Search results for: statistical estimation problem
9244 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health
Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik
Abstract:
Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.Keywords: ecology, morbidity, population, lag time
Procedia PDF Downloads 859243 The Impact of Board of Directors on CEO Compensation: Evidence from the UK
Authors: Saleh Alagla, Murya Habbash
Abstract:
The paper investigates whether the board of directors plays a monitoring role or not in CEO compensation for the UK firms during the eve of the recent financial crisis, 2004-2008. The use of heteroscedastic and autocorrelated error consistent estimation of the panel data shows, surprisingly, that four board characteristics variables are found to play a significant role in increasing the level of CEO compensation. This insightful result would suggest evidence of the managerial power theory in general and the cronyism hypothesis in particular. Moreover, the interesting evidence supporting managerial power perspective is that CEO-Chair duality reduces long-term compensation while increasing short-term compensation, thus suggesting that CEOs are risk averse who prefer short-term compensation to long-term compensation. Finally, consistent with the agency perspective board size is found to increase all compensation variables as expected.Keywords: corporate governance, CEO compensation, board of directors, internal governance mechanisms, agency theory, managerial power theory, cronyism hypothesis
Procedia PDF Downloads 8089242 Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain
Authors: Bastian Vollrath, Hartwig Hubel
Abstract:
In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis.Keywords: cyclic loading, direct method, elastic shakedown, multi-parameter loading, STPZ
Procedia PDF Downloads 1669241 Spatial Analysis in the Impact of Aquifer Capacity Reduction on Land Subsidence Rate in Semarang City between 2014-2017
Authors: Yudo Prasetyo, Hana Sugiastu Firdaus, Diyanah Diyanah
Abstract:
The phenomenon of the lack of clean water supply in several big cities in Indonesia is a major problem in the development of urban areas. Moreover, in the city of Semarang, the population density and growth of physical development is very high. Continuous and large amounts of underground water (aquifer) exposure can result in a drastically aquifer supply declining in year by year. Especially, the intensity of aquifer use in the fulfilment of household needs and industrial activities. This is worsening by the land subsidence phenomenon in some areas in the Semarang city. Therefore, special research is needed to know the spatial correlation of the impact of decreasing aquifer capacity on the land subsidence phenomenon. This is necessary to give approve that the occurrence of land subsidence can be caused by loss of balance of pressure on below the land surface. One method to observe the correlation pattern between the two phenomena is the application of remote sensing technology based on radar and optical satellites. Implementation of Differential Interferometric Synthetic Aperture Radar (DINSAR) or Small Baseline Area Subset (SBAS) method in SENTINEL-1A satellite image acquisition in 2014-2017 period will give a proper pattern of land subsidence. These results will be spatially correlated with the aquifer-declining pattern in the same time period. Utilization of survey results to 8 monitoring wells with depth in above 100 m to observe the multi-temporal pattern of aquifer change capacity. In addition, the pattern of aquifer capacity will be validated with 2 underground water cavity maps from observation of ministries of energy and natural resources (ESDM) in Semarang city. Spatial correlation studies will be conducted on the pattern of land subsidence and aquifer capacity using overlapping and statistical methods. The results of this correlation will show how big the correlation of decrease in underground water capacity in influencing the distribution and intensity of land subsidence in Semarang city. In addition, the results of this study will also be analyzed based on geological aspects related to hydrogeological parameters, soil types, aquifer species and geological structures. The results of this study will be a correlation map of the aquifer capacity on the decrease in the face of the land in the city of Semarang within the period 2014-2017. So hopefully the results can help the authorities in spatial planning and the city of Semarang in the future.Keywords: aquifer, differential interferometric synthetic aperture radar (DINSAR), land subsidence, small baseline area subset (SBAS)
Procedia PDF Downloads 1869240 Simultaneous Determination of Cefazolin and Cefotaxime in Urine by HPLC
Authors: Rafika Bibi, Khaled Khaladi, Hind Mokran, Mohamed Salah Boukhechem
Abstract:
A high performance liquid chromatographic method with ultraviolet detection at 264nm was developed and validate for quantitative determination and separation of cefazolin and cefotaxime in urine, the mobile phase consisted of acetonitrile and phosphate buffer pH4,2(15 :85) (v/v) pumped through ODB 250× 4,6 mm, 5um column at a flow rate of 1ml/min, loop of 20ul. In this condition, the validation of this technique showed that it is linear in a range of 0,01 to 10ug/ml with a good correlation coefficient ( R>0,9997), retention time of cefotaxime, cefazolin was 9.0, 10.1 respectively, the statistical evaluation of the method was examined by means of within day (n=6) and day to day (n=5) and was found to be satisfactory with high accuracy and precision.Keywords: cefazolin, cefotaxime, HPLC, bioscience, biochemistry, pharmaceutical
Procedia PDF Downloads 3669239 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling
Authors: Vibha Devi, Shabina Khanam
Abstract:
Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation
Procedia PDF Downloads 1439238 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 5649237 Impact of Educational Intervention on Hygiene-knowledge and Practices of Sanitation Workers Globally: A Systematic Review
Authors: Alive Ntunja, Wilma ten Ham-Baloyi, June Teare, Oyedele Opeoluwa, Paula Melariri
Abstract:
Sanitation workers are also known as “garbage workers” who play a significant role in the sanitation chain. For many generations sanitation workers’ level of knowledge regarding hygiene practices remains low due to a lack of educational programs on hygiene. As a result, they are widely exposed to hygiene-related diseases such as cholera, skin infections and various other diseases, increasing their risk of mortality to 40%. This review aimed to explore the global impact of educational programs on the hygiene knowledge and practices of sanitation workers. The systematic literature search was conducted for studies published between 2013 and 2023 using the following databases: MEDLINE (via EBSCOHost), PubMed, and Google Scholar to identify quantitative studies on the subject. Study quality was assessed using the Joanna Briggs Institute Critical Evaluation Instruments. Data extracted from the included articles was presented using a summary of findings table and presented graphically through charts and tables, employing both descriptive and inferential statistical methods. A one-way repeated measures ANOVA assessed the pooled effect of the intervention on mean scores across studies. Statistical analysis was performed using Microsoft Office 365 (2019 version), with significance set at p<0.05. The PRISMA flow diagram was used to present the article selection process. The systematic review included 15 eligible studies from a total of 2 777 articles. At least 60% (n=9) of the reviewed studies found educational program relating to hygiene to have a positive impact on sanitation workers’ hygiene knowledge and practices. The findings further showed that the stages (pre-post) of knowledge intervention used lead to statistically significant differences in mean score obtained [F (1,7) = 22.166, p = 0.002]. Likewise, it can be observed that the stages of practice intervention used lead to statistically significant differences in mean score obtained [F (1,7) = 21.857, p = 0.003]. However, most (n=7) studies indicated that, the efficacy of programs on hygiene knowledge and practices is indirectly influenced by educational background, age and work experience (predictor factors). Educational programs regarding hygiene have the potential to significantly improve sanitation workers knowledge and practices. Findings also suggest the implementation of active and intensive intervention programs, to improve sanitation workers hygiene knowledge and practices.Keywords: educational programs, hygiene knowledge, practices, sanitation workers
Procedia PDF Downloads 269236 Integrating Inference, Simulation and Deduction in Molecular Domain Analysis and Synthesis with Peculiar Attention to Drug Discovery
Authors: Diego Liberati
Abstract:
Standard molecular modeling is traditionally done through Schroedinger equations via the help of powerful tools helping to manage them atom by atom, often needing High Performance Computing. Here, a full portfolio of new tools, conjugating statistical inference in the so called eXplainable Artificial Intelligence framework (in the form of Machine Learning of understandable rules) to the more traditional modeling and simulation control theory of mixed dynamic logic hybrid processes, is offered as quite a general purpose even if making an example to a popular chemical physics set of problems.Keywords: understandable rules ML, k-means, PCA, PieceWise Affine Auto Regression with eXogenous input
Procedia PDF Downloads 359235 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.Keywords: ganoderma, oil palm, regression model, yield loss, economic loss
