Search results for: water withdrawal
5630 Sustainable Dyeing of Cotton and Polyester Blend Fabric without Reduction Clearing
Authors: Mohammad Tofayel Ahmed, Seung Kook An
Abstract:
In contemporary research world, focus is more set on sustainable products and innovative processes. The global textile industries are putting tremendous effort to achieve a balance between economic development and ecological protection concurrently. The conservation of water sources and environment have become immensely significant issue in textile dyeing production. Accordingly, an attempt has been taken in this study to develop a process to dye polyester blend cotton without reduction clearing process and any extra wash off chemical by simple modification aiming at cost reduction and sustainability. A widely used combination of 60/40 cotton/polyester (c/p) single jersey knitted fabric of 30’s, 180 g/m² was considered for study. Traditionally, pretreatment is done followed by polyester part dyeing, reduction clearing and cotton part dyeing for c/p blend dyeing. But in this study, polyester part is dyed right away followed by pretreatment process and cotton part dyeing by skipping the reduction clearing process diametrically. The dyed samples of both traditional and modified samples were scrutinized by various color fastness tests, dyeing parameters and by consumption of water, steam, power, process time and total batch cost. The modified process in this study showed no necessity of reduction clearing process for polyester blend cotton dyeing. The key issue contributing to avoid the reduction clearing after polyester part dyeing has been the multifunctional effect of NaOH and H₂O₂ while pretreatment of cotton after polyester part dyeing. The results also revealed that the modified process could reduce the consumption of water, steam, power, time and cost remarkably. The bulk trial of modified process demonstrated the well exploitability to dye polyester blend cotton substrate ensuring all fastness and dyeing properties regardless of dyes category, blend ratio, color, and shade percentage thus making the process sustainable, eco-friendly and economical. Furthermore, the proposed method could be applicable to any cellulosic blend with polyester.Keywords: cotton, dyeing, economical, polyester
Procedia PDF Downloads 1965629 Numerical Analysis of Heat and Mass Transfer in an Adsorbent Bed for Different Working Pairs
Authors: N. Allouache, O. Rahli
Abstract:
Solar radiation is by far the largest and the most world’s abundant, clean, and permanent energy source. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world. One of these important technologies is the solar refrigerating machines that make use of either absorption or adsorption technologies. In this present work, the adsorbent bed is modelized and optimized using different working pairs, such as zeolite-water, silica gel-water, activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol. The results show that the enhancement of the heat and mass transfer depends on the properties of the working pair; the performances of the adsorption cycle are essentially influenced by the choice of the adsorbent-adsorbate pair. The system can operate successfully for optimal parameters such as the evaporator, condenser, and generating temperatures. The activated carbon is the best adsorbent due to its high surface area and micropore volume.Keywords: adsorbent bed, heat and mass transfer, numerical analysis, working pairs
Procedia PDF Downloads 1515628 Surveying Coastal Society Perception on Giant Sea Wall Jakarta Development Planning
Authors: Ammar Asfari, Faizah Finur Fithriah, Shighia Ajeng Savitri
Abstract:
Jakarta as the capital city of Indonesia held an important role for the country, that is being the city where central government is located. But its topographic character which categorized as lowland area is causing an ultimate trouble. With average height of 7 meters above the sea level, flood keeps occurring in this city. On the other hand, water exploitation that caused land subsidence and sea-levels increasing by global warming make it even worse. Giant Sea Wall Development is a project created by Jakarta’s government to overcome flood, which is inspired by Saemangeum Dam in South Korea. For further planning, Giant Sea Wall is planned to be water reservoir for Jakarta’s inhabitants. This research’s aim is to fully understand the knowledge and opinion of people living in North Jakarta (Jakarta’s Coastal Area) on Giant Sea Wall development planning using qualitative method analysis with descriptive approach. The result of this research will be one of the determining factors in Giant Sea Wall Jakarta development planning continuance.Keywords: descriptive approach, Giant Sea Wall Jakarta, qualitative method analysis, society perception
Procedia PDF Downloads 2875627 The Anti-Glycation Effect of Sclerocarya birrea Stem-Bark Extracts and Their Ability to Break Existing Advanced Glycation End-Products Protein Cross-Links
Authors: O. I. Adeniran, M. A. Mogale
Abstract:
Advanced glycation end-products (AGEs) have been implicated in the development and progression of vascular complications of diabetes mellitus and other age-related disease such as Alzheimer’s disease, heart diseases, stroke and limb amputation. The aim of the study was to determine the anti-glycation activity and AGE-cross-linking breaking ability of Sclerocarya birrea stem-bark extracts (SBSBETs). Hexane, ethyl acetate, methanol and water extracts of Sclerocarya birrea stem-bark and standard inhibitor, aminoguanidine (AG) were incubated with bovine serum albumin (BSA)-fructose mixture for 20 and 40 days. The amounts of total immunogenic AGEs (TIAGEs), fluorescent AGEs (FAGEs) and carboxymethyl lysine (CML) formed were determined and the percentage anti-glycation activity of each plant extract calculated. The ability of SBSBETs to break fructose-derived BSA-AGE-collagen cross-links was also investigated. All SBSBETs under investigation demonstrated less anti-glycation activity against TIAGE, FAGEs and CML than AG after 20 days incubation. After 40 days incubation, ethyl acetate, methanol and water SBSBETs demonstrated lower anti-glycation activity against TIAGEs than AG but exerted higher anti-glycation activity than AG against FAGEs. All SBSBETs except water demonstrated lower anti-glycation activity than AG against CML. With regard to the ability of SBSBETs to breakdown fructose-derived AGEs cross-links, the polar SBSBETs demonstrated higher ability to break AGE-cross-links than the non-polar ones. The results of this study may lead to the isolation of bio-active phyto-chemicals from SBSBETs that may be used for the prevention of vascular complication of diabetes.Keywords: advanced glycation end-products, anti-glycation, cross-link breaking, Sclerocarrya birrea
Procedia PDF Downloads 2645626 Economic Analysis of Rainwater Harvesting Systems for Dairy Cattle
Authors: Sandra Cecilia Muhirirwe, Bart Van Der Bruggen, Violet Kisakye
Abstract:
Economic analysis of Rainwater harvesting (RWH) systems is vital in search of a cost-effective solution to water unreliability, especially in low-income countries. There is little literature focusing on the financial aspects of RWH for dairy farmers. The main purpose was to assess the economic viability of rainwater harvesting for diary framers in the Rwenzori region. The study focused on the use of rainwater harvesting systems from the rooftop and collection in above surface tanks. Daily rainfall time series for 12 years was obtained across nine gauging stations. The daily water balance equation was used for optimal sizing of the tank. Economic analysis of the investment was carried out based on the life cycle costs and the accruing benefits for the period of 15 years. Roof areas were varied from 75m2 as the minimum required area to 500m2 while maintaining the same number of cattle and keeping the daily water demand constant. The results show that the required rainwater tank sizes are very large and may be impractical to install due to the strongly varying terrain and the initial cost of investment. In all districts, there is a significant reduction of the volume of the required tank with an increasing collection area. The results further show that increasing the collection area has a minor effect on reducing the required tank size. Generally, for all rainfall areas, the reliability increases with an increase in the roof area. The results indicate that 100% reliability can only be realized with very large collection areas that are impractical to install. The estimated benefits outweigh the cost of investment. The Present Net Value shows that the investment is economically viable and investment with a short payback of a maximum of 3 years for all the time series in the study area.Keywords: dairy cattle, optimisation, rainwater harvesting, economic analysis
Procedia PDF Downloads 2105625 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods
Authors: D. Jagath Kumari, K. Srinivasa Rao
Abstract:
Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests
Procedia PDF Downloads 4605624 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment
Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues
Abstract:
Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.
Procedia PDF Downloads 2155623 A Network of Land Forts Built by Bahmani’s in Deccan Region
Authors: Ar.Abhishek Ranka
Abstract:
Cultural landscapes are a part of a nation’s heritage, which represent the exquisite combination of Natural (Ecological) & Built (Architectural) fabric, consisting of many historic gardens, water management system, sustainable planning, and designed framework. The use of landscape and topography with Tangible &Intangible heritage components (forts, temples, tombs, mosques, etc.) are locally, regionally, and nationally significant. The paper speaks about the contribution of Bahmani Sultanate to military architecture in the Deccan region. It is a study of the series of seven land forts as a cultural landscape, which plays an important role in shaping the knowledge systems in the form of typologies of military architecture, water management system, and the administrative setups, which are presently located in the cultural region, Marathwada of the Deccan. Conservation of Culturall and scapeasan approach offers opportunities to better integrate natural and cultural heritage conservation. Conserving of Seven Land forts could act as an inspirational model for other sites.Keywords: bahmani sultanate, deccan region, land forts, culture landscape, military architecture, tradational knowledge system, architectural conservation
Procedia PDF Downloads 1175622 Characterization of Climatic Drought in the Saiss Plateau (Morocco) Using Statistical Indices
Authors: Abdeghani Qadem
Abstract:
Climate change is now an undeniable reality with increasing impacts on water systems worldwide, especially leading to severe drought episodes. The Southern Mediterranean region is particularly affected by this drought, which can have devastating consequences on water resources. Morocco, due to its geographical location in North Africa and the Southern Mediterranean, is especially vulnerable to these effects of climate change, particularly drought. In this context, this article focuses on the study of climate variability and drought characteristics in the Saiss Plateau region and its adjacent areas with the Middle Atlas, using specific statistical indices. The study begins by analyzing the annual precipitation variation, with a particular emphasis on data homogenization and gap filling using a regional vector. Then, the analysis delves into drought episodes in the region, using the Standardized Precipitation Index (SPI) over a 12-month period. The central objective is to accurately assess significant drought changes between 1980 and 2015, based on data collected from nine meteorological stations located in the study area.Keywords: climate variability, regional vector, drought, standardized precipitation index, Saiss Plateau, middle atlas
Procedia PDF Downloads 745621 Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation
Authors: A. Bayat, R. Bello-Mendoza, D. G. Wareham
Abstract:
Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition.Keywords: anaerobic digestion, thermophilic, mesophilic, total solids concentration
Procedia PDF Downloads 1445620 To Live on the Margins: A Closer Look at the Social and Economic Situation of Illegal Afghan Migrants in Iran
Authors: Abdullah Mohammadi
Abstract:
Years of prolong war in Afghanistan has led to one of the largest refugee and migrant populations in the contemporary world. During this continuous unrest which began in 1970s (by military coup, Marxist revolution and the subsequent invasion of USSR), over one-third of the population migrated to neighboring countries, especially Pakistan and Iran. After the Soviet Army withdrawal in 1989, a new wave of conflicts emerged between rival Afghan groups and this led to new refugees. Taliban period, also, created its own refugees. During all these years, I.R. of Iran has been one of the main destinations of Afghan refugees and migrants. At first, due to the political situation after Islamic Revolution, Iran government didn’t restrict the entry of Afghan refugees. Those who came first in Iran received ID cards and had access to education and healthcare services. But in 1990s, due to economic and social concerns, Iran’s policy towards Afghan refugees and migrants changed. The government has tried to identify and register Afghans in Iran and limit their access to some services and jobs. Unfortunately, there are few studies on Afghan refugees and migrants’ situation in Iran and we have a dim and vague picture of them. Of the few studies done on this group, none of them focus on the illegal Afghan migrants’ situation in Iran. Here, we tried to study the social and economic aspects of illegal Afghan migrants’ living in Iran. In doing so, we interviewed 24 illegal Afghan migrants in Iran. The method applied for analyzing the data is thematic analysis. For the interviews, we chose family heads (17 men and 7 women). According to the findings, illegal Afghan migrants’ socio-economic situation in Iran is very undesirable. Its main cause is the marginalization of this group which is resulted from government policies towards Afghan migrants. Most of the illegal Afghan migrants work in unskilled and inferior jobs and live in rent houses on the margins of cities and villages. None of them could buy a house or vehicle due to law. Based on their income, they form one of the lowest, unprivileged groups in the society. Socially, they face many problems in their everyday life: social insecurity, harassment and violence, misuse of their situation by police and people, lack of education opportunity, etc. In general, we may conclude that illegal Afghan migrant have little adaptation with Iran’s society. They face severe limitations compared to legal migrants and refugees and have no opportunity for upward social mobility. However, they have managed some strategies to face these difficulties including: seeking financial and emotional helps from family and friendship networks, sending one of the family members to third country (mostly to European countries), establishing self-administered schools for children (schools which are illegal and run by Afghan educated youth).Keywords: illegal Afghan migrants, marginalization, social insecurity, upward social mobility
Procedia PDF Downloads 3205619 Growth Pattern, Condition Factor and Relative Condition Factor of Twenty Important Demersal Marine Fish Species in Nigerian Coastal Water
Authors: Omogoriola Hannah Omoloye
Abstract:
Fish is a key ingredient on the global menu, a vital factor in the global environment and an important basis for livelihood worldwide1. The length – weight relationships (LWRs) is of great importance in fishery assessment2,3. Its importance is pronounced in estimated the average weight at a given length group4 and in assessing the relative well being of a fish population5. Length and weight measurement in conjunction with age data can give information on the stock composition, age at maturity, life span, mortality, growth and production4,5,6,7. In addition, the data on length and weight can also provides important clues to climatic and environmental changes and the change in human consumption practices8,9. However, the size attained by the individual fish may also vary because of variation in food supply, and these in turn may reflect variation in climatic parameters and in the supply of nutrient or in the degree of competition for food. Environment deterioration, for example, may reduce growth rates and will cause a decrease in the average age of the fish. The condition factor and the relative condition factor10 are the