Search results for: thermal dissipcation probe
713 Development of Self-Reliant Satellite-Level Propulsion System by Using Hydrogen Peroxide Propellant
Authors: H. J. Liu, Y. A. Chan, C. K. Pai, K. C. Tseng, Y. H. Chen, Y. L. Chan, T. C. Kuo
Abstract:
To satisfy the mission requirement of the FORMOSAT-7 project, NSPO has initialized a self-reliant development on satellite propulsion technology. A trade-off study on different types of on-board propulsion system has been done. A green propellant, high-concentration hydrogen peroxide (H2O2 hereafter), is chosen in this research because it is ITAR-free, nontoxic and easy to produce. As the components designed for either cold gas or hydrazine propulsion system are not suitable for H2O2 propulsion system, the primary objective of the research is to develop the components compatible with H2O2. By cooperating with domestic research institutes and manufacturing vendors, several prototype components, including a diaphragm-type tank, pressure transducer, ball latching valve, and one-Newton thruster with catalyst bed, were manufactured, and the functional tests were performed successfully according to the mission requirements. The requisite environmental tests, including hot firing test, thermal vaccum test, vibration test and compatibility test, are prepared and will be to completed in the near future. To demonstrate the subsystem function, an Air-Bearing Thrust Stand (ABTS) and a real-time Data Acquisition & Control System (DACS) were implemented to assess the performance of the proposed H2O2 propulsion system. By measuring the distance that the thrust stand has traveled in a given time, the thrust force can be derived from the kinematics equation. To validate the feasibility of the approach, it is scheduled to assess the performance of a cold gas (N2) propulsion system prior to the H2O2 propulsion system.Keywords: FORMOSAT-7, green propellant, Hydrogen peroxide, thruster
Procedia PDF Downloads 430712 Nanoparticulated (U,Gd)O2 Characterization
Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati
Abstract:
The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel
Procedia PDF Downloads 332711 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation
Authors: A. A. Abid
Abstract:
The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed beforeKeywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations
Procedia PDF Downloads 122710 Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite
Authors: F. Z. Abir, M. Mesnaoui, Y. Abouliatim, L. Nibou, Y. El Hafiane, A. Smith
Abstract:
The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates.Keywords: calcium sulfoaluminate cement, ferritic phase, sintering, solid-state synthesis, ye’elimite
Procedia PDF Downloads 189709 Carbon Dioxide Removal from Off Gases in a Self-Priming Submerged Venturi Scrubber
Authors: Manisha Bal, Amit Verma, B. C. Meikap
Abstract:
Carbon dioxide (CO₂) is the most abundant waste produced by human activities. It is estimated to be one of the major contributors of greenhouse effect and also considered as a major air pollutant formed by burning of fossil fuels. The main sources of emissions are flue gas from thermal power plants and process industries. It is also a contributor of acid rain. Its exposure through inhalation can lead to health risks. Therefore, control of CO₂ emission in the environment is very necessary. The main focus of this study is on the removal of carbon dioxide from off gases using a self-priming venturi scrubber in submerged conditions using sodium hydroxide as the scrubbing liquid. A self-priming submerged venturi scrubber is an efficient device to remove gaseous pollutants. In submerged condition, venturi scrubber remains submerged in the liquid tank and the liquid enters at the throat section of venturi scrubber due to the pressure difference which includes the hydrostatic pressure of the liquid and static pressure of the gas. The inlet polluted air stream enters through converging section which moves at very high velocity in the throat section and atomizes the liquid droplets. This leads to absorption of CO₂ from the off gases in scrubbing liquid which resulted in removal of CO₂ gas from the off gases. Detailed investigation on the scrubbing of carbon dioxide has been done in this literature. Experiments were conducted at different throat gas velocities, liquid levels in outer cylinder and CO₂ inlet concentrations to study the carbon dioxide removal efficiency. Experimental results give more than 95% removal efficiency of CO₂ in the self priming venturi scrubber which can meet the environmental emission limit of CO₂ to save the human life.Keywords: carbon dioxide, scrubbing, pollution control, self-priming venturi scrubber
Procedia PDF Downloads 222708 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 151707 A Case Study on Utility of 18FDG-PET/CT Scan in Identifying Active Extra Lymph Nodes and Staging of Breast Cancer
