Search results for: competitive performance importance-performance analysis
33771 Urban Corridor Management Strategy Based on Intelligent Transportation System
Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain
Abstract:
Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.Keywords: congestion, ITS strategies, mobility, safety
Procedia PDF Downloads 44333770 Utilizing Hybrid File Mapping for High-Performance I/O
Authors: Jaechun No
Abstract:
As the technology of NAND flash memory rapidly grows, SSD is becoming an excellent alternative for storage solutions, because of its high random I/O throughput and low power consumption. These SSD potentials have drawn great attention from IT enterprises that seek for better I/O performance. However, high SSD cost per capacity makes it less desirable to construct a large-scale storage subsystem solely composed of SSD devices. An alternative is to build a hybrid storage subsystem where both HDD and SSD devices are incorporated in an economic manner, while employing the strengths of both devices. This paper presents a hybrid file system, called hybridFS, that attempts to utilize the advantages of HDD and SSD devices, to provide a single, virtual address space by integrating both devices. HybridFS not only proposes an efficient implementation for the file management in the hybrid storage subsystem but also suggests an experimental framework for making use of the excellent features of existing file systems. Several performance evaluations were conducted to verify the effectiveness and suitability of hybridFS.Keywords: hybrid file mapping, data layout, hybrid device integration, extent allocation
Procedia PDF Downloads 50633769 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 13233768 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact
Authors: Edward Nartey
Abstract:
Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations
Procedia PDF Downloads 6433767 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs
Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello
Abstract:
MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction
Procedia PDF Downloads 45133766 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass
Authors: A. Driouiche, S. Mohareb, A. Hadfi
Abstract:
In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).Keywords: Agadir, irrigation, scaling water, wastewater
Procedia PDF Downloads 12033765 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans
Authors: Tomas Premoli, Sareh Rowlands
Abstract:
In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI
Procedia PDF Downloads 7333764 Investigating the Effects of Managerial Competencies on Organizational Performance through the Mediating Role of Entrepreneurship and Social Capital
Authors: Nader Chavoshi Boroujeni, Naser Chavoshi Boroujeni
Abstract:
Considering the importance of managerial competencies on organizational performance as well as the role of social capital and entrepreneurship as mediator parameters affecting organizational performance, this study attempts to examine the impact carefully. In this regard, Isfahan Science and Technology Town (ISTT) as an effective and knowledge generator company that has a great effect on improving organizational performances of many other companies such as Knowledge-Based Companies (KBCs) activing in the ISTT's site was selected as statistical population. According to coordination with the Department of Development and Technology of ISTT, all employees of ISTT and active KBCs were selected as sample. Then, to analyze the variables a standard and self-made questionnaire containing 98 questions was designed and distributed. Of the 350 questionnaires distributed, 319 questionnaires were collected that 313 cases were confirmed and analyzed. To confirm the reliability of questionnaire, the Leader professor and two other professors approved it. Cronbach's alpha coefficient was used to validate the questionnaire that all coefficient was between 0/7 and 0/95. So, the validity was confirmed. After descriptive study population, the normality of distribution was investigated with Kolmogorov-Smirnov test. Finally, the results obtained from the questionnaires were analyzed by Amos software that all hypotheses were confirmed.Keywords: managerial competencies, personnel organizational performance, entrepreneurship, social capital
Procedia PDF Downloads 26933763 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance
Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher
Abstract:
The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis
Procedia PDF Downloads 4633762 Performance and Emission Characteristics of Spark Ignition Engine Running with Gasoline, Blends of Ethanol, and Blends of Ethiopian Arekie
Authors: Mengistu Gizaw Gawo, Bisrat Yoseph Gebrehiwot
Abstract:
Petroleum fuels have become a threat to the world because of their toxic emissions. Besides, it is unknown how long they will last. The only known fact is that they are depleting rapidly and will not last long. So the world’s concern about finding environmentally friendly alternative fuels has increased recently. Hence alcohol fuels are found to be the most convenient alternatives to use in internal combustion engines. This research intends to introduce Ethiopian locally produced alcohol as an alternative in the blended form with gasoline to use in spark ignition engines. The traditionally distilled Arekie was purchased from a local producer and purified using fractional distillation. Then five Arekie-gasoline blends were prepared with the proportion of 5,10,15,20 and 25%v/v (A5, A10, A15, A20, and A25, respectively). Also, absolute ethanol was purchased from a local supplier, and ethanol-gasoline blends were prepared with a similar proportion as Arekie-gasoline blends (E5, E10, E15, E20, and E25). Then an experiment was conducted on a single-cylinder, 4-stroke, spark-ignition engine running at a constant speed of 2500 rpm and variable loads to investigate the performance and emission characteristics. Results showed that the performance and emission parameters are significantly improved as the ratio of Arekie and ethanol in gasoline increases at all loads. Among all tested fuels, E20 exhibited better performance, and E25 exhibited better emission. A20 provided a slightly lower performance than E20 but was much improved compared to pure gasoline. A25 provided comparable emissions with E25 and was much better than pure gasoline. Generally, adding up to 20%v/v Ethiopian Arekie in gasoline could make a better, renewable alternative to spark ignition engines.Keywords: alcohol fuels, alternative fuels, pollutant emissions, spark-ignition engine, Arekie-gasoline blends
Procedia PDF Downloads 11933761 The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria
Authors: Alaa Sarhan, Rania Abd El Gelil, Hana Awad
Abstract:
Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation.Keywords: educational buildings, natural ventilation, , mediterranean climate, thermal comfort
Procedia PDF Downloads 22133760 A Study Problem and Needs Compare the Held of the Garment Industries in Nonthaburi and Bangkok Area
Authors: Thepnarintra Praphanphat
Abstract:
The purposes of this study were to investigate garment industry’s condition, problems, and need for assistance. The population of the study was 504 managers or managing directors of garment establishments finished apparel industrial manager and permission of the Department of Industrial Works 28, Ministry of Industry until January 1, 2012. In determining the sample size with the opening of the Taro Yamane finished at 95% confidence level is ± 5% deviation was 224 managers. Questionnaires were used to collect the data. Percentage, frequency, arithmetic mean, standard deviation, t-test, ANOVA, and LSD were used to analyze the data. It was found that most establishments were of a large size, operated in a form of limited company for more than 15 years most of which produced garments for working women. All investment was made by Thai people. The products were made to order and distributed domestically and internationally. The total sale of the year 2010, 2011, and 2012 was almost the same. With respect to the problems of operating the business, the study indicated, as a whole, by- aspects, and by-items, that they were at a high level. The comparison of the level of problems of operating garment business as classified by general condition showed that problems occurring in business of different sizes were, as a whole, not different. In taking aspects into consideration, it was found that the level of problem in relation to production was different; medium establishments had more problems in production than those of small and large sizes. According to the by-items analysis, five problems were found different; namely, problems concerning employees, machine maintenance, number of designers, and price competition. Such problems in the medium establishments were at a higher level than those in the small and large establishments. Regarding business age, the examination yielded no differences as a whole, by-aspects, and by-items. The statistical significance level of this study was set at .05.Keywords: garment industry, garment, fashion, competitive enhancement project
Procedia PDF Downloads 18733759 Bee Products Development and Innovation
Authors: Hasan Vural
Abstract:
In this study, innovation subject is explained firstly. Later the basic concepts of innovation and new food products development in marketing of bee products are investigated. Examples of the application of research results will be presented. Subject will be discussed benefiting from scientific studies based on literature review. Innovation is widely recognised as important to commercial success in the food industry, as both a major source of competitive advantage and the creation of a company’s future. However, the new product development process is described as being fraught with failures, with only approximately 10% of new products remaining on the market within a year of commercialisation. In addition, for every new food product that does reach commercialisation, there are likely to be many concepts that are rejected during the new food product development process. No roadmap exactly describes a route to a goal: exhortations to follow ‘10 Steps to a successful Product’ or use ‘Smith’s Method to Do Successful Products’ are, therefore, all approximations. Roadmaps do not describe the actual journey, only the general direction.Keywords: innovation, agrofood product development, beekeeping products, honey marketing
Procedia PDF Downloads 41233758 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert
Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman
Abstract:
This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters
Procedia PDF Downloads 43333757 CRM Cloud Computing: An Efficient and Cost Effective Tool to Improve Customer Interactions
Authors: Gaurangi Saxena, Ravindra Saxena
Abstract:
Lately, cloud computing is used to enhance the ability to attain corporate goals more effectively and efficiently at lower cost. This new computing paradigm “The Cloud Computing” has emerged as a powerful tool for optimum utilization of resources and gaining competitiveness through cost reduction and achieving business goals with greater flexibility. Realizing the importance of this new technique, most of the well known companies in computer industry like Microsoft, IBM, Google and Apple are spending millions of dollars in researching cloud computing and investigating the possibility of producing interface hardware for cloud computing systems. It is believed that by using the right middleware, a cloud computing system can execute all the programs a normal computer could run. Potentially, everything from most simple generic word processing software to highly specialized and customized programs designed for specific company could work successfully on a cloud computing system. A Cloud is a pool of virtualized computer resources. Clouds are not limited to grid environments, but also support “interactive user-facing applications” such as web applications and three-tier architectures. Cloud Computing is not a fundamentally new paradigm. It draws on existing technologies and approaches, such as utility Computing, Software-as-a-service, distributed computing, and centralized data centers. Some companies rent physical space to store servers and databases because they don’t have it available on site. Cloud computing gives these companies the option of storing data on someone else’s hardware, removing the need for physical space on the front end. Prominent service providers like Amazon, Google, SUN, IBM, Oracle, Salesforce etc. are extending computing infrastructures and platforms as a core for providing top-level services for computation, storage, database and applications. Application services could be email, office applications, finance, video, audio and data processing. By using cloud computing system a company can improve its customer relationship management. A CRM cloud computing system may be highly useful in delivering a sales team a blend of unique functionalities to improve agent/customer interactions. This paper attempts to first define the cloud computing as a tool for running business activities more effectively and efficiently at a lower cost; and then it distinguishes cloud computing with grid computing. Based on exhaustive literature review, authors discuss application of cloud computing in different disciplines of management especially in the field of marketing with special reference to use of cloud computing in CRM. Study concludes that CRM cloud computing platform helps a company track any data, such as orders, discounts, references, competitors and many more. By using CRM cloud computing, companies can improve its customer interactions and by serving them more efficiently that too at a lower cost can help gaining competitive advantage.Keywords: cloud computing, competitive advantage, customer relationship management, grid computing
Procedia PDF Downloads 31233756 Collaborative Platform for Learning Basic Programming (Algorinfo)
Authors: Edgar Mauricio Ruiz Osuna, Claudia Yaneth Herrera Bolivar, Sandra Liliana Gomez Vasquez
Abstract:
The increasing needs of professionals with skills in software development in industry are incremental, therefore, the relevance of an educational process in line with the strengthening of these competencies, are part of the responsibilities of universities with careers related to the area of Informatics and Systems. In this sense, it is important to consider that in the National Science, Technology and Innovation Plan for the development of the Electronics, Information Technologies and Communications (2013) sectors, it is established as a weakness in the SWOT Analysis of the Software sector and Services, Deficiencies in training and professional training. Accordingly, UNIMINUTO's Computer Technology Program has addressed the analysis of students' performance in software development, identifying various problems such as dropout in programming subjects, academic averages, as well as deficiencies in strategies and competencies developed in the area of programming. As a result of this analysis, it was determined to design a collaborative learning platform in basic programming using heat maps as a tool to support didactic feedback. The pilot phase allows to evaluate in a programming course the ALGORINFO platform as a didactic resource, through an interactive and collaborative environment where students can develop basic programming practices and in turn, are fed back through the analysis of time patterns and difficulties frequent in certain segments or program cycles, by means of heat maps. The result allows the teacher to have tools to reinforce and advise critical points generated on the map, so that students and graduates improve their skills as software developers.Keywords: collaborative platform, learning, feedback, programming, heat maps
