Search results for: statistical%20design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3985

Search results for: statistical%20design

805 Anti-lipidemic and Hematinic Potentials of Moringa Oleifera Leaves: A Clinical Trial on Type 2 Diabetic Subjects in a Rural Nigerian Community

Authors: Ifeoma C. Afiaenyi, Elizabeth K. Ngwu, Rufina N. B. Ayogu

Abstract:

Diabetes has crept into the rural areas of Nigeria, causing devastating effects on its sufferers; most of them could not afford diabetic medications. Moringa oleifera has been used extensively in animal models to demonstrate its antilipidaemic and haematinic qualities; however, there is a scarcity of data on the effect of graded levels of Moringa oleifera leaves on the lipid profile and hematological parameters in human diabetic subjects. The study determined the effect of Moringa oleifera leaves on the lipid profile and hematological parameters of type 2 diabetic subjects in Ukehe, a rural Nigerian community. Twenty-four adult male and female diabetic subjects were purposively selected for the study. These subjects were shared into four groups of six subjects each. The diets used in the study were isocaloric. A control group (diabetics, group 1) was fed diets without Moringa oleifera leaves. Experimental groups 2, 3 and 4 received 20g, 40g and 60g of Moringa oleifera leaves daily, respectively, in addition to the diets. The subjects' lipid profile and hematological parameters were measured prior to the feeding trial and at the end of the feeding trial. The feeding trial lasted for fourteen days. The data obtained were analyzed using the computer program Statistical Product for Service Solution (SPSS) for windows version 21. A Paired-samples t-test was used to compare the means of values collected before and after the feeding trial within the groups and significance was accepted at p < 0.05. There was a non-significant (p > 0.05) decrease in the mean total cholesterol of the subjects in groups 1, 2 and 3 after the feeding trial. There was a non-significant (p > 0.05) decrease in the mean triglyceride levels of the subjects in group 1 after the feeding trial. Groups 1 and 3 subjects had a non-significant (p > 0.05) decrease in their mean low-density lipoprotein (LDL) cholesterol after the feeding trial. Groups 1, 2 and 4 had a significant (p < 0.05) increase in their mean high-density lipoprotein (HDL) cholesterol after the feeding trial. A significant (p < 0.05) decrease in the mean hemoglobin level was observed only in group 4 subjects. Similarly, there was a significant (p < 0.05) decrease in the mean packed cell volume of group 4 subjects. It was only in group 4 that a significant (p < 0.05) decrease in the mean white blood cells of the subjects was also observed. The changes observed in the parameters assessed were not dose-dependent. Therefore, a similar study of longer duration and more samples is imperative to authenticate these results.

Keywords: anemia, diabetic subjects, lipid profile, moringa oleifera

Procedia PDF Downloads 199
804 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 156
803 Structuring Paraphrases: The Impact Sentence Complexity Has on Key Leader Engagements

Authors: Meaghan Bowman

Abstract:

Soldiers are taught about the importance of effective communication with repetition of the phrase, “Communication is key.” They receive training in preparing for, and carrying out, interactions between foreign and domestic leaders to gain crucial information about a mission. These interactions are known as Key Leader Engagements (KLEs). For the training of KLEs, doctrine mandates the skills needed to conduct these “engagements” such as how to: behave appropriately, identify key leaders, and employ effective strategies. Army officers in training learn how to confront leaders, what information to gain, and how to ask questions respectfully. Unfortunately, soldiers rarely learn how to formulate questions optimally. Since less complex questions are easier to understand, we hypothesize that semantic complexity affects content understanding, and that age and education levels may have an effect on one’s ability to form paraphrases and judge their quality. In this study, we looked at paraphrases of queries as well as judgments of both the paraphrases’ naturalness and their semantic similarity to the query. Queries were divided into three complexity categories based on the number of relations (the first number) and the number of knowledge graph edges (the second number). Two crowd-sourced tasks were completed by Amazon volunteer participants, also known as turkers, to answer the research questions: (i) Are more complex queries harder to paraphrase and judge and (ii) Do age and education level affect the ability to understand complex queries. We ran statistical tests as follows: MANOVA for query understanding and two-way ANOVA to understand the relationship between query complexity and education and age. A probe of the number of given-level queries selected for paraphrasing by crowd-sourced workers in seven age ranges yielded promising results. We found significant evidence that age plays a role and marginally significant evidence that education level plays a role. These preliminary tests, with output p-values of 0.0002 and 0.068, respectively, suggest the importance of content understanding in a communication skill set. This basic ability to communicate, which may differ by age and education, permits reproduction and quality assessment and is crucial in training soldiers for effective participation in KLEs.