Authors: Farid Risheq, M. Zaid Alrisheq, Shuaa Al-Sadoon, Karim Al-Faqih, Mays Abdulazeez
Abstract:
Breast cancer is the most frequently diagnosed cancer worldwide, and a common cause of death among women. Various conventional anatomical imaging tools are utilized for diagnosis, histological assessment and TNM (Tumor, Node, Metastases) staging of breast cancer. Biopsy of sentinel lymph node is becoming an alternative to the axillary lymph node dissection. Advances in 18-Fluoro-Deoxi-Glucose Positron Emission Tomography/Computed Tomography (18FDG-PET/CT) imaging have facilitated breast cancer diagnosis utilizing biological trapping of 18FDG inside lesion cells, expressed as Standardized Uptake Value (SUVmax). Objective: To present the utility of 18FDG uptake PET/CT scans in detecting active extra lymph nodes and distant occult metastases for breast cancer staging. Subjects and Methods: Four female patients were presented with initially classified TNM stages of breast cancer based on conventional anatomical diagnostic techniques. 18FDG-PET/CT scans were performed one hour post 18FDG intra-venous injection of (300-370) MBq, and (7-8) bed/130sec. Transverse, sagittal, and coronal views; fused PET/CT and MIP modality were reconstructed for each patient. Results: A total of twenty four lesions in breast, extended lesions to lung, liver, bone and active extra lymph nodes were detected among patients. The initial TNM stage was significantly changed post 18FDG-PET/CT scan for each patient, as follows: Patient-1: Initial TNM-stage: T1N1M0-(stage I). Finding: Two lesions in right breast (3.2cm2, SUVmax=10.2), (1.8cm2, SUVmax=6.7), associated with metastases to two right axillary lymph nodes. Final TNM-stage: T1N2M0-(stage II). Patient-2: Initial TNM-stage: T2N2M0-(stage III). Finding: Right breast lesion (6.1cm2, SUVmax=15.2), associated with metastases to right internal mammary lymph node, two right axillary lymph nodes, and sclerotic lesions in right scapula. Final TNM-stage: T2N3M1-(stage IV). Patient-3: Initial TNM-stage: T2N0M1-(stage III). Finding: Left breast lesion (11.1cm2, SUVmax=18.8), associated with metastases to two lymph nodes in left hilum, and three lesions in both lungs. Final TNM-stage: T2N2M1-(stage IV). Patient-4: Initial TNM-stage: T4N1M1-(stage III). Finding: Four lesions in upper outer quadrant area of right breast (largest: 12.7cm2, SUVmax=18.6), in addition to one lesion in left breast (4.8cm2, SUVmax=7.1), associated with metastases to multiple lesions in liver (largest: 11.4cm2, SUV=8.0), and two bony-lytic lesions in left scapula and cervicle-1. No evidence of regional or distant lymph node involvement. Final TNM-stage: T4N0M2-(stage IV). Conclusions: Our results demonstrated that 18FDG-PET/CT scans had significantly changed the TNM stages of breast cancer patients. While the T factor was unchanged, N and M factors showed significant variations. A single session of PET/CT scan was effective in detecting active extra lymph nodes and distant occult metastases, which were not identified by conventional diagnostic techniques, and might advantageously replace bone scan, and contrast enhanced CT of chest, abdomen and pelvis. Applying 18FDG-PET/CT scan early in the investigation, might shorten diagnosis time, helps deciding adequate treatment protocol, and could improve patients’ quality of life and survival. Trapping of 18FDG in malignant lesion cells, after a PET/CT scan, increases the retention index (RI%) for a considerable time, which might help localize sentinel lymph node for biopsy using a hand held gamma probe detector. Future work is required to demonstrate its utility.Keywords: axillary lymph nodes, breast cancer staging, fluorodeoxyglucose positron emission tomography/computed tomography, lymph nodes
Procedia PDF Downloads 313706 Analysis of Force Convection in Bandung Triga Reactor Core Plate Types Fueled Using Coolod-N2
Authors: K. A. Sudjatmi, Endiah Puji Hastuti, Surip Widodo, Reinaldy Nazar
Abstract:
Any pretensions to stop the production of TRIGA fuel elements by TRIGA reactor fuel elements manufacturer should be anticipated by the operating agency of TRIGA reactor to replace the cylinder type fuel element with plate type fuel element, that available on the market. This away was performed the calculation on U3Si2Al fuel with uranium enrichment of 19.75% and a load level of 2.96 gU/cm3. Maximum power that can be operated on free convection cooling mode at the BANDUNG TRIGA reactor fuel plate was 600 kW. This study has been conducted thermalhydraulic characteristic calculation model of the reactor core power 2MW. BANDUNG TRIGA reactor core fueled plate type is composed of 16 fuel elements, 4 control elements and one irradiation facility which is located right in the middle of the core. The reactor core is cooled using a pump which is already available with flow rate 900 gpm. Analysis on forced convection cooling mode with flow from the top down from 10%, 20%, 30% and so on up to a 100% rate of coolant flow. performed using the COOLOD-N2 code. The calculations result showed that the 2 MW power with inlet coolant temperature at 37 °C and cooling rate percentage of 50%, then the coolant temperature, maximum cladding and meat respectively 64.96 oC, 124.81 oC, and 125.08 oC, DNBR (departure from nucleate boiling ratio)=1.23 and OFIR (onset of flow instability ratio)=1:00. The results are expected to be used as a reference for determining the power and cooling rate level of the BANDUNG TRIGA reactor core plate types fueled.Keywords: TRIGA, COOLOD-N2, plate type fuel element, force convection, thermal hydraulic characteristic