Procedia PDF Downloads 3929234 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids
Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel
Abstract:
Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.Keywords: cyber security, performance, protocols, security standards, smart grid
Procedia PDF Downloads 3289233 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method
Procedia PDF Downloads 3119232 Investigation on Behaviour of Reinforced Concrete Beam-Column Joints Retrofitted with CFRP
Authors: Ehsan Mohseni
Abstract:
The aim of this thesis is to provide numerical analyses of reinforced concrete beams-column joints with/without CFRP (Carbon Fiber Reinforced Polymer) in order to achieve a better understanding of the behaviour of strengthened beamcolumn joints. A comprehensive literature survey prior to this study revealed that published studies are limited to a handful only; the results are inconclusive and some are even contradictory. Therefore in order to improve on this situation, following that review, a numerical study was designed and performed as presented in this thesis. For the numerical study, dimensions, end supports, and characteristics of the beam and column models were the same as those chosen in an experimental investigation performed previously where ten beamcolumn joint were tested tofailure. Finite element analysis is a useful tool in cases where analytical methods are not capable of solving the problem due to the complexities associated with the problem. The cyclic behaviour of FRP strengthened reinforced concrete beam-columns joints is such a case. Interaction of steel (longitudinal and stirrups), concrete and FRP, yielding of steel bars and stirrups, cracking of concrete, the redistribution of stresses as some elements unload due to crushing or yielding and the confinement of concrete due to the presence of FRP are some of the issues that introduce the complexities into the problem.Numerical solutions, however, can provide further in formation about the behaviour in lieu of the costly experiments or complex closed form solutions. This thesis presents the results of a numerical study on beam-column joints subjected to cyclic loads that are strengthened with CFRP wraps or strrips in a variety of configurations. The analyses are performed by Abaqus finite element program and are calibrated with the experiments. A range of issues in beam-column joints including the cracking load, the ultimate load, lateral load-displacement curves of joints, are investigated.The numerical results for different configurations of strengthening are compared. Finally, the computed numerical results are compared with those obtained from experiments. the cracking load, the ultimate load, lateral load-displacement curves obtained from numerical analysis for all joints were in very good agreement with the corresponding experimental ones.The results obtained from the numerical analysis in most cases implies that this method is conservative and therefore can be used in design applications with confidence.Keywords: numerical analysis, strengthening, CFRP, reinforced concrete joints
Procedia PDF Downloads 3519231 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites
Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa
Abstract:
The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.Keywords: Al6061, red mud, tensile strength, hardness and microstructures
Procedia PDF Downloads 5679230 Analytical Studies on Subgrade Soil Using Jute Geotextiles
Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra
Abstract:
Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.Keywords: CBR, Jute geotextile, low volume road, weaker soil
Procedia PDF Downloads 4339229 Investigation of Relationship between Organizational Climate and Organizational Citizenship Behaviour: A Research in Health Sector
Authors: Serdar Öge, Pinar Ertürk
Abstract:
The main objective of this research is to describe the relationship between organizational climate and organizational citizenship behavior. In order to examine this relationship, a research is intended to be carried out in relevant institutions and organizations operating in the health sector in Turkey. It will be found whether there is a statistically significant relationship between organizational climate and organizational citizenship behavior through elated scientific research methods and statistical analysis. In addition, elationships between the dimensions of organizational climate and organizational citizenship behavior subscales will be questioned statistically.Keywords: organizational climate, organizational citizenship, organizational citizenship behavior, climate
Procedia PDF Downloads 3859228 Prevalence and Determinants of Depression among Orphans and Vulnerable Children in Child Care Homes in Nepal
Authors: Kumari Bandana Bhatt, Navin Bhatt
Abstract:
Background: Orphans and vulnerable children (OVC) are high risk of physical, mental, sexual and emotional abuse and face social stigma and discrimination which significantly increase the risk of mental and behavioral disorders such as anxiety, depression or emotional problems even they stay in well run child care homes. The objective of this study was to estimate the prevalence of depression and determine the determinants among OVC in child care homes in Nepal. Methods: An institutional-based analytical cross-sectional study was conducted in twenty orphanages of five districts of Nepal. Six hundred two children were recruited into the study. After the informed consent form obtaining, the guardian and assent were interviewed by a semi-structured questionnaire and Beck Depression Inventory-II (BDI-II). Logistic regression was used for detecting the association between variables at the significant level of =0.05. Results: The study revealed that 33.20% of OVC had depression. Among them 66.80% of children experienced minimal depression, 17.40% had mild depression, 11.30% had moderate depression 4.50% had severe depression. Sex, alcohol drinking, congenital problem, social support and bully were the main variables associated with depression among OVC of the child care homes in Nepal. Conclusion: Prevalence of depression was high among the orphans and vulnerable children living in child care homes especially among the female children in Nepal. Therefore, early identification and instituting of preventive measures of depression are essential to reduce this problem in this special group of children living in child care homes.Keywords: Mental health, Depression, Orphans and vulnerable children, child care homes
Procedia PDF Downloads 1549227 Method for Evaluating the Monetary Value of a Customized Version of the Digital Twin for the Additive Manufacturing
Authors: Fabio Oettl, Sebastian Hoerbrand, Tobias Wittmeir, Johannes Schilp
Abstract:
By combining the additive manufacturing (AM)- process with digital concepts, like the digital twin (DT) or the downsized and basing concept of the digital part file (DPF), the competitiveness of additive manufacturing is enhanced and new use cases like decentral production are enabled. But in literature, one can´t find any quantitative approach for valuing the usage of a DT or DPF in AM. Out of this fact, such an approach will be developed within this paper in order to further promote or dissuade the usage of these concepts. The focus is set on the production as an early lifecycle phase, which means that the AM-production process gets analyzed regarding the potential advantages of using DPF in AM. These advantages are transferred to a monetary value with this approach. By calculating the costs of the DPF, an overall monetary value is a result. Thereon a tool, based on a simulation environment is constructed, where the algorithms are transformed into a program. The results of applying this tool show that an overall value of 20,81 € for the DPF can be realized for one special use case. For the future application of the DPF there is the recommendation to integrate especially sustainable information because out of this, a higher value of the DPF can be expected.Keywords: additive manufacturing, digital concept costs, digital part file, digital twin, monetary value estimation
Procedia PDF Downloads 2069226 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.Keywords: crack-tip deformations, static loading, stress concentration, stress intensity factor
Procedia PDF Downloads 1489225 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation
Authors: Shafaq Rubab
Abstract:
The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey
Procedia PDF Downloads 4279224 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4469223 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 1219222 Using Thinking Blocks to Encourage the Use of Higher Order Thinking Skills among Students When Solving Problems on Fractions
Authors: Abdul Halim Abdullah, Nur Liyana Zainal Abidin, Mahani Mokhtar
Abstract:
Problem-solving is an activity which can encourage students to use Higher Order Thinking Skills (HOTS). Learning fractions can be challenging for students since empirical evidence shows that students experience difficulties in solving the fraction problems. However, visual methods can help students to overcome the difficulties since the methods help students to make meaningful visual representations and link abstract concepts in Mathematics. Therefore, the purpose of this study was to investigate whether there were any changes in students’ HOTS at the four highest levels when learning the fractions by using Thinking Blocks. 54 students participated in a quasi-experiment using pre-tests and post-tests. Students were divided into two groups. The experimental group (n=32) received a treatment to improve the students’ HOTS and the other group acted as the control group (n=22) which used a traditional method. Data were analysed by using Mann-Whitney test. The results indicated that during post-test, students who used Thinking Blocks showed significant improvement in their HOTS level (p=0.000). In addition, the results of post-test also showed that the students’ performance improved significantly at the four highest levels of HOTS; namely, application (p=0.001), analyse (p=0.000), evaluate (p=0.000), and create (p=0.000). Therefore, it can be concluded that Thinking Blocks can effectively encourage students to use the four highest levels of HOTS which consequently enable them to solve fractions problems successfully.Keywords: Thinking Blocks, Higher Order Thinking Skills (HOTS), fractions, problem solving
Procedia PDF Downloads 2739221 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction
Authors: Sudhir Kumar Tiwari
Abstract:
The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model
Procedia PDF Downloads 3589220 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique
Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi
Abstract:
The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)
Procedia PDF Downloads 1989219 Statistical Study and Simulation of 140 Kv X– Ray Tube by Monte Carlo
Authors: Mehdi Homayouni, Karim Adinehvand, Bakhtiar Azadbakht
Abstract:
In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of X-ray tube that here is 0.05 cm. In this simulation, the anode is from tungsten with 18.9 g/cm3 density and angle of the anode is 18°. We simulated X-ray tube for 140 kv. For increasing of speed data acquisition, we use F5 tally. With determination the exact position of F5 tally in the program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev, and average energy is about 0.05 Mev.Keywords: X-spectrum, simulation, Monte Carlo, tube
Procedia PDF Downloads 7259218 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance
Authors: Qian Zhang, Dongkai Shen, Yan Shi
Abstract:
A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design
Procedia PDF Downloads 6129217 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice
Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani
Abstract:
In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.Keywords: ¹⁷⁷Lu, breast cancer, compartmental modeling, dosimetry
Procedia PDF Downloads 1539216 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: distribution network, machine learning, network topology, phase identification, smart grid
Procedia PDF Downloads 3049215 Using The Flight Heritage From >150 Electric Propulsion Systems To Design The Next Generation Field Emission Electric Propulsion Thrusters
Authors: David Krejci, Tony Schönherr, Quirin Koch, Valentin Hugonnaud, Lou Grimaud, Alexander Reissner, Bernhard Seifert
Abstract:
In 2018 the NANO thruster became the first Field Emission Electric Propulsion (FEEP) system ever to be verified in space in an In-Orbit Demonstration mission conducted together with Fotec. Since then, 160 additional ENPULSION NANO propulsion systems have been deployed in orbit on 73 different spacecraft across multiple customers and missions. These missions included a variety of different satellite bus sizes ranging from 3U Cubesats to >100kg buses, and different orbits in Low Earth Orbit and Geostationary Earth orbit, providing an abundance of on orbit data for statistical analysis. This large-scale industrialization and flight heritage allows for a holistic way of gathering data from testing, integration and operational phases, deriving lessons learnt over a variety of different mission types, operator approaches, use cases and environments. Based on these lessons learnt a new generation of propulsion systems is developed, addressing key findings from the large NANO heritage and adding new capabilities, including increased resilience, thrust vector steering and increased power and thrust level. Some of these successor products have already been validated in orbit, including the MICRO R3 and the NANO AR3. While the MICRO R3 features increased power and thrust level, the NANO AR3 is a successor of the heritage NANO thruster with added thrust vectoring capability. 5 NANO AR3 have been launched to date on two different spacecraft. This work presents flight telemetry data of ENPULSION NANO systems and onorbit statistical data of the ENPULSION NANO as well as lessons learnt during onorbit operations, customer assembly, integration and testing support and ground test campaigns conducted at different facilities. We discuss how transfer of lessons learnt and operational improvement across independent missions across customers has been accomplished. Building on these learnings and exhaustive heritage, we present the design of the new generation of propulsion systems that increase the power and thrust level of FEEP systems to address larger spacecraft buses.Keywords: FEEP, field emission electric propulsion, electric propulsion, flight heritage
Procedia PDF Downloads 97