Keywords: engagement, key leader, paraphrasing, query complexity, understanding

Procedia PDF Downloads 160
802 In Vitro Study on the Antimicrobial Activity of Ass Hay (Donkey Skin) On Some Pathogenic Microorganisms

Authors: Emmanuel Jaluchimike Iloputaife, Kelechi Nkechinyere Mbah-Omeje

Abstract:

This study was designed to determine the antimicrobial activities and minimum inhibitory concentration of three different batches (Fresh, Oven dried and Sundried) of Ass Hay extracted with water, ethanol and methanolagainst selected human pathogenic microorganisms (Escherichia coli, Klebsiella Pneumonia, Staphylococcus aureus, Aspergillus niger and Candidaalbicans). All extracts were reconstituted with peptone water and tested for antimicrobial activity. The antimicrobial activity, the Minimum Inhibitory Concentration and Minimum Bactericidal/Fungicidal concentrations were determined by agar well diffusion methodagainst test organismsin which aseptic conditions were observed. The antimicrobial activities of the different batches of Ass Hay on the test organisms varied considerably. The highest inhibition zone diameter at 200 mg/ml for the different batches of Ass Hay was recorded by sundried methanol extract against Escherichia coli at 36.4 ± 0.2 mm while fresh methanol extract inhibited Klebsiela pneumonia with the least inhibition zone diameter at 20.1 ± 0.1mm. At 100 mg/ml the highest inhibition zone diameter was recorded by oven dried water extract against Escherichia coli at 30.3 ± 0.3 mm while sun dried water extract inhibited Staphylococcus aureus with the least inhibition zone diameter at 15.1 ± 0.1 mm. At 50mg/ml, the highest inhibition zone diameter was recorded by fresh water extract against Escherichia coli at 25.9 ± 0.1 mm while oven dried water extract inhibited Klebsiela pneumonia with least inhibition zone diameter at 12.1 ± 0.2 mm. At 25mg/ml, the highest inhibition zone diameter was recorded by fresh water extract against Escherichia coli at 18.3 ± 0.2 mm while sun dried ethanol extract inhibited Escherichia coli with least inhibition zone diameter at 10.1 ± 0.1 mm. The MIC and MBC result of ethanol extract of fresh Ass Hay showed a uniform value of 6.25 mg/ml and 12.5 mg/ml respectively for all test bacterial isolates. The Minimum Inhibitory concentration and Minimum bactericidal concentration results of Oven dried ethanol Ass Hay extract showed a uniform value of 3.125 mg/ml and 6.25 mg/ml respectively for all test bacterial isolates and Minimum fungicidal concentration value of 12.5 mg/ml for Aspergillus niger. Statistical analysis showed there is significant difference in mean zone inhibition diameter of the products at p < 0.05, p = 0.019. This study has shown there is antimicrobial potential in Ass Hay and at such there is need to further exploit Donkey Ass Hay in order to maximize the potential.

Keywords: microorganisms, Ass Hay, antimicrobial activity, extracts

Procedia PDF Downloads 137
801 Stratafix Barbed Suture Versus Polydioxanone Suture on the Rate of Pancreatic Fistula After Pancreaticoduodenectomy

Authors: Saniya Ablatt, Matthew Jacobsson, Jamie Whisler, Austin Forbes

Abstract:

Postoperative pancreatic fistula (POPF) is a complication that occurs in up to 41% of patients after pancreaticoduodenectomy. Although certain characteristics such as individual patient anatomy are known risk factors for POPF, the effect of barbed suture techniques remains underexplored. This study examines whether the use of Stratafix barbed suture versus PDS impacts the risk of developing POPF. After obtaining IRB exemption, a retrospective chart review was initiated involving patients who underwent pancreaticoduodenectomy for the treatment of malignant or premalignant lesions of the pancreas at our institution between April 1st 2020 and April 30th 2022. Patients were stratified into 2 groups respective to the technique used to suture the pancreatico-jejunal anastomosis: Group 1 was composed to patients in which 4.0 Stratafix® suture was used n=41. Group 1 was composed to patients in which 4.0 PDS suture was used n=42. Data regarding patient age, sex, BMI, presence or absence of biochemical leak, presence or absence of grade B & C postoperative pancreatic fistulas, rate and type of in hospital complication, rate of reoperation, 30 day readmission rate, 90 day mortality, and total mortality were compared between groups. 83 patients were included in our study with 42 receiving Stratafix and 41 receiving PDS (50.6% vs 49.4%). Stratafix patients had less biochemical leaks (0.0% vs 4.8%, p=0.19) and higher rates of POPF but this was not statistically significant (7.2% vs 2.4%, p=0.26). Additionally, there was no difference between the use of stratafix versus PDS on the risk of clinically relevant grade B or C POPF (p=0.26, OR=3.25 [CI= 0.74-16.43]). Of the independent variables including age, race, sex, BMI, and ASA class, BMI greater than 25 increased the risk of clinically relevant POPF by 7.7 times compared to patients with BMI less than 25 (p=0.03, OR=7.79 [1.04-88.51]). Despite no significant difference in primary outcomes, the Stratafix group had lower rates of secondary outcomes including 90-day mortality; bleeding, cardiac, and infectious complications; reoperation; and 30-day readmission. On statistical analysis, Stratafix decreased the risk of 30-day readmission (p=0.04, OR=0.21, CI=0.04-0.97) and had a marginally significant effect on the risk of reoperation (p=0.08, OR=0.24, CI=0.04-1.26). There was no difference between the use of Stratafix versus PDS on the risk of POPF (p=0.26). However, Stratafix decreased the risk of 30-day readmission (p=0.04) and BMI greater than 25 increased the risk of clinically relevant POPF (p=0.03).