Procedia PDF Downloads 300705 Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves
Authors: Phillip Ahn, Bryan Kim
Abstract:
Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures.Keywords: heavy metal removal, adsorption, wastewaters, water remediation
Procedia PDF Downloads 290704 Synthesis of Highly Efficient Bio-Octane Number Booster Using Nano Au-NiAlZr-Layered Double Hydroxides Catalyst
Authors: Bachir Redouane, Dib Nihel, Bedrane Sumeya, Blanco Ginesa, Calvino José Juan
Abstract:
Furfural, a key biomass-derived platform compound, holds significant potential for biofuel production and the synthesis of high-value intermediates. This study investigates the hydrogenation-condensation reaction of furfural issued from lignocellulosique biomass with isopropyl alcohol to produce isopropylfurfuryl ether (iPFE), a next-generation synfuel with a high-octane number. iPFE’s water stability and resistance to methanol absorption make it a sustainable alternative to conventional gasoline additives, offering comparable performance. The catalyst used in this reaction is based on NiAl layered double hydroxides (LDH), with zirconium incorporated to enhance the distribution and structure of active sites. Gold (Au) was deposited on the NiAlZr-LDH support to improve selectivity and yield. The addition of Zr improved the thermal and mechanical stability of the catalyst, while the Au modification further increased selectivity toward iPFE. Extensive catalytic experiments were conducted to optimize reaction conditions, including temperature, hydrogen pressure, and Au loading, to maximize iPFE yield. The results demonstrate a high conversion rate of furfural, exceeding 90% under optimal conditions, with enhanced selectivity toward iPFE. Moreover, iPFE was shown to have a higher-octane number compared to traditional furfuryl ethers, making it a highly promising candidate for advanced fuel applications.Keywords: Au-NiAlZr-LDH, biofuels, furfural, green chemistry, hydrogenation, isopropylfurfuryl ether, octane number.
Procedia PDF Downloads 12703 Willingness of Spanish Wineries to Implement Renewable Energies in Their Vineyards and Wineries, as Well as the Limitations They Perceive for Their Implementation
Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo
Abstract:
Climate change, depletion of non-renewable resources in the current energies, pollution from them, the greater ecological awareness of the population, are factors that suggest the change of energy sources in business. The agri-food industry is a growth sector, concerned about product innovation, process and with a clear awareness of what climate change may mean for it. This sector is supposed to have a high receptivity to the implementation of clean energy, as this favors not only the environment but also the essence of its business. This work, through surveys, aims to know the willingness of Spanish wineries to implement renewable energies in their vineyards, as well as the limitations they perceive for their implementation. This questionnaire allows the characterization of the sector in terms of its geographical typologies, their activity levels, their perception of environmental issues, the degree of implementation of measures to mitigate climate change and improve energy efficiency, and its uses and energy consumption. The analysis of data proves that the penetration of renewable energies is still at low levels, being the most used energies, solar thermal, photovoltaic and biomass. The initial investment seems to be at the origin of the lack of implantation of this type of energy in the wineries, and not so much the costs of operations and maintenance. The environmental management of the wineries is still at an embryonic stage within the company's organization chart, because these services are either outsourced or, if technicians are available, they are not exclusively dedicated to these tasks. However, there is a strong environmental awareness, as evidenced by the number of climate change mitigation and energy efficiency measures already adopted. The gap between high awareness and low achievement is probably due to the lack of knowledge about how to do it or the perception of a high cost.Keywords: survey, renewable energy, winery, Spanish case
Procedia PDF Downloads 252702 Research Analysis of Urban Area Expansion Based on Remote Sensing
