize glare in the perimeter zone of the room. One of the horizontal blind that can be used for that purpose is Sudare. It is traditional Japanese blind that have been used long time in Japanese traditional house especially in summer. In its original function, Sudare is used to prevent direct solar radiation but still introducing natural ventilation. It has some physical characteristics that can be utilize to optimize the effectiveness of natural light. In this research, different scale of Sudare will be simulated using EnergyPlus and DAYSIM simulation software. EnergyPlus is a whole building energy simulation program to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings, while DAYSIM is a validated, RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around buildings. The modelling will be done in Ladybug and Honeybee plugin. These are two open source plugins for Grasshopper and Rhinoceros 3D that help explore and evaluate environmental performance which will directly be connected to EnergyPlus and DAYSIM engines. Using the same model will maintain the consistency of the same geometry used both in EnergyPlus and DAYSIM. The aims of this research is to find the best configuration of façade design which can reduce the external load from the outside of the building to minimize the need of energy for cooling system but maintain the natural light distribution inside the room to maximize the visual comfort for occupant and minimize the need of electrical energy consumption.Keywords: façade, natural light, blind, energy
Procedia PDF Downloads 34510832 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings
Authors: Michalis Michael, Mauro Overend
Abstract:
Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort
Procedia PDF Downloads 6510831 The Impact of Artificial Intelligence on the Behavior of Children and Autism
Authors: Sara Fayez Fawzy Mikhael
Abstract:
Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behavior was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills
Procedia PDF Downloads 10010830 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm
Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine
Abstract:
In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h₀, pitch amplitude θ₀ and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.Keywords: numerical simulation, flapping wing, energy extraction, power coefficient, efficiency, RBF, NSGA-II
Procedia PDF Downloads 4410829 Effect of Al Particles on Corrosion Resistance of Electrodeposited Ni-Al Composite Coatings
Abstract:
Electrodeposition is known as a relatively economical and simple technique commonly used for preparation of metallic and composite coatings. Electrodeposited composite coatings produced by dispersion of particles into the metal matrix show better properties than pure metallic coatings. In recent years, many researches were carried out on Ni matrix coatings reinforced by ceramic particles such as Ni-SiC, Ni-Al2O3, Ni-WC, Ni-CeO2, Ni-ZrO2, Ni-TiO2 to improve their corrosion and wear resistance. However, little effort has been made on incorporation of metal particles into Ni matrix. Therefore, the aim of this work was to produce Ni–Al composite coating on 6061 aluminum alloy by pulse plating and to investigate the effects of electrodeposition parameters, e.g. concentration Al particles in the electrolyte and current density, on composition and corrosion resistance of the composite coatings. The morphology and corrosion behavior of the coated 6061 Al alloys were studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and potentiodynamic polarization method, respectively. The results indicated that the addition of Al particles up to 50 g L-1 increased the amount of co-deposited Al particles in nickel matrix. It is also observed that the incorporation of Al particles decreased with increasing current density. Meanwhile, the corrosion resistance of the coatings shows an increment by increasing the content of Al particles into nickel matrix.Keywords: Ni-Al composite coating, current density, corrosion resistance
Procedia PDF Downloads 48710828 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries
Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh
Abstract:
With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery
Procedia PDF Downloads 157310827 Comparative Effects of Resveratrol and Energy Restriction on Liver Fat Accumulation and Hepatic Fatty Acid Oxidation
Authors: Iñaki Milton-Laskibar, Leixuri Aguirre, Maria P. Portillo
Abstract:
Introduction: Energy restriction is an effective approach in preventing liver steatosis. However, due to social and economic reasons among others, compliance with this treatment protocol is often very poor, especially in the long term. Resveratrol, a natural polyphenolic compound that belongs to stilbene group, has been widely reported to imitate the effects of energy restriction. Objective: To analyze the effects of resveratrol under normoenergetic feeding conditions and under a mild energy restriction on liver fat accumulation and hepatic fatty acid oxidation. Methods: 36 male six-week-old rats were fed a high-fat high-sucrose diet for 6 weeks in order to induce steatosis. Then, rats were divided into four groups and fed a standard diet for 6 additional weeks: control group (C), resveratrol group (RSV, resveratrol 30 mg/kg/d), restricted group (R, 15 % energy restriction) and combined group (RR, 15 % energy restriction and resveratrol 30 mg/kg/d). Liver triacylglycerols (TG) and total cholesterol contents were measured by using commercial kits. Carnitine palmitoyl transferase 1a (CPT 1a) and citrate synthase (CS) activities were measured spectrophotometrically. TFAM (mitochondrial transcription factor A) and peroxisome proliferator-activator receptor alpha (PPARα) protein contents, as well as the ratio acetylated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/Total PGC1α were analyzed by Western blot. Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: No differences were observed among the four groups regarding liver weight and cholesterol content, but the three treated groups showed reduced TG when compared to the control group, being the restricted groups the ones showing the lowest values (with no differences between them). Higher CPT 1a and CS activities were observed in the groups supplemented with resveratrol (RSV and RR), with no difference between them. The acetylated PGC1α /total PGC1α ratio was lower in the treated groups (RSV, R and RR) than in the control group, with no differences among them. As far as TFAM protein expression is concerned, only the RR group reached a higher value. Finally, no changes were observed in PPARα protein expression. Conclusions: Resveratrol administration is an effective intervention for liver triacylglycerol content reduction, but a mild energy restriction is even more effective. The mechanisms of action of these two strategies are different. Thus resveratrol, but not energy restriction, seems to act by increasing fatty acid oxidation, although mitochondriogenesis seems not to be induced. When both treatments (resveratrol administration and a mild energy restriction) were combined, no additive or synergic effects were appreciated. Acknowledgements: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.Keywords: energy restriction, fat, liver, oxidation, resveratrol
Procedia PDF Downloads 21110826 The Impact of Artificial Intelligence on Autism Attitude and Skills
Authors: Samwail Fahmi Francis Yacoub
Abstract:
Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behavior was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.Keywords: attitude, autism, teachers, movement skills, motor skills, children, behavior.
Procedia PDF Downloads 52