Procedia PDF Downloads 16233755 Stable Isotope Analysis of Faunal Remains of Ancient Kythnos Island for Paleoenvironmental Reconstruction
Authors: M. Tassi, E. Dotsika, P. Karalis, A. Trantalidou, A. Mazarakis Ainian
Abstract:
The Kythnos Island in Greece is of particular archaeological interest, as it has been inhabited from the 12th BC until the 7th AD. From island excavations, numerous faunal and human skeletal remains have been recovered. This work is the first attempt at the paleoenvironmental reconstruction of the island via stable isotope analysis. Specifically, we perform 13C and 18O isotope analysis in faunal bone apatite in order to investigate the climate conditions that prevailed in the area. Additionally, we conduct 13C and 15N isotope analysis in faunal bone collagen, which will constitute the baseline for the subsequent diet reconstruction of the ancient Kythnos population.Keywords: stable isotopes analysis, bone collagen stable isotope analysis, bone apatite stable isotope analysis, paleodiet, palaeoclimate
Procedia PDF Downloads 14433754 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 15733753 Estimation of Service Quality and Its Impact on Market Share Using Business Analytics
Authors: Haritha Saranga
Abstract:
Service quality has become an important driver of competition in manufacturing industries of late, as many products are being sold in conjunction with service offerings. With increase in computational power and data capture capabilities, it has become possible to analyze and estimate various aspects of service quality at the granular level and determine their impact on business performance. In the current study context, dealer level, model-wise warranty data from one of the top two-wheeler manufacturers in India is used to estimate service quality of individual dealers and its impact on warranty related costs and sales performance. We collected primary data on warranty costs, number of complaints, monthly sales, type of quality upgrades, etc. from the two-wheeler automaker. In addition, we gathered secondary data on various regions in India, such as petrol and diesel prices, geographic and climatic conditions of various regions where the dealers are located, to control for customer usage patterns. We analyze this primary and secondary data with the help of a variety of analytics tools such as Auto-Regressive Integrated Moving Average (ARIMA), Seasonal ARIMA and ARIMAX. Study results, after controlling for a variety of factors, such as size, age, region of the dealership, and customer usage pattern, show that service quality does influence sales of the products in a significant manner. A more nuanced analysis reveals the dynamics between product quality and service quality, and how their interaction affects sales performance in the Indian two-wheeler industry context. We also provide various managerial insights using descriptive analytics and build a model that can provide sales projections using a variety of forecasting techniques.Keywords: service quality, product quality, automobile industry, business analytics, auto-regressive integrated moving average
Procedia PDF Downloads 12033752 Predictive Value of Hepatitis B Core-Related Antigen (HBcrAg) during Natural History of Hepatitis B Virus Infection
Authors: Yanhua Zhao, Yu Gou, Shu Feng, Dongdong Li, Chuanmin Tao
Abstract:
The natural history of HBV infection could experience immune tolerant (IT), immune clearance (IC), HBeAg-negative inactive/quienscent carrier (ENQ), and HBeAg-negative hepatitis (ENH). As current biomarkers for discriminating these four phases have some weaknesses, additional serological indicators are needed. Hepatits B core-related antigen (HBcrAg) encoded with precore/core gene contains denatured HBeAg, HBV core antigen (HBcAg) and a 22KDa precore protein (p22cr), which was demonstrated to have a close association with natural history of hepatitis B infection, but no specific cutoff values and diagnostic parameters to evaluate the diagnostic efficacy. This study aimed to clarify the distribution of HBcrAg levels and evaluate its diagnostic performance during the natural history of infection from a Western Chinese perspective. 294 samples collected from treatment-naïve chronic hepatitis B (CHB) patients in different phases (IT=64; IC=72; ENQ=100, and ENH=58). We detected the HBcrAg values and analyzed the relationship between HBcrAg and HBV DNA. HBsAg and other clinical parameters were quantitatively tested. HBcrAg levels of four phases were 9.30 log U/mL, 8.80 log U/mL, 3.00 log U/mL, and 5.10 logU/mL, respectively (p < 0.0001). Receiver operating characteristic curve analysis demonstrated that the area under curves (AUCs) of HBcrAg and quantitative HBsAg at cutoff values of 9.25 log U/mL and 4.355 log IU/mL for distinguishing IT from IC phases were 0.704 and 0.694, with sensitivity 76.39% and 59.72%, specificity 53.13% and 79.69%, respectively. AUCs of HBcrAg and quantitative HBsAg at cutoff values of 4.15 log U/mlmL and 2.395 log IU/mlmL for discriminating between ENQ and ENH phases were 0.931 and 0.653, with sensitivity 87.93% and 84%, specificity 91.38% and 39%, respectively. Therefore, HBcrAg levels varied significantly among four natural phases of HBV infection. It had higher predictive performance than quantitative HBsAg for distinguishing between ENQ-patients and ENH-patients and similar performance with HBsAg for the discrimination between IT and IC phases, which indicated that HBcrAg could be a potential serological marker for CHB.Keywords: chronic hepatitis B, hepatitis B core-related antigen, hepatitis B surface antigens, hepatitis B virus
Procedia PDF Downloads 41833751 Maintenance Performance Measurement Derived Optimization: A Case Study
Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu
Abstract:
Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.Keywords: maintenance, vendor-managed, decision support, performance, optimization
Procedia PDF Downloads 12533750 The Impact of Shared Culture, Trust and Information Exchange on Satisfaction and Financial Performance: Moderating Effects of Supply Chain Dependence
Authors: Hung Nguyen, Norma Harrison
Abstract:
This paper examines the role supply chain dependence as contingency factors which affect the effectiveness of different critical factors (in terms trust, information exchange and shared culture) in delivering supply chain satisfaction and financial performance. Using the data of 468 manufacturing firms in the Global Manufacturing Research Group, this study shows that supply chain dependence strengthens the positive relationship between shared culture & vision and supply chain satisfaction while dampens the relationship between trust and satisfaction. The study also demonstrates the direct positive effect of satisfaction on financial performance. Supply chain managers were advised to emphasize on the alignments of common understanding, codes, languages, common shared vision and similar cultures.Keywords: information exchange, shared culture, satisfaction, supply chain dependence
Procedia PDF Downloads 38433749 Impact of Slenderness Ratios on the Seismic Behavior of Reinforced Concrete Buildings
Authors: Juan Bojórquez, F. de Jesús Merino, Edén Bojórquez, Mario Llanez-Tizoc, Federico Valenzuela-Beltrán, Mario R. Flores, J. Ramón Gaxiola-Camacho, Henry Reyes
Abstract:
As urban populations continue to grow, the demand for higher housing density in large cities has led to increased use of slender buildings to maximize limited land availability. However, structures with high slenderness ratios face significant challenges related to their resistance capacity and lateral stiffness, particularly in seismic conditions. This study evaluates the seismic behavior of four reinforced concrete frame buildings with varying slenderness ratios situated on soft soil in Mexico City. Utilizing step-by-step nonlinear dynamic analysis, the research compares the seismic performance of these buildings, presenting detailed results, conclusions, and recommendations for enhancing the earthquake resistance of slender structures.Keywords: dynamic analysis, reinforced concrete buildings, seismic behavior, slenderness ratio
Procedia PDF Downloads 2433748 Time-dependent Association between Recreational Cannabinoid Use and Memory Performance in Healthy Adults: A Neuroimaging Study of Human Connectome Project
Authors: Kamyar Moradi
Abstract:
Background: There is mixed evidence regarding the association between recreational cannabinoid use and memory performance. One of the major reasons for the present controversy is different cannabinoid use-related covariates that influence the cognitive status of an individual. Adjustment of these confounding variables provides accurate insight into the real effects of cannabinoid use on memory status. In this study, we sought to investigate the association between recent recreational cannabinoid use and memory performance while correcting the model for other possible covariates such as demographic characteristics and duration, and amount of cannabinoid use. Methods: Cannabinoid users were assigned to two groups based on the results of THC urine drug screen test (THC+ group: n = 110, THC- group: n = 410). THC urine drug screen test has a high sensitivity and specificity in detecting cannabinoid use in the last 3-4 weeks. The memory domain of NIH Toolbox battery and brain MRI volumetric measures were compared between the groups while adjusting for confounding variables. Results: After Benjamini-Hochberg p-value correction, the performance in all of the measured memory outcomes, including vocabulary comprehension, episodic memory, executive function/cognitive flexibility, processing speed, reading skill, working memory, and fluid cognition, were significantly weaker in THC+ group (p values less than 0.05). Also, volume of gray matter, left supramarginal, right precuneus, right inferior/middle temporal, right hippocampus, left entorhinal, and right pars orbitalis regions were significantly smaller in THC+ group. Conclusions: this study provides evidence regarding the acute effect of recreational cannabis use on memory performance. Further studies are warranted to confirm the results.Keywords: brain MRI, cannabis, memory, recreational use, THC urine test
Procedia PDF Downloads 19633747 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 1133746 Applied Mathematical Approach on “Baut” Special High Performance Metal Aggregate by Formulation and Equations
Authors: J. R. Bhalla, Gautam, Gurcharan Singh, Sanjeev Naval
Abstract:
Mathematics is everywhere behind the every things on the earth as well as in the universe. Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. Now a day’s we can made and apply an equation on a complex geometry through applied mathematics. Here we work and focus on to create a formula which apply in the field of civil engineering in new concrete technology. In this paper our target is to make a formula which is applied on “BAUT” Metal Aggregate. In this paper our approach is to make formulation and equation on special “BAUT” Metal Aggregate by Applied Mathematical Study Case 1. BASIC PHYSICAL FORMULATION 2. ADVANCE EQUATION which shows the mechanical performance of special metal aggregates for concrete technology. In case 1. Basic physical formulation shows the surface area and volume manually and in case 2. Advance equation shows the mechanical performance has been discussed, the metal aggregates which had outstandingly qualities to resist shear, tension and compression forces. In this paper coarse metal aggregates is 20 mm which used for making high performance concrete (H.P.C).Keywords: applied mathematical study case, special metal aggregates, concrete technology, basic physical formulation, advance equation
Procedia PDF Downloads 37433745 A Stable Method for Determination of the Number of Independent Components
Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor
Abstract:
Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock
Procedia PDF Downloads 9933744 Displacement Based Design of a Dual Structural System
Authors: Romel Cordova Shedan
Abstract:
The traditional seismic design is the methodology of Forced Based Design (FBD). The Displacement Based Design (DBD) is a seismic design that considers structural damage to achieve a failure mechanism of the structure before the collapse. It is easier to quantify damage of a structure with displacements rather than forces. Therefore, a structure to achieve an inelastic displacement design with good ductility, it is necessary to be damaged. The first part of this investigation is about differences between the methodologies of DBD and FBD with some DBD advantages. In the second part, there is a study case about a dual building 5-story, which is regular in plan and elevation. The building is located in a seismic zone, which acceleration in firm soil is 45% of the acceleration of gravity. Then it is applied both methodologies into the study case to compare its displacements, shear forces and overturning moments. In the third part, the Dynamic Time History Analysis (DTHA) is done, to compare displacements with DBD and FBD methodologies. Three accelerograms were used and the magnitude of the acceleration scaled to be spectrum compatible with design spectrum. Then, using ASCE 41-13 guidelines, the hinge plastics were assigned to structure. Finally, both methodologies results about study case are compared. It is important to take into account that the seismic performance level of the building for DBD is greater than FBD method. This is due to drifts of DBD are in the order of 2.0% and 2.5% comparing with FBD drifts of 0.7%. Therefore, displacements of DBD is greater than the FBD method. Shear forces of DBD result greater than FBD methodology. These strengths of DBD method ensures that structure achieves design inelastic displacements, because those strengths were obtained due to a displacement spectrum reduction factor which depends on damping and ductility of the dual system. Also, the displacements for the study case for DBD results to be greater than FBD and DTHA. In that way, it proves that the seismic performance level of the building for DBD is greater than FBD method. Due to drifts of DBD which are in the order of 2.0% and 2.5% compared with little FBD drifts of 0.7%.Keywords: displacement-based design, displacement spectrum reduction factor, dynamic time history analysis, forced based design
Procedia PDF Downloads 22933743 Seismic Assessment of RC Structures
Authors: Badla Oualid
Abstract:
A great number of existing buildings are designed without seismic design criteria and detailing rules for dissipative structural behavior. Thus, it is of critical importance that the structures that need seismic retrofitting are correctly identified, and an optimal retrofitting is conducted in a cost effective fashion. Among the retrofitting techniques available, steel braces can be considered as one of the most efficient solution among seismic performance upgrading methods of RC structures. This paper investigates the seismic behavior of RC buildings strengthened with different types of steel braces, X-braced, inverted V braced, ZX braced, and Zipper braced. Static non linear pushover analysis has been conducted to estimate the capacity of three story and six story buildings with different brace-frame systems and different cross sections for the braces. It is found that adding braces enhances the global capacity of the buildings compared to the case with no bracing and that the X and Zipper bracing systems performed better depending on the type and size of the cross section.Keywords: seismic design, strengthening, RC frames, steel bracing, pushover analysis
Procedia PDF Downloads 52233742 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results
Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif
Abstract:
This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence
Procedia PDF Downloads 496