Authors: Sheheryar Khan, Weidong Li, Fanqian Meng
Abstract:
The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou
Procedia PDF Downloads 139701 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran
Authors: L. Heidari, M. Jalili Ghazizade
Abstract:
This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management
Procedia PDF Downloads 238700 Electrospun Fibers Made from Biopolymers (Cellulose Acetate/Chitosan) for Metals Recovery
Authors: Mauricio Gómez, Esmeralda López, Ian Becar, Jaime Pizarro, Paula A. Zapata
Abstract:
A biodegradable material is developed with adsorptive capacity for metals ion for intended use in mining tailings mitigating the environmental impact with economic retribution, two types of fibers were elaborated by electrospinning: (1) a cellulose acetate (CA) matrix and (2) a cellulose acetate (CA)/chitosan (CH) matrix evaluating the effect of CH in CA on its physicochemical properties. Through diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) the incorporation of chitosan in the matrix was identified, observing the band of the amino group at 1500 - 1600 [cm-1]. By scanning electron microscopy (SEM), Hg porosimetry, and CO2 isotherm at 273 [K], the intrafiber microporosity and interfiber macroporosity were identified, with an increase in the distribution of macropores for CA/CH fibers. In the tensile test, CH into the matrix produces a more ductile and tenacious behavior, where the % elongation at break increased by 33% with the other parameters constant. Thermal analysis by differential scanning calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that the incorporation of chitosan produces higher retention of water molecules due to the functional groups (amino groups (- NH3)), but there is a decrease in the specific heat and thermoplastic properties of the matrix since the glass transition temperature and softening temperature disappear. The effect of the optimum pH for CA and CA/CH fibers were studied in a batch system. In the adsorption kinetic study, the best isotherm model adapted to the experimental results corresponds to the Sips model and the kinetics corresponds to pseudo-second orderKeywords: environmental materials, wastewater treatment, electrospun fibers, biopolymers (cellulose acetate/chitosan), metals recovery
Procedia PDF Downloads 80699 Review of Sulfur Unit Capacity Expansion Options
Authors: Avinashkumar Karre
Abstract:
Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates.Keywords: Claus process, oxygen enrichment, sulfur recovery unit, tail gas treatment unit
Procedia PDF Downloads 125698 A Comparative Study: Influences of Polymerization Temperature on Phosphoric Acid Doped Polybenzimidazole Membranes
Authors: Cagla Gul Guldiken, Levent Akyalcin, Hasan Ferdi Gercel
Abstract:
Fuel cells are electrochemical devices which convert the chemical energy of hydrogen into the electricity. Among the types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs) are attracting considerable attention as non-polluting power generators with high energy conversion efficiencies in mobile applications. Polymer electrolyte membrane (PEM) is one of the essential components of PEMFCs. Perfluorosulfonic acid based membranes known as Nafion® is widely used as PEMs. Nafion® membranes water dependent proton conductivity which limits the operating temperature below 100ᵒC. At higher temperatures, proton conductivity and mechanical stability of these membranes decrease because of dehydration. Polybenzimidazole (PBI), which has good anhydrous proton conductivity after doped with acids, as well as excellent thermal stability, shows great potential in the application of high temperature PEMFCs. In the present study, PBI polymers were synthesized by solution polycondensation at 190 and 210ᵒC. The synthesized polymers were characterized by FTIR, 1H NMR, and TGA. Phosphoric acid doped PBI membranes were prepared and tested in a PEMFC. The influences of reaction temperature on structural properties of synthesized polymers were investigated. Mechanical properties, acid-doping level, proton conductivity, and fuel cell performances of prepared phosphoric acid doped PBI membranes were evaluated. The maximum power density was found as 32.5 mW/cm² at 120ᵒC.Keywords: fuel cell, high temperature polymer electrolyte membrane, polybenzimidazole, proton exchange membrane fuel cell
Procedia PDF Downloads 185697 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction
Procedia PDF Downloads 298696 Shooting Gas Cylinders to Prevent Their Explosion in Fire
Authors: Jerzy Ejsmont, Beata Świeczko-Żurek, Grzegorz Ronowski
Abstract:
Gas cylinders in general and particularly cylinders containing acetylene constitute a great potential danger for fire and rescue services involved in salvage operations. Experiments show that gas cylinders with acetylene, oxygen, hydrogen, CNG, LPG or CO2 may blow after short exposition to heat with very destructive effect as fragments of blown cylinder may fly even several hundred meters. In the case of acetylene, the explosion may occur also several hours after the cylinder is cooled down. One of the possible neutralization procedures that in many cases may be used to prevent explosions is shooting dangerous cylinders by rifle bullets. This technique is used to neutralize acetylene cylinders in a few European countries with great success. In Poland research project 'BLOW' was launched in 2014 with the aim to investigate phenomena related to fire influence on industrial and home used cylinders and to evaluate usefulness of the shooting technique. All together over 100 gas cylinders with different gases were experimentally tested at the military blasting grounds and in shelters. During the experiments cylinder temperature and pressure were recorded. In the case of acetylene that is subjected to thermal decomposition also concentration of hydrogen was monitored. Some of the cylinders were allowed to blow and others were shot by snipers. It was observed that shooting hot cylinders has never created more dangerous situations than letting the cylinders to explode spontaneously. In a great majority of cases cylinders that were punctured by bullets released gas in a more or less violent but relatively safe way. The paper presents detailed information about experiments and presents particularities of behavior of cylinders containing different gases. Extensive research was also done in order to select bullets that may be safely and efficiently used to puncture different cylinders. The paper shows also results of those experiments as well as gives practical information related to techniques that should be used during shooting.Keywords: fire, gas cylinders, neutralization, shooting
Procedia PDF Downloads 260695 Optimal Concentration of Fluorescent Nanodiamonds in Aqueous Media for Bioimaging and Thermometry Applications
Authors: Francisco Pedroza-Montero, Jesús Naín Pedroza-Montero, Diego Soto-Puebla, Osiris Alvarez-Bajo, Beatriz Castaneda, Sofía Navarro-Espinoza, Martín Pedroza-Montero
Abstract:
Nanodiamonds have been widely studied for their physical properties, including chemical inertness, biocompatibility, optical transparency from the ultraviolet to the infrared region, high thermal conductivity, and mechanical strength. In this work, we studied how the fluorescence spectrum of nanodiamonds quenches concerning the concentration in aqueous solutions systematically ranging from 0.1 to 10 mg/mL. Our results demonstrated a non-linear fluorescence quenching as the concentration increases for both of the NV zero-phonon lines; the 5 mg/mL concentration shows the maximum fluorescence emission. Furthermore, this behaviour is theoretically explained as an electronic recombination process that modulates the intensity in the NV centres. Finally, to gain more insight, the FRET methodology is used to determine the fluorescence efficiency in terms of the fluorophores' separation distance. Thus, the concentration level is simulated as follows, a small distance between nanodiamonds would be considered a highly concentrated system, whereas a large distance would mean a low concentrated one. Although the 5 mg/mL concentration shows the maximum intensity, our main interest is focused on the concentration of 0.5 mg/mL, which our studies demonstrate the optimal human cell viability (99%). In this respect, this concentration has the feature of being as biocompatible as water giving the possibility to internalize it in cells without harming the living media. To this end, not only can we track nanodiamonds on the surface or inside the cell with excellent precision due to their fluorescent intensity, but also, we can perform thermometry tests transforming a fluorescence contrast image into a temperature contrast image.Keywords: nanodiamonds, fluorescence spectroscopy, concentration, bioimaging, thermometry
Procedia PDF Downloads 405694 Physio-Thermal and Geochemical Behavior and Alteration of the Au Pathfinder Gangue Hydrothermal Quartz at the Kubi Gold Ore Deposits
Authors: Gabriel K. Nzulu, Lina Rostorm, Hans Högberg, Jun Liu, per Eklund, Lars Hultman, Martin Magnuson
Abstract:
Altered and gangue quartz in hydrothermal veins from the Kubi Gold deposit in Dunkwa on Offin in the central region of Ghana are investigated for possible Au associated pathfinder minerals and to provide understanding and increase the knowledge of the mineral hosting and alteration processes in quartz. X-ray diffraction, air annealing furnace, differential scanning calorimetry, energy dispersive X-ray spectroscopy, and transmission electron microscopy have been applied on different quartz types outcropping from surface and bed rocks at the Kubi Gold Mining to reveal the material properties at different temperatures. From the diffraction results of the fresh and annealed quartz samples, we find that the samples contain pathfinder and the impurity minerals FeS₂, biotite, TiO₂, and magnetite. These minerals, under