quantitative parameters of the well being state of the fish and reflect recent feeding condition of the fish. It is based on the hypothesis that heavier fish of a given length are in better condition11. This factor varies according to influences of physiological factors, fluctuating according to different stages of the development. Condition factor has been used as an index of growth and feeding intensity12. Condition factor decrease with increase in length 12,13 and also influences the reproductive cycle in fish14. The objective here is to determine the length-weight relationships and condition factor for direct use in fishery assessment and for future comparisons between populations of the same species at different locations. To provide quantitative information on the biology of marine fish species trawl from Nigeria coastal water.Keywords: condition factor, growth pattern, marine fish species, Nigerian Coastal water
Procedia PDF Downloads 4215618 Anti-cancer Activity of Cassava Leaves (Manihot esculenta Crantz.) Against Colon Cancer (WiDr) Cells in vitro
Authors: Fatma Zuhrotun Nisa, Aprilina Ratriany, Agus Wijanarka
Abstract:
Background: Cassava leaves are widely used by the people of Indonesia as a vegetable and treat various diseases, including anticancer believed as food. However, not much research on the anticancer activity of cassava leaves, especially in colon cancer. Objectives: the aim of this study is to investigate anti-cancer activity of cassava leaves (Manihot esculanta C.) against colon cancer (WiDr) cells in vitro. Methods: effect of crude aqueous extract of leaves of cassava and cassava leaves boiled tested in colon cancer cells widr. Determination of Anticancer uses the MTT method with parameters such as the percentage of deaths. Results: raw cassava leaf water extract gave IC50 of 63.1 mg / ml. While the water extract of boiled cassava leaves gave IC50 of 79.4 mg/ml. However, there is no difference anticancer activity of raw cassava leaves or cancer (p> 0.05). Conclusion: Cassava leaves contain a variety of compounds that have previously been reported to have anticancer activity. Linamarin, β-carotene, vitamin C, and fiber were thought to affect the IC50 cassava leaf extract against colon cancer cells WiDr.Keywords: boiled cassava leaves, cassava leaves raw, anticancer activity, colon cancer, IC50
Procedia PDF Downloads 5615617 Catered Lunch Suspected Outbreak in a Garment Factory, Sleman District, Yogyakarta, Indonesia, 2017
Authors: Rieski Prihastuti, Meliana Depo, Trisno A. Wibowo, Misinem
Abstract:
On October 19, 2017, Yogyakarta Islamic Hospital reported 38 garment employees with nausea, vomiting, headache, abdominal pain, and diarrhea after they had lunch on October 18, 2017, to Sleman District Health Office. Objectives of this study were to ensure the outbreak and identify source and route of transmission. Case-control study was conducted to analyze food items that caused the outbreak. A case was defined as a person who got symptoms such as abdominal pain, diarrhea, nausea with/without vomiting, fever, and headache after they had lunch on October 18, 2017. Samples included leftover lunch box, vomit, tap water and drinking water had been sent to the laboratory. Data were analyzed descriptively as frequency table and analyzed by using chi-square in bivariate analysis. All of 196 garment employee was included in this study. The common symptoms of this outbreak were abdominal pain (84.4%), diarrhea (72.8%), nausea (61.6%), headache (52.8%), vomiting (12.8%), and fever (6.4%) with median incubation period 13 hours (range 1-34 hours). Highest attack rate and odds ratio was found in grilled chicken (Attack Rate 58,49%) with Odds Ratio 11,023 (Confidence Interval 95% 1.383 - 87.859; p value 0,005). Almost all samples showed mold, except drinking water. Based on its sign and symptoms, also incubation period, diarrheal Bacillus cereus and Clostridium perfringens were suspected to be the causative agent of the outbreak. Limitation of this study was improper sample handling and no sample of food handler and stools in the food caterer. Outbreak investigation training needed to be given to the hospital worker, and monitoring should be done to the food caterer to prevent another outbreak.Keywords: disease outbreak, foodborne disease, food poisoning, outbreak
Procedia PDF Downloads 1655616 Strength and Permeability Characteristics of Fiber Reinforced Concrete
Authors: Amrit Pal Singh Arora
Abstract:
The paper reports the results of a study undertaken to study the effects of addition of steel fibres of different aspect ratios on the permeability and strength characteristics of steel fiber reinforced fly ash concrete (SFRC). Corrugated steel fibres having a diameter of 0.6 mm and lengths of 12.5 mm, 30 mm and 50 mm were used in this study. Cube samples of 100 mm x 100 mm x 100 mm were cast from mixes replacing 0%, 10%, 20% and 30% cement content by fly ash with and without fibres and tested for the determination of coefficient of water permeability, compressive and split tensile strengths after 7 and 28 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly for all concrete mixes with the addition of steel fibers as compared to plain concrete. The replacement of cement content by fly ash results in an increase in the coefficient of water permeability. With the addition of fly ash to the plain mix the7 day compressive and split tensile strengths decreased, however both the compressive and split tensile strengths increased with increase in curing age.Keywords: curing age, fiber shape, fly ash, Darcy’s law, Ppermeability