Keywords: pancreas, hepatobiliary surgery, hepatobiliary, pancreatic leak, biochemical leak, fistula, pancreatic fistula

Procedia PDF Downloads 127
800 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 134
799 Enhancing Academic and Social Skills of Elementary School Students with Autism Spectrum Disorder by an Intensive and Comprehensive Teaching Program

Authors: Piyawan Srisuruk, Janya Boonmeeprasert, Romwarin Gamlunglert, Benjamaporn Choikhruea, Ornjira Jaraepram, Jarin Boonsuchat, Sakdadech Singkibud, Kusalaporn Chaiudomsom, Chanatiporn Chonprai, Pornchanaka Tana, Suchat Paholpak

Abstract:

Objective: To develop an Intensive and comprehensive program (ICP) for the Inclusive Class Teacher (ICPICT) to teach elementary students (ES) with ASD in order to enhance the students’ academic and social skills (ASS) and to study the effect of the teaching program. Methods: The purposive sample included 15 Khon Kaen inclusive class teachers and their 15 elementary students. All the students were diagnosed by a child and adolescent psychiatrist to have DSM-5 level 1 ASD. The study tools included 1) an ICP to teach teachers about ASD, a teaching method to enhance academic and social skills for ES with ASD, and an assessment tool to assess the teacher’s knowledge before and after the ICP. 2) an ICPICT to teach ES with ASD to enhance their ASS. The project taught 10 sessions, 3 hours each. The ICPICT had its teaching structure. Teaching media included: pictures, storytelling, songs, and plays. The authors taught and demonstrated to the participant teachers how to teach with the ICPICT until the participants could display the correct teaching method. Then the teachers taught ICPICT at school by themselves 3) an assessment tool to assess the students’ ASS before and after the completion of the study. The ICP to teach the teachers, the ICPICT, and the relevant assessment tools were developed by the authors and were adjusted until consensus agreed as appropriate for researching by 3 curriculum of teaching children with ASD experts. The data were analyzed by descriptive and analytic statistics via SPSS version 26. Results: After the briefing, the teachers increased the mean score, though not with statistical significance, of knowledge of ASD and how to teach ES with ASD on ASS (p = 0.13). Teaching ES with ASD with the ICPICT could increase the mean scores of the students’ skills in learning and expressing social emotions, relationships with a friend, transitioning, and skills in academic function 3.33, 2.27, 2.94, and 3.00 scores (full scores were 18, 12, 15 and 12, Paired T-Test p = 0.007, 0.013, 0.028 and 0.003 respectively). Conclusion: The program to teach academic and social skills simultaneously in an intensive and comprehensive structure could enhance both the academic and social skills of elementary students with ASD. Keywords: Elementary students, autism spectrum, academic skill, social skills, intensive program, comprehensive program, integration.

Keywords: academica and social skills, students with autism, intensive and comprehensive, teaching program

Procedia PDF Downloads 63
798 The Appropriate Number of Test Items That a Classroom-Based Reading Assessment Should Include: A Generalizability Analysis

Authors: Jui-Teng Liao

Abstract:

The selected-response (SR) format has been commonly adopted to assess academic reading in both formal and informal testing (i.e., standardized assessment and classroom assessment) because of its strengths in content validity, construct validity, as well as scoring objectivity and efficiency. When developing a second language (L2) reading test, researchers indicate that the longer the test (e.g., more test items) is, the higher reliability and validity the test is likely to produce. However, previous studies have not provided specific guidelines regarding the optimal length of a test or the most suitable number of test items or reading passages. Additionally, reading tests often include different question types (e.g., factual, vocabulary, inferential) that require varying degrees of reading comprehension and cognitive processes. Therefore, it is important to investigate the impact of question types on the number of items in relation to the score reliability of L2 reading tests. Given the popularity of the SR question format and its impact on assessment results on teaching and learning, it is necessary to investigate the degree to which such a question format can reliably measure learners’ L2 reading comprehension. The present study, therefore, adopted the generalizability (G) theory to investigate the score reliability of the SR format in L2 reading tests focusing on how many test items a reading test should include. Specifically, this study aimed to investigate the interaction between question types and the number of items, providing insights into the appropriate item count for different types of questions. G theory is a comprehensive statistical framework used for estimating the score reliability of tests and validating their results. Data were collected from 108 English as a second language student who completed an English reading test comprising factual, vocabulary, and inferential questions in the SR format. The computer program mGENOVA was utilized to analyze the data using multivariate designs (i.e., scenarios). Based on the results of G theory analyses, the findings indicated that the number of test items had a critical impact on the score reliability of an L2 reading test. Furthermore, the findings revealed that different types of reading questions required varying numbers of test items for reliable assessment of learners’ L2 reading proficiency. Further implications for teaching practice and classroom-based assessments are discussed.

Keywords: second language reading assessment, validity and reliability, Generalizability theory, Academic reading, Question format

Procedia PDF Downloads 87
797 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children

Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura

Abstract:

Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.

Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification

Procedia PDF Downloads 299
796 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs

Authors: Iman Farasat, Howard M. Salis

Abstract:

The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.

Keywords: biophysical model, CRISPR, Cas9, genome editing

Procedia PDF Downloads 402
795 Urban Logistics Dynamics: A User-Centric Approach to Traffic Modelling and Kinetic Parameter Analysis

Authors: Emilienne Lardy, Eric Ballot, Mariam Lafkihi

Abstract:

Efficient urban logistics requires a comprehensive understanding of traffic dynamics, particularly as it pertains to kinetic parameters influencing energy consumption and trip duration estimations. While real-time traffic information is increasingly accessible, current high-precision forecasting services embedded in route planning often function as opaque 'black boxes' for users. These services, typically relying on AI-processed counting data, fall short in accommodating open design parameters essential for management studies, notably within Supply Chain Management. This work revisits the modelling of traffic conditions in the context of city logistics, emphasizing its significance from the user’s point of view, with two focuses. Firstly, the focus is not on the vehicle flow but on the vehicles themselves and the impact of the traffic conditions on their driving behaviour. This means opening the range of studied indicators beyond vehicle speed, to describe extensively the kinetic and dynamic aspects of the driving behaviour. To achieve this, we leverage the Art. Kinema parameters are designed to characterize driving cycles. Secondly, this study examines how the driving context (i.e., exogenous factors to the traffic flow) determines the mentioned driving behaviour. Specifically, we explore how accurately the kinetic behaviour of a vehicle can be predicted based on a limited set of exogenous factors, such as time, day, road type, orientation, slope, and weather conditions. To answer this question, statistical analysis was conducted on real-world driving data, which includes high-frequency measurements of vehicle speed. A Factor Analysis and a Generalized Linear Model have been established to link kinetic parameters with independent categorical contextual variables. The results include an assessment of the adjustment quality and the robustness of the models, as well as an overview of the model’s outputs.

Keywords: factor analysis, generalised linear model, real world driving data, traffic congestion, urban logistics, vehicle kinematics

Procedia PDF Downloads 63
794 Code Mixing and Code-Switching Patterns in Kannada-English Bilingual Children and Adults Who Stutter

Authors: Vasupradaa Manivannan, Santosh Maruthy

Abstract:

Background/Aims: Preliminary evidence suggests that code-switching and code-mixing may act as one of the voluntary coping behavior to avoid the stuttering characteristics in children and adults; however, less is known about the types and patterns of code-mixing (CM) and code-switching (CS). Further, it is not known how it is different between children to adults who stutter. This study aimed to identify and compare the CM and CS patterns between Kannada-English bilingual children and adults who stutter. Method: A standard group comparison was made between five children who stutter (CWS) in the age range of 9-13 years and five adults who stutter (AWS) in the age range of 20-25 years. The participants who are proficient in Kannada (first language- L1) and English (second language- L2) were considered for the study. There were two tasks given to both the groups, a) General conversation (GC) with 10 random questions, b) Narration task (NAR) (Story / General Topic, for example., A Memorable Life Event) in three different conditions {Mono Kannada (MK), Mono English (ME), and Bilingual (BIL) Condition}. The children and adults were assessed online (via Zoom session) with a high-quality internet connection. The audio and video samples of the full assessment session were auto-recorded and manually transcribed. The recorded samples were analyzed for the percentage of dysfluencies using SSI-4 and CM, and CS exhibited in each participant using Matrix Language Frame (MLF) model parameters. The obtained data were analyzed using the Statistical Package for the Social Sciences (SPSS) software package (Version 20.0). Results: The mean, median, and standard deviation values were obtained for the percentage of dysfluencies (%SS) and frequency of CM and CS in Kannada-English bilingual children and adults who stutter for various parameters obtained through the MLF model. The inferential results indicated that %SS significantly varied between population (AWS vs CWS), languages (L1 vs L2), and tasks (GC vs NAR) but not across free (BIL) and bound (MK, ME) conditions. It was also found that the frequency of CM and CS patterns varies between CWS and AWS. The AWS had a lesser %SS but greater use of CS patterns than CWS, which is due to their excessive coping skills. The language mixing patterns were more observed in L1 than L2, and it was significant in most of the MLF parameters. However, there was a significantly higher (P<0.05) %SS in L2 than L1. The CS and CS patterns were more in conditions 1 and 3 than 2, which may be due to the higher proficiency of L2 than L1. Conclusion: The findings highlight the importance of assessing the CM and CS behaviors, their patterns, and the frequency of CM and CS between CWS and AWS on MLF parameters in two different tasks across three conditions. The results help us to understand CM and CS strategies in bilingual persons who stutter.

Keywords: bilinguals, code mixing, code switching, stuttering

Procedia PDF Downloads 76
793 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 206
792 Gender Perspective in Peace Operations: An Analysis of 14 UN Peace Operations

Authors: Maressa Aires de Proenca

Abstract:

The inclusion of a gender perspective in peace operations is based on a series of conventions, treaties, and resolutions designed to protect and include women addressing gender mainstreaming. The UN Security Council recognizes that women's participation and gender equality within peace operations are indispensable for achieving sustainable development and peace. However, the participation of women in the field of peace and security is still embryonic. There are gaps when we think about female participation in conflict resolution and peace promotion spaces, and it does not seem clear how women are present in these spaces. This absence may correspond to silence about representation and the guarantee of the female perspective within the context of peace promotion. Thus, the present research aimed to describe the panorama of the participation of women who are currently active in the 14 active UN peace operations, which are: 1) MINUJUSTH, Haiti, 2) MINURSO, Western Sahara, 3) MINUSCA, Central African Republic, 4) MINUSMA, Mali, 5) MONUSCO, the Democratic Republic of the Congo, 6) UNAMID, Darfur, 7) UNDOF, Golan, 8) UNFICYP, Cyprus, 9) UNIFIL, Lebanon, 10) UNISFA, Abyei, 11) UNMIK, Kosovo, 12) UNMISS, South Sudan, 13) UNMOGIP, India, and Pakistan, and 14) UNTSO, Middle East. A database was constructed that reported: (1) position held by the woman in the peace operation, (2) her profession, (3) educational level, (4) marital status, (5) religion, (6) nationality, (8) number of years working with peace operations, (9) whether the operation in which it operates has provided training on gender issues. For the construction of this database, official reports and statistics accessed through the UN Peacekeeping Resource Hub were used; The United Nations Statistical Commission, Peacekeeping Master Open Datasets, The Armed Conflict Database (ACD), The International Institute for Strategic Studies (IISS) database; Armed Conflict Location & Event Data Project (ACLED) database; from the Evidence and Data for Gender Equality (EDGE) database. In addition to access to databases, peacekeeping operations will be contacted directly, and data requested individually. The database showed that the presence of women in these peace operations is still incipient, but growing. There are few women in command positions, and most of them occupy administrative or human-care positions.

Keywords: women, peace and security, peacekeeping operations, peace studies

Procedia PDF Downloads 135
791 A Multilingual Model in the Multicultural World

Authors: Marina Petrova

Abstract:

Language policy issues related to the preservation and development of the native languages of the Russian peoples and the state languages of the national republics are increasingly becoming the focus of recent attention of educators and parents, public and national figures. Is it legal to teach the national language or the mother tongue as the state language? Due to that dispute language phobia moods easily evolve into xenophobia among the population. However, a civilized, intelligent multicultural personality can only be formed if the country develops bilingualism and multilingualism, and languages as a political tool help to find ‘keys’ to sufficiently closed national communities both within a poly-ethnic state and in internal relations of multilingual countries. The purpose of this study is to design and theoretically substantiate an efficient model of language education in the innovatively developing Republic of Sakha. 800 participants from different educational institutions of Yakutia worked at developing a multilingual model of education. This investigation is of considerable practical importance because researchers could build a methodical system designed to create conditions for the formation of a cultural language personality and the development of the multilingual communicative competence of Yakut youth, necessary for communication in native, Russian and foreign languages. The selected methodology of humane-personal and competence approaches is reliable and valid. Researchers used a variety of sources of information, including access to related scientific fields (philosophy of education, sociology, humane and social pedagogy, psychology, effective psychotherapy, methods of teaching Russian, psycholinguistics, socio-cultural education, ethnoculturology, ethnopsychology). Of special note is the application of theoretical and empirical research methods, a combination of academic analysis of the problem and experienced training, positive results of experimental work, representative series, correct processing and statistical reliability of the obtained data. It ensures the validity of the investigation’s findings as well as their broad introduction into practice of life-long language education.

Keywords: intercultural communication, language policy, multilingual and multicultural education, the Sakha Republic of Yakutia

Procedia PDF Downloads 222
790 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving

Authors: Svenja Pieritz, Jakab Pilaszanovich

Abstract:

Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.

Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing

Procedia PDF Downloads 130
789 Possible Endocrinal and Liver Enzymes Toxicities Associated with Long Term Exposure to Benzene in Saudi Arabia

Authors: Faizah Asiri, Mohammed Fathy, Saeed Alghamdi, Nahlah Ayoub, Faisal Asiri

Abstract:

Background: - The strategies for this study were based on the toxic effect of long-term inhalation of Benzene on hormones and liver enzymes and various parameters related to it. The following databases were searched: benzene, hepatotoxic, benzene metabolism, hormones, testosterone, hemotoxic, and prolonged exposure. A systematic strategy is designed to search the literature that links benzene with the multiplicity and different types of intoxication or the medical abbreviations of diseases relevant to benzene exposure. Evidence suggests that getting rid of inhaled gasoline is by exhalation. Absorbed benzene is metabolized by giving phenolic acid as well as meconic acid, followed by urinary excretion of conjugate sulfates and glucuronides. Materials and Methods :- This work was conducted in the Al-Khadra laboratory in Taif 2020/2021 and aimed to measure some of the possible endocrinal and liver toxicities associated with benzene's long-term exposure in Saudi Arabia at the station workers who are considered the most exposed category to gasoline. One hundred ten station workers were included in this study. They were divided into four patient groups according to the chronic exposure rate to benzene, one control group, and three other groups of exposures. As follows: patient Group 1 (controlled group), patient Group 2 (exposed less than 1y), patient Group 3 (exposed 1-5 y), patient Group 4 (more than 5). Each group is compared with blood sample parameters (ALT, FSH and Testosterone, TSH). Blood samples were drawn from the participants, and statistical tests were performed. Significant change (p≤0.05) was examined compared to the control group. Workers' exposure to benzene led to a significant change in hematological, hormonal, and hepatic factors compared to the control group. Results:- The results obtained a relationship between long-term exposure to benzene and a decrease in the level of testosterone and FSH hormones, including that it poses a toxic risk in the long term (p≤0.05) when compared to the control. We obtained results confirming that there is no significant coloration between years of exposure and TSH level (p≤0.05) when compared to the control. Conclusion:- We conclude that some hormones and liver enzymes are affected by chronic doses of benzene through inhalation after our study was on the group most exposed to benzene, which is gas station workers.

Keywords: toxicities, benzene, hormones, station workers

Procedia PDF Downloads 86
788 A Meta Analysis of the Recent Work-Related Research of BEC-Teachers in the Graduate Programs of the Selected HEIs in Region I and CAR

Authors: Sherelle Lou Sumera Icutan, Sheila P. Cayabyab, Mary Jane Laruan, Paulo V. Cenas, Agustina R. Tactay

Abstract:

This study critically analyzed the recent theses and dissertations of the Basic Education Curriculum (BEC) teachers who finished their graduate programs in selected higher educational institutions in Region I and CAR to be able to come up with a unified result from the varied results of the analyzed research works. All theses and dissertations completed by the educators/teachers/school personnel in the secondary and elementary public and private schools in Region 1 and CAR from AY 2003–2004 to AY 2007–2008 were classified first–as to work or non-work related; second–as to the different aspects of the curriculum: implementation, content, instructional materials, assessment instruments, learning, teaching, and others; third–as to being eligible for meta-analysis or not. Only studies found eligible for meta-analysis were subjected to the procedure. Aside from documentary analysis, the statistical treatments used in meta-analysis include the standardized effect size, Pearson’s correlation (r), the chi-square test of homogeneity and the inverse of the Fisher transformation. This study found out that the BEC-teachers usually probe on work-related researchers with topics that are focused on the learning performances of the students and on factors related to teaching. The development of instructional materials and assessment of implemented programs are also equally explored. However, there are only few researches on content and assessment instrument. Research findings on the areas of learning and teaching are the only aspects that are meta-analyzable. The research findings across studies in Region I and CAR of BEC teachers that focused on similar variables correlated to teaching do not vary significantly. On the contrary, research findings across studies in Region I and CAR that focused on variables correlated to learning performance significantly vary. Within each region, variations on the findings of research works related to learning performance that considered similar variables still exist. The combined finding on the effect size or relationship of the variables that are correlated to learning performance are low which means that effect is small but definite while the combined findings on the relationship of the variables correlated to teaching are slight or almost negligible.

Keywords: meta-analysis, BEC teachers, work-related research,

Procedia PDF Downloads 426
787 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth in Patients with Lymph Nodes Metastases

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This paper is devoted to mathematical modelling of the progression and stages of breast cancer. We propose Consolidated mathematical growth model of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases (CoM-III) as a new research tool. We are interested in: 1) modelling the whole natural history of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; 2) developing adequate and precise CoM-III which reflects relations between primary tumor and secondary distant metastases; 3) analyzing the CoM-III scope of application; 4) implementing the model as a software tool. Firstly, the CoM-III includes exponential tumor growth model as a system of determinate nonlinear and linear equations. Secondly, mathematical model corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for secondary distant metastases growth in patients with lymph nodes metastases; 3) ‘visible period’ for secondary distant metastases growth in patients with lymph nodes metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-III model and predictive software: a) detect different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes metastases; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoM-III: the number of doublings for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases. The CoM-III enables, for the first time, to predict the whole natural history of primary tumor and secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-III describes correctly primary tumor and secondary distant metastases growth of IA, IIA, IIB, IIIB (T1-4N1-3M0) stages in patients with lymph nodes metastases (N1-3); b) facilitates the understanding of the appearance period and inception of secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, primary tumor, secondary metastases, survival

Procedia PDF Downloads 300
786 Effect of Auraptene on the Enzymatic Glutathione Redox-System in Nrf2 Knockout Mice

Authors: Ludmila A. Gavriliuc, Jerry McLarty, Heather E. Kleiner, J. Michael Mathis

Abstract:

Abstract -- Background: The citrus coumarine Auraptene (Aur) is an effective chemopreventive agent, as manifested in many models of diseases and cancer. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1, and peroxiredoxin 1, by activating the antioxidant response element (ARE). Genetic and biochemical evidence has demonstrated that glutathione (GSH) and glutathione-dependent enzymes, glutathione reductase (GR), glutathione peroxidases (GPs), glutathione S-transferases (GSTs) are responsible for the control of intracellular reduction-oxidation status and participate in cellular adaptation to oxidative stress. The effect of Aur on the activity of GR, GPs (Se-GP and Se-iGP), and content of GSH in the liver, kidney, and spleen is insufficiently explored. Aim: Our goal was the examination of the Aur influence on the redox-system of GSH in Nrf2 wild type and Nrf2 knockout mice via activation of Nrf2 and ARE. Methods: Twenty female mice, 10 Nrf2 wild-type (WT) and 10 Nrf2 (-/-) knockout (KO), were bred and genotyped for our study. The activity of GR, Se-GP, Se-iGP, GST, G6PD, CytP450 reductase, catalase (Cat), and content of GSH were analyzed in the liver, kidney, and spleen using Spectrophotometry methods. The results of the specific activity of enzymes and the amount of GSH were analyzed with ANOVA and Spearman statistical methods. Results: Aur (200 mg/kg) treatment induced hepatic GST, GR, Se-GP activity and inhibited their activity in the spleen of mice, most likely via activation of the ARE through Nrf2. Activation in kidney Se-GP and G6PD by Aur is also controlled, apparently through Nrf2. Results of the non-parametric Spearman correlation analysis indicated the strong positive correlation between GR and G6PD only in the liver in WT control mice (r=+0.972; p < 0.005) and in the kidney KO control mice (r=+0.958; p < 0.005). The observed low content of GSH in the liver of KO mice indicated an increase in its participation in the neutralization of toxic substances with the absence of induction of GSH-dependent enzymes, such as GST, GR, Se-GP, and Se-iGP. Activation of CytP450 in kidney and spleen and Cat in the liver in KO mice probably revealed another regulatory mechanism for these enzymes. Conclusion: Thereby, obtained results testify that Aur can modulate the activity of genes and antioxidant enzymatic redox-system of GSH, responsible for the control of intracellular reduction-oxidation status.

Keywords: auraptene, glutathione, GST, Nrf2

Procedia PDF Downloads 146
785 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 320
784 Examining Contraceptive Ideational Disparities Among Adolescents and Young Women in Nigeria using Multivariate Analysis

Authors: Oluwayemisi D. Ishola, Lekan Ajijola

Abstract:

Nigeria faces a demographic challenge characterized by a burgeoning youth population and an escalating fertility rate. A notable decline in the use of modern contraceptives among adolescent girls and young women compounds the challenge. The youthful demographic stands at a critical juncture in the nation's pursuit to fulfill its pledge of achieving a 27% modern contraceptive rate by 2030, embodying the potential to translate this ambitious commitment into a tangible reality. This research undertook a multi-dimensional examination to scrutinize contraceptive ideational disparities among adolescents and young women in Nigeria, with a particular emphasis on ideational factors. The data underpinning this study were drawn from a cross-sectional household survey carried out in the Nigerian states of Edo, Ogun, Plateau, and Niger between October 2019 and January 2020. The survey encompassed 2,857 sexually active women aged 15-24 years. Employing an ideational framework focusing on behavior that accentuates psychosocial factors, the study dissected nine unique ideational variables into three principal domains: social, cognitive, and emotional. Multivariate logistics regression analyses were used to assess associations between ideational elements and contraceptive use within the total sample and specific age brackets (adolescents of 15-19 years and youth of 20-24 years). For this study, a p-value less than 0.05 was considered indicative of statistical significance. The study's results revealed significant associations between the ideational variables and contraceptive use in total sample and among adolescent and youth, ranging from p < .05 to p < .001. The influence of each domain's predictors on Family Planning (FP) manifested variations when assessed separately and across the different age groups. Notably, cognitive and emotional domains were found to be the strongest predictor of contraceptive use when compared with social domains in the general sample and among youth. This study’s findings highlight the complex interplay of social, cognitive, and emotional factors in contraceptive use among young individuals. Understanding these dynamics is crucial in developing effective strategies to overcome barriers and improve access to contraceptive services among young women in Nigeria.

Keywords: adolescents, contraception, ideation, youth

Procedia PDF Downloads 69
783 Oral Hygiene Behaviors among Pregnant Women with Diabetes Who Attend Primary Health Care Centers at Baghdad City

Authors: Zena F. Mushtaq, Iqbal M. Abbas

Abstract:

Background: Diabetes mellitus during pregnancy is one of the major medical and social problems with increasing prevalence in last decades and may lead to more vulnerable to dental problems and increased risk for periodontal diseases. Objectives: To assess oral hygiene behaviors among pregnant women with diabetes who attended primary health care centers and find out the relationship between oral hygiene behaviors and studied variables. Methodology: A cross sectional design was conducted from 7 July to 30 September 2014 on non probability (convenient sample) of 150 pregnant women with diabetes was selected from twelve Primary Health Care Centers at Baghdad city. Questionnaire format is tool for data collection which had designed and consisted of three main parts including: socio demographic, reproductive characteristics and items of oral hygiene behaviors among pregnant women with diabetes. Reliability of the questionnaire was determined through internal consistency of correlation coefficient (R= 0.940) and validity of content was determined through reviewing it by (12) experts in different specialties and was determined through pilot study. Descriptive and inferential statistics were used to analyze collected data. Result: Result of study revealed that (35.3%) of study sample was (35-39) years old with mean and SD is (X & SD = 33.57 ± 5.54) years, and (34.7%) of the study sample was graduated from primary school and less, half of the study sample was government employment and self employed, (42.7%) of the study sample had moderate socioeconomic status, the highest percentage (70.0%) of the study sample was nonsmokers, The result indicates that oral hygiene behaviors have moderate mean score in all items. There are no statistical significant association between oral hygiene domain and studied variables. Conclusions: All items related to health behavior concerning oral hygiene is in moderate mean of score, which may expose pregnant women with diabetes to high risk of periodontal diseases. Recommendations: Dental care provider should perform a dental examination at least every three months for each pregnant woman with diabetes, explanation of the effect of DM on periodontal health, oral hygiene instruction, oral prophylaxis, professional cleaning and treatment of periodontal diseases(scaling and root planing) when needed.

Keywords: diabetes, health behavior, pregnant women, oral hygiene

Procedia PDF Downloads 284
782 Role of Tourism and Hospitality Industry in economic Development

Authors: S. M. Abdus Sattar

Abstract:

Introduction: The objectives of the study are to assess different aspects of the tourism and hospitality industry, analyze its contributions to the Gross Domestic Product of Bangladesh, identify the importance of the tourism and hospitality industry, explore future prospects in the sectors, identify challenges and provide recommendations for the development of these industries. The study explores the significance of the tourism and hospitality industry in economic growth and defines its role. Tourism is one of the fastest-growing industries in the world today. Methodology: The study adopts statistical methods and utilizes both quantitative and qualitative research techniques. Data is collected through surveys, interviews, visitor registration, online platforms and analysis of various tourism-related records. The study focuses on marketing, management, attractions and services in the tourism and hospitality sectors. Result: The tourism and hospitality industry offers great opportunities for emerging economies and developing countries. The industry provides job creation, infrastructure development, cultural assets and environmental conservation, essential skills development, revenue generated, foreign exchange earned, economic growth and reduced poverty and inequality. Discussion: The study focuses on improving infrastructure and service quality in the tourism and hospitality industry to attract tourists. The industry significantly contributes to the Gross Domestic Product of Bangladesh. It highlights how the tourism and hospitality sectors can drive economic development, reduce poverty and promote cultural and environmental conservation. It also explores the challenges and future prospects in the tourism and hospitality sectors. Conclusion and Future Scope: The opportunities for tourism of Bangladesh are agricultural tourism, religious tourism, sports tourism, eco-tourism, educational tourism, rural tourism and cultural tourism. However, there is a lack of research and plans to explore the development of the industry. The tourism and hospitality industry offers numerous opportunities for growth and development. There are job opportunities for travel consultants, tour operators, event planners, hotel managers, travel writers, tourism development officers and airline executives in the future. The study recommends to development of tourism infrastructure, maintaining tourist destinations, railway stations, airports, rest houses, hotels and improving the quality of services.

Keywords: tourism, hospitality, employment, economic, development

Procedia PDF Downloads 21
781 Factors Associated with Cytomegalovirus Infection: A Prospective Single Centre Study

Authors: Marko Jankovic, Aleksandra Knezevic, Maja Cupic, Dragana Vujic, Zeljko Zecevic, Borko Gobeljic, Marija Simic, Tanja Jovanovic

Abstract:

The human cytomegalovirus (CMV) is a notorious pathogen in the pediatric transplant setting. Although studies on factors in complicity with CMV infection abound, the role of age, gender, allogeneic hematopoietic stem cell transplantation (alloHSCT) modality, and underlying disease as regards CMV infection and viral load in children are poorly explored. We examined the significance of various factors related to the risk of CMV infection and viral load in Serbian children and adolescents undergoing alloHSCT. This was a prospective single centre study of thirty two pediatric patients in receipt of alloHSCT for various malignant and non-malignant disorders. Screening for active viral infection was performed by regular weekly monitoring. The Real-Time PCR method was used for CMV DNA detection and quantitation. Statistical analysis was performed using the IBM SPSS Statistics v20 software. Chi-square test was used to evaluate categorical variables. Comparison between scalar and nominal data was done by Wilcoxon-Mann-Whitney test. Pearson correlation was applied for studying the association between patient age and viral load. CMV was detected in 23 (71.9%) patients. Infection occurred significantly more often (p=0.015) in patients with haploidentical donors. The opposite was noted for matched sibling grafts (p=0.006). The viral load was higher in females (p=0.041) and children in the aftermath of alloHSCT with malignant diseases (p