oxidation process between 574-1400 °C temperatures experienced hematite alterations and a transformation from α-quartz to β-quartz and further to cristobalite as observed from the calorimetry scans for hydrothermally exposed materials. The energy dispersive spectroscopy revealed elemental species of Fe, S, Mg, K, Al, Ti, Na, Si, O, and Ca contained in the samples and these are attributed to the impurity phase minerals observed in the diffraction. The findings also suggest that during the hydrothermal flow regime, impurity minerals and metals can be trapped by voids and faults. Under favorable temperature conditions the trapped minerals can be altered to change color at different depositional stages by oxidation and reduction processes leading to hematite alteration which is a useful pathfinder in mineral exploration.Keywords: quartz, hydrothermal, minerals, hematite, x-ray diffraction, crystal-structure, defects
Procedia PDF Downloads 96693 Alleviation of Thermal Stress in Pinus ponderosa by Plant-Growth Promoting Rhizobacteria Isolated from Mixed-Conifer Forests
Authors: Kelli G. Thorup, Kristopher A. Blee
Abstract:
Climate change enhances the occurrence of extreme weather: wildfires, drought, rising summer temperatures, all of which dramatically decline forest growth and increase tree mortality in the mixed-conifer forests of Sierra Nevada, California. However, microbiota living in mutualistic relations with plant rhizospheres have been found to mitigate the effects of suboptimal environmental conditions. The goal of this research is to isolate native beneficial bacteria, plant-growth promoting rhizobacteria (PGPR), that can alleviate heat stress in Pinus ponderosa seedlings. Bacteria were isolated from the rhizosphere of Pinus ponderosa juveniles located in mixed-conifer stand and further characterized for PGP potential based on their ability to produce key growth regulatory phytohormones including auxin, cytokinin, and gibberellic acid. Out of ten soil samples taken, sixteen colonies were isolated and qualitatively confirmed to produce indole-3-acetic acid (auxin) using Salkowski’s reagent. Future testing will be conducted to quantitatively assess phytohormone production in bacterial isolates. Furthermore, bioassays will be performed to determine isolates abilities to increase tolerance in heat-stressed Pinus ponderosa seedlings. Upon completion of this research, a PGPR could be utilized to support the growth and transplantation of conifer seedlings as summer temperatures continue to rise due to the effects of climate change.Keywords: conifer, heat-stressed, phytohormones, Pinus ponderosa, plant-growth promoting rhizobacteria
Procedia PDF Downloads 118692 Vibration Analysis of Stepped Nanoarches with Defects
Authors: Jaan Lellep, Shahid Mubasshar
Abstract:
A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.Keywords: crack, nanoarches, natural frequency, step
Procedia PDF Downloads 128691 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water
Authors: Ahmed A. Alghamdi
Abstract:
Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis
Procedia PDF Downloads 51690 Apparent Temperature Distribution on Scaffoldings during Construction Works
Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa
Abstract:
People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuriesKeywords: apparent temperature, health, safety work, scaffoldings
Procedia PDF Downloads 182689 Insights and Observation for Optimum Work Roll Cooling in Flat Hot Mills: A Case Study on Shape Defect Elimination
Authors: Uday S. Goel, G. Senthil Kumar, Biswajit Ghosh, V. V. Mahashabde, Dhirendra Kumar, H. Manjunath, Ritesh Kumar, Mahesh Bhagwat, Subodh Pandey
Abstract:
Tata Steel Bhushan Steel Ltd.(TSBSL)’s Hot Mill at Angul , Orissa , India, was facing shape issues in Hot Rolled (HR) coils. This was resulting in a defect called as ‘Ridge’, which was appearing in subsequent cold rolling operations at various cold mills (CRM) and external customers. A collaborative project was undertaken to resolve this issue. One of the reasons identified was the strange drop in thermal crown after rolling of 20-25 coils in the finishing mill (FM ) schedule. On the shop floor, it was observed that work roll temperatures in the FM after rolling were very high and non uniform across the work roll barrel. Jammed work roll cooling nozzles, insufficient roll bite lubrication and inadequate roll cooling water quality were found to be the main reasons. Regular checking was initiated to check roll cooling nozzles health, and quick replacement done if found jammed was implemented. Improvements on roll lubrication, especially flow rates, was done. Usage of anti-peeling headers and inter stand descaling was enhanced. A subsequent project was also taken up for improving the quality of roll cooling water. Encouraging results were obtained from the project with a reduction in rejection due to ridge at CRM’s by almost 95% of the pre project start levels. Poor profile occurrence of HR coils at HSM was also reduced from a high of 32% in May’19 to <1% since Apr’20.Keywords: hot rolling flat, shape, ridge, work roll, roll cooling nozzle, lubrication