Procedia PDF Downloads 3185615 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water
Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski
Abstract:
Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.Keywords: Heavy metal recovery, cleaning water, phage display, nickel
Procedia PDF Downloads 1045614 Organic Farming Profitability: Evidence from South Korea
Authors: Saem Lee, Thanh Nguyen, Hio-Jung Shin, Thomas Koellner
Abstract:
Land-use management has an influence on the provision of ecosystem service in dynamic, agricultural landscapes. Agricultural land use is important for maintaining the productivity and sustainability of agricultural ecosystems. However, in Korea, intensive farming activities in this highland agricultural zone, the upper stream of Soyang has led to contaminated soil caused by over-use pesticides and fertilizers. This has led to decrease in water and soil quality, which has consequences for ecosystem services and human wellbeing. Conventional farming has still high percentage in this area and there is no special measure to prevent low water quality caused by farming activities. Therefore, the adoption of environmentally friendly farming has been considered one of the alternatives that lead to improved water quality and increase in biomass production. Concurrently, farm households with environmentally friendly farming have occupied still low rates. Therefore, our research involved a farm household survey spanning conventional farming, the farm in transition and organic farming in Soyang watershed. Another purpose of our research was to compare economic advantage of the farmers adopting environmentally friendly farming and non-adaptors and to investigate the different factors by logistic regression analysis with socio-economic and benefit-cost ratio variables. The results found that farmers with environmentally friendly farming tended to be younger than conventional farming and farmer in transition. They are similar in terms of gender which was predominately male. Farmers with environmentally friendly farming were more educated and had less farming experience than conventional farming and farmer in transition. Based on the benefit-cost analysis, total costs that farm in transition farmers spent for one year are about two times as much as the sum of costs in environmentally friendly farming. The benefit of organic farmers was assessed with 2,800 KRW per household per year. In logistic regression, the factors having statistical significance are subsidy and district, residence period and benefit-cost ratio. And district and residence period have the negative impact on the practice of environmentally friendly farming techniques. The results of our research make a valuable contribution to provide important information to describe Korean policy-making for agricultural and water management and to consider potential approaches to policy that would substantiate ways beneficial for sustainable resource management.Keywords: organic farming, logistic regression, profitability, agricultural land-use
Procedia PDF Downloads 4065613 Influence of Silica Fume on the Hydration of Cement Pastes Studied by Simultaneous TG-DSC Analysis
Authors: Anton Trník, Lenka Scheinherrová, Robert Černý
Abstract:
Silica fume is a by-product of the ferro-silicon and silicon metal industries. It is mainly in the form of amorphous silica. Silica fume belongs to pozzolanic active materials which can be used in concrete to improve its final properties. In this paper, the influence of silica fume on hydration of cement pastes is studied using differential scanning calorimetry (DSC) and thermogravimetry (TG) at various curing times (2, 7, 28, and 90 days) in the temperature range from 25 to 1000 °C in an argon atmosphere. Samples are prepared from Portland cement CEM I 42.5 R which is partially replaced with the silica fume of 4, 8, and 12 wt.%. The water/binder ratio is chosen as 0.5. It is identified and described the liberation of physically bound water, calcium–silicate–hydrates dehydration, portlandite and calcite decomposition in studied samples. Also, it is found out that an exothermic peak at 950 °C is observed without a significant mass change for samples with 12 wt.% of silica fume after two days of hydration. This peak is probably caused by the pozzolanic reaction between silica fume and Portland cement. Its size corresponds to the degree of crystallization between Ca and Si. The portlandite content is lower for the samples with a higher amount of silica fume.Keywords: differential scanning calorimetry, hydration, silica fume, thermogravimetry
Procedia PDF Downloads 2425612 Properties of Compressed Earth Blocks Enhanced with Clay Pozzolana
Authors: Humphrey Danso, Seth Adu
Abstract:
The high cost of cement and its greenhouse effect on the environment have led to the use of alternative building materials in the production of block and bricks. This study seeks to investigate the properties of compressed earth blocks (CEBs) enhanced with clay pozzolana. CEBs of size 290 × 140 × 100 mm were prepared with 10, 20 and 30 % weight of clay pozzolana. The CEBs were compressed at a constant pressure of 5 MPa and cured for 28 days. The blocks, after 7, 14, 21 and 28 days of curing were tested for density, water absorption, compressive strength and erosion. It was found that amount of pozzolana content did not have much influence on blocks’ density. There was a decline in water absorption of the stabilised blocks ranged between 32.8% and 252.2% over the unstabilised blocks. The highest compressive strength (3.75MPa) of the stabilized blocks was achieved at 28th day of curing with 30% clay pozzolana content, which showed an improvement of 116.8% strength over the unstabilised blocks. Furthermore, there was a statistically significant difference in the erosion resistance between the stabilized blocks and the unstabilised blocks. The study concludes that the inclusion of the clay pozzolana increased the properties of the CEBs, and therefore recommended for use in the building of houses.Keywords: clay pozzolana, compressed earth blocks (CEBs), compressive strength, erosion test
Procedia PDF Downloads 2845611 Evaluation of Capacity of Bed Planted with Macrophytes for Wastewater Treatment of Biskra City, Algeria
Authors: Mimeche Leila, Debabeche Mahmoud
Abstract:
It is question to study and to value the possibility of settling the process of purification by plants (constructed wetland) to treat the domestic waste water of Biskra, city in a semi-arid environment with grave problems of. According to the bibliography, the process of treatment by plants is considered as more advantageous than the classic techniques. It is the use of beds with macrophytes where the purification is made by the combined action of plants and micro-organisms in a filtering bed. The micro-organisms which are aerobic bacteria and\or anaerobic have for main function to degrade the polluting materials. Plants in the macrophytes beds have for function to serve as support in the development of bacteria and to favour also their development. In this study, we present a preliminary experimental analysis of the potentialities of treatment of some macrpohytes plants, implanted in basins filled of gravel. Analyses physico chemical and bacteriological of the waste water indicate a good elimination of the polluting materials, and put in evidence the purifier power of these plants, in association with bacteria. The obtained results seem to be interesting and encourage deepening the study for other types of plants in other conditions.Keywords: constructed wetlands, macrophytes, sewage treatment, wastewater
Procedia PDF Downloads 4045610 Exploring the Energy Saving Benefits of Solar Power and Hot Water Systems: A Case Study of a Hospital in Central Taiwan
Authors: Ming-Chan Chung, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang, Ming-Jyh Chen
Abstract:
introduction: Hospital buildings require considerable energy, including air conditioning, lighting, elevators, heating, and medical equipment. Energy consumption in hospitals is expected to increase significantly due to innovative equipment and continuous development plans. Consequently, the environment and climate will be adversely affected. Hospitals should therefore consider transforming from their traditional role of saving lives to being at the forefront of global efforts to reduce carbon dioxide emissions. As healthcare providers, it is our responsibility to provide a high-quality environment while using as little energy as possible. Purpose / Methods: Compare the energy-saving benefits of solar photovoltaic systems and solar hot water systems. The proportion of electricity consumption effectively reduced after the installation of solar photovoltaic systems. To comprehensively assess the potential benefits of utilizing solar energy for both photovoltaic (PV) and solar thermal applications in hospitals, a solar PV system was installed covering a total area of 28.95 square meters in 2021. Approval was obtained from the Taiwan Power Company to integrate the system into the hospital's electrical infrastructure for self-use. To measure the performance of the system, a dedicated meter was installed to track monthly power generation, which was then converted into area output using an electric energy conversion factor. This research aims to compare the energy efficiency of solar PV systems and solar thermal systems. Results: Using the conversion formula between electrical and thermal energy, we can compare the energy output of solar heating systems and solar photovoltaic systems. The comparative study draws upon data from February 2021 to February 2023, wherein the solar heating system generated an average of 2.54 kWh of energy per panel per day, while the solar photovoltaic system produced 1.17 kWh of energy per panel per day, resulting in a difference of approximately 2.17 times between the two systems. Conclusions: After conducting statistical analysis and comparisons, it was found that solar thermal heating systems offer higher energy and greater benefits than solar photovoltaic systems. Furthermore, an examination of literature data and simulations of the energy and economic benefits of solar thermal water systems and solar-assisted heat pump systems revealed that solar thermal water systems have higher energy density values, shorter recovery periods, and lower power consumption than solar-assisted heat pump systems. Through monitoring and empirical research in this study, it has been concluded that a heat pump-assisted solar thermal water system represents a relatively superior energy-saving and carbon-reducing solution for medical institutions. Not only can this system help reduce overall electricity consumption and the use of fossil fuels, but it can also provide more effective heating solutions.Keywords: sustainable development, energy conservation, carbon reduction, renewable energy, heat pump system
Procedia PDF Downloads 865609 Study of the Responding Time for Low Permeability Reservoirs
Authors: G. Lei, P. C. Dong, X. Q. Cen, S. Y. Mo
Abstract:
One of the most significant parameters, describing the effect of water flooding in porous media, is flood-response time, and it is an important index in oilfield development. The responding time in low permeability reservoir is usually calculated by the method of stable state successive substitution neglecting the effect of medium deformation. Numerous studies show that the media deformation has an important impact on the development for low permeability reservoirs and can not be neglected. On the base of streamline tube model, we developed a method to interpret responding time with medium deformation factor. The results show that: the media deformation factor, threshold pressure gradient and well spacing have a significant effect on the flood response time. The greater the media deformation factor, threshold pressure gradient or well spacing is, the lower the flood response time is. The responding time of different streamlines varies. As the angle with the main streamline increases, the water flooding response time delays as a "parabola" shape.Keywords: low permeability, flood-response time, threshold pressure gradient, medium deformation
Procedia PDF Downloads 5025608 Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects
Authors: Jiangwan Xu, Chunyu Ding
Abstract:
Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions.Keywords: ground-based radar, lunar exploration, radar imaging, lunar surface/subsurface detection
Procedia PDF Downloads 385607 Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment
Authors: G. Hodaifa, J. A. Páez, C. Agabo, E. Ramos, J. C. Gutiérrez, A. Rosal
Abstract:
Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).Keywords: flocculants, flocculation, olive oil mill wastewater, water quality
Procedia PDF Downloads 5425606 Effects of Propolis on Immunomodulatory and Antibody Production in Broilers
Authors: Yu-Hsiang Yu
Abstract:
The immunomodulatory effect of propolis has been widely investigated in the past decade. However, the beneficial effects in broilers are still poorly understood. The aim of this study was to evaluate the effect of propolis added in drinking water on immunomodulatory and antibody production in broiler. Total of 48 chicks were randomly allocated into four groups with 12 broilers per group. All birds were intranasal inoculated with Newcastle Disease vaccine at 4 and 14 days old of age. Four groups, including control without any treatment, groups of A, B and F [3 days of anterior (A), 3 days of posterior (P) and 6 days of full (F)] were supplied the propolis at 300 ppm in drinking water when vaccination was performed, respectively. Our results showed that no significant difference was found in growth performance, antibody production and immune organ index among groups. However, propolis treatments in broilers significantly reduced IL-4 expression in spleen at 14 days-old of age and bursa at 28 days-old of age compared with control group. The expression of IFN-gamma in spleen (A, P and F group) and bursal (F group) were elevated compared with control group at 28 days-old of age. In conclusion, our results indicated that propolis-treated birds could bear the capability for immunomodulatory effects by change Th1 subset cytokine expression in vaccination.Keywords: propolis, broiler, immunomodulatory, vaccination
Procedia PDF Downloads 3315605 Development of Map of Gridded Basin Flash Flood Potential Index: GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue Provinces
Authors: Le Xuan Cau
Abstract:
Flash flood is occurred in short time rainfall interval: from 1 hour to 12 hours in small and medium basins. Flash floods typically have two characteristics: large water flow and big flow velocity. Flash flood is occurred at hill valley site (strip of lowland of terrain) in a catchment with large enough distribution area, steep basin slope, and heavy rainfall. The risk of flash floods is determined through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash Flood Potential Index (FFPI) is determined through terrain slope flash flood index, soil erosion flash flood index, land cover flash floods index, land use flash flood index, rainfall flash flood index. Determining GBFFPI, each cell in a map can be considered as outlet of a water accumulation basin. GBFFPI of the cell is determined as basin average value of FFPI of the corresponding water accumulation basin. Based on GIS, a tool is developed to compute GBFFPI using ArcObjects SDK for .NET. The maps of GBFFPI are built in two types: GBFFPI including rainfall flash flood index (real time flash flood warning) or GBFFPI excluding rainfall flash flood index. GBFFPI Tool can be used to determine a high flash flood potential site in a large region as quick as possible. The GBFFPI is improved from conventional FFPI. The advantage of GBFFPI is that GBFFPI is taking into account the basin response (interaction of cells) and determines more true flash flood site (strip of lowland of terrain) while conventional FFPI is taking into account single cell and does not consider the interaction between cells. The GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue is built and exported to Google Earth. The obtained map proves scientific basis of GBFFPI.Keywords: ArcObjects SDK for NET, basin average value of FFPI, gridded basin flash flood potential index, GBFFPI map
Procedia PDF Downloads 3845604 Climate Change Effects in a Mediterranean Island and Streamflow Changes for a Small Basin Using Euro-Cordex Regional Climate Simulations Combined with the SWAT Model
Authors: Pier Andrea Marras, Daniela Lima, Pedro Matos Soares, Rita Maria Cardoso, Daniela Medas, Elisabetta Dore, Giovanni De Giudici
Abstract:
Climate change effects on the hydrologic cycle are the main concern for the evaluation of water management strategies. Climate models project scenarios of precipitation changes in the future, considering greenhouse emissions. In this study, the EURO-CORDEX (European Coordinated Regional Downscaling Experiment) climate models were first evaluated in a Mediterranean island (Sardinia) against observed precipitation for a historical reference period (1976-2005). A weighted multi-model ensemble (ENS) was built, weighting the single models based on their ability to reproduce observed rainfall. Future projections (2071-2100) were carried out using the 8.5 RCP emissions scenario to evaluate changes in precipitations. ENS was then used as climate forcing for the SWAT model (Soil and Water Assessment Tool), with the aim to assess the consequences of such projected changes on streamflow and runoff of two small catchments located in the South-West Sardinia. Results showed that a decrease of mean rainfall values, up to -25 % at yearly scale, is expected for the future, along with an increase of extreme precipitation events. Particularly in the eastern and southern areas, extreme events are projected to increase by 30%. Such changes reflect on the hydrologic cycle with a decrease of mean streamflow and runoff, except in spring, when runoff is projected to increase by 20-30%. These results stress that the Mediterranean is a hotspot for climate change, and the use of model tools can provide very useful information to adopt water and land management strategies to deal with such changes.Keywords: EURO-CORDEX, climate change, hydrology, SWAT model, Sardinia, multi-model ensemble
Procedia PDF Downloads 2185603 Potential Risk Assessment Due to Groundwater Quality Deterioration and Quantifying the Major Influencing Factors Using Geographical Detectors in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, , Abunu Atlabachew Eshete
Abstract:
Groundwater quality has become deteriorated due to natural and anthropogenic activities. Poor water quality has a potential risk to human health and the environment. Therefore, the study aimed to assess the potential risk of groundwater quality contamination levels and public health risks in the Gunabay watershed. For this task, seventy-eight groundwater samples were collected from thirty-nine locations in the dry and wet seasons during 2022. The ground water contamination index was applied to assess the overall quality of groundwater. Six major driving forces (temperature, population density, soil, land cover, recharge, and geology) and their quantitative impact of each factor on groundwater quality deterioration were demonstrated using Geodetector. The results showed that low groundwater quality was detected in urban and agricultural land. Especially nitrate contamination was highly linked to groundwater quality deterioration and public health risks, and a medium contamination level was observed in the area. This indicates that the inappropriate application of fertilizer on agricultural land and wastewater from urban areas has a great impact on shallow aquifers in the study area. Furthermore, the major influencing factors are ranked as soil type (0.33–0.31)>recharge (0.17–0.15)>temperature (0.13–0.08)>population density (0.1–0.08)>land cover types (0.07– 0.04)>lithology (0.05–0.04). The interaction detector revealed that the interaction between soil ∩ recharge, soil ∩ temperature, and soil ∩ land cover, temperature ∩ recharge is more influential to deteriorate groundwater quality in both seasons. Identification and quantification of the major influencing factors may provide new insight into groundwater resource management.Keywords: groundwater contamination index, geographical detectors, public health · influencing factors, and water resources management
Procedia PDF Downloads 245602 Scientific Interpretation of “Fertilizing Winds” Mentioned in Verse 15:22 of Al-Quran
Authors: Md. Mamunur Rashid
Abstract:
Allah (SWT) bestowed us with the Divine blessing, providing the wonderful source of water as stated in verse 15:22 of Al-Quran. Arabic “Ar-Riaaha Lawaaqiha (ٱلرِّيَـٰحَ لَوَٰقِحَ)” of this verse is translated as “fertilizing winds.” The “fertilizing winds” literally, refer the winds of having the roles: to fertilize something similar to the “zygotes” in humans and animals (formation of clouds in the sky in this case); to produce fertilizers for the plants, crops, etc.; and to pollinate the plants. In this paper, these roles of “fertilizing winds” have been validated by presenting the modern knowledge of science in this regard. Existing interpretations are mostly focused on the “formation of clouds in the sky” while few of them mention about the pollination of trees. However, production of fertilizers, in this regard, has not been considered by any translator or interpreter. It has been observed that the winds contain, the necessary components of forming the clouds; the necessary components of producing the fertilizers; and the necessary components to pollinate the plants. The Science of Meteorology gives us the clear understanding of the formation of clouds. Moreover, we know that the lightning bolts breaks the nitrogen molecules of winds and the water molecules of vapor to form fertilizers. Pollination is a common role of winds in plants fertilization. All the scientific phenomena presented here give us the better interpretations of “fertilizing winds.”Keywords: Al-Quran, fertilizing winds, meteorology, scientific
Procedia PDF Downloads 1245601 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles
Authors: Saud Hamdan Alshammari
Abstract:
Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles
Procedia PDF Downloads 30