Procedia PDF Downloads 99688 Collagen Silver Lipid Nanoparticles as Matrix and Fillers for Cosmeceuticals: An In-Vitro and In-Vivo Study
Authors: Kumari Kajal, Muthu Kumar Sampath, Hare Ram Singh
Abstract:
In this context, the formulation and characterization of collagen silver lipid nanoparticles (CSLNs) were studied for their capacity to serve as fillers/matrix materials used in cosmeceutical applications. The CSLNs were prepared following a series of studies, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy FT-IR; thermogravimetric analysis (TGA); and differential scanning calorimetry (DSC). The studies confirmed the structural integrity of nanoparticles, their cargo and thermal stability. The biological functionality of CSLNs was studied by carrying out in vitro & in vivo studies. The antibacterial effect, hemocompatibility and anti-inflammatory characteristics of these fibers were systematically investigated. The toxicological assays included oral toxicity in mice and aquatic life tests with the fish Danio rerio model. The morphology of the nanoparticles was confirmed using high-resolution transmission electron microscopy (HR-TEM). The report found that CSLNs had strong antimicrobial effects, unmatched hemocompatibility, and low or absent inflammatory reactions, which makes them perfect candidates for cosmeceutical applications. The toxicological evaluations evinced a good safety record without any significant adverse effects in both murine and Danio rerio models. This research reveals the efficient way of CSLNs to the efficacy and safety of dermaceuticals.Keywords: collagen silver lipid nanoparticles (CSLNs), cosmeceuticals, antimicrobial activity, hemocompatibility, in vitro assessment, in vivo assessment.
Procedia PDF Downloads 15687 An Investigation into the Impacts of High-Frequency Electromagnetic Fields Utilized in the 5G Technology on Insects
Authors: Veriko Jeladze, Besarion Partsvania, Levan Shoshiashvili
Abstract:
This paper addresses a very topical issue today. The frequency range 2.5-100 GHz contains frequencies that have already been used or will be used in modern 5G technologies. The wavelengths used in 5G systems will be close to the body dimensions of small size biological objects, particularly insects. Because the body and body parts dimensions of insects at these frequencies are comparable with the wavelength, the high absorption of EMF energy in the body tissues can occur(body resonance) and therefore can cause harmful effects, possibly the extinction of some of them. An investigation into the impact of radio-frequency nonionizing electromagnetic field (EMF) utilized in the future 5G on insects is of great importance as a very high number of 5G network components will increase the total EMF exposure in the environment. All ecosystems of the earth are interconnected. If one component of an ecosystem is disrupted, the whole system will be affected (which could cause cascading effects). The study of these problems is an important challenge for scientists today because the existing studies are incomplete and insufficient. Consequently, the purpose of this proposed research is to investigate the possible hazardous impact of RF-EMFs (including 5G EMFs) on insects. The project will study the effects of these EMFs on various insects that have different body sizes through computer modeling at frequencies from 2.5 to 100 GHz. The selected insects are honey bee, wasp, and ladybug. For this purpose, the detailed 3D discrete models of insects are created for EM and thermal modeling through FDTD and will be evaluated whole-body Specific Absorption Rates (SAR) at selected frequencies. All these studies represent a novelty. The proposed study will promote new investigations about the bio-effects of 5G-EMFs and will contribute to the harmonization of safe exposure levels and frequencies of 5G-EMFs'.Keywords: electromagnetic field, insect, FDTD, specific absorption rate (SAR)
Procedia PDF Downloads 91686 Environmental Protection by Optimum Utilization of Car Air Conditioners
Authors: Sanchita Abrol, Kunal Rana, Ankit Dhir, S. K. Gupta
Abstract:
According to N.R.E.L.’s findings, 700 crore gallons of petrol is used annually to run the air conditioners of passenger vehicles (nearly 6% of total fuel consumption in the USA). Beyond fuel use, the Environmental Protection Agency reported that refrigerant leaks from auto air conditioning units add an additional 5 crore metric tons of carbon emissions to the atmosphere each year. The objective of our project is to deal with this vital issue by carefully modifying the interiors of a car thereby increasing its mileage and the efficiency of its engine. This would consequently result in a decrease in tail emission and generated pollution along with improved car performance. An automatic mechanism, deployed between the front and the rear seats, consisting of transparent thermal insulating sheet/curtain, would roll down as per the requirement of the driver in order to optimize the volume for effective air conditioning, when travelling alone or with a person. The reduction in effective volume will yield favourable results. Even on a mild sunny day, the temperature inside a parked car can quickly spike to life-threatening levels. For a stationary parked car, insulation would be provided beneath its metal body so as to reduce the rate of heat transfer and increase the transmissivity. As a result, the car would not require a large amount of air conditioning for maintaining lower temperature, which would provide us similar benefits. Authors established the feasibility studies, system engineering and primarily theoretical and experimental results confirming the idea and motivation to fabricate and test the actual product.Keywords: automation, car, cooling insulating curtains, heat optimization, insulation, reduction in tail emission, mileage
Procedia PDF Downloads 277685 Experimental and Numerical Performance Analysis for Steam Jet Ejectors
Authors: Abdellah Hanafi, G. M. Mostafa, Mohamed Mortada, Ahmed Hamed
Abstract:
The steam ejectors are the heart of most of the desalination systems that employ vacuum. The systems that employ low grade thermal energy sources like solar energy and geothermal energy use the ejector to drive the system instead of high grade electric energy. The jet-ejector is used to create vacuum employing the flow of steam or air and using the severe pressure drop at the outlet of the main nozzle. The present work involves developing a one dimensional mathematical model for designing jet-ejectors and transform it into computer code using Engineering Equation solver (EES) software. The model receives the required operating conditions at the inlets and outlet of the ejector as inputs and produces the corresponding dimensions required to reach these conditions. The one-dimensional model has been validated using an existed model working on Abu-Qir power station. A prototype has been designed according to the one-dimensional model and attached to a special test bench to be tested before using it in the solar desalination pilot plant. The tested ejector will be responsible for the startup evacuation of the system and adjusting the vacuum of the evaporating effects. The tested prototype has shown a good agreement with the results of the code. In addition a numerical analysis has been applied on one of the designed geometry to give an image of the pressure and velocity distribution inside the ejector from a side, and from other side, to show the difference in results between the two-dimensional ideal gas model and real prototype. The commercial edition of ANSYS Fluent v.14 software is used to solve the two-dimensional axisymmetric case.Keywords: solar energy, jet ejector, vacuum, evaporating effects
Procedia PDF Downloads 621684 Ultradrawing and Ultimate Tensile Properties of Ultrahigh Molecular Weight Polyethylene Composite Fibers Filled with Activated Nanocarbon Particles with Varying Specific Surface Areas
Authors: Wang-Xi Fan, Yi Ding, Zhong-Dan Tu, Kuo-Shien Huang, Chao-Ming Huang, Jen-Taut Yeh
Abstract:
Original and/or functionalized activated nanocarbon particles with a quoted specific surface area of 100, 500, 1000 and 1400 m2/g, respectively, were used to investigate the influence of specific surface areas of activated nanocarbon on ultra drawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE), UHMWPE/activated nanocarbon and UHMWPE/ functionalized activated nanocarbon fibers. The specific surface areas of well dispersed functionalized activated nanocarbon in UHMWPE/functionalized activated nanocarbon fibers can positively affect their ultra drawing, orientation, ultimate tensile properties and “micro-fibril” characteristics. Excellent orientation and ultimate tensile properties of UHMWPE/nanofiller fibers can be prepared by ultra drawing the UHMWPE/functionalized activated nanocarbon as-prepared fibers with optimal contents and compositions of functionalized activated nanocarbon. The ultimate tensile strength value of the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber reached 8.0 GPa, which was about 2.86 times of that of the best-prepared UHMWPE drawn fiber prepared in this study. Specific surface area, morphological and Fourier transform infrared analyses of original and functionalized activated nanocarbon and/or investigations of thermal, orientation factor and ultimate tensile properties of as-prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers were performed to understand the above-improved ultra drawing and ultimate tensile properties of the UHMWPE/functionalized activated nanocarbon fibers.Keywords: activated nanocarbon, specific surface areas, ultradrawing, ultrahigh molecular weight polyethylene
Procedia PDF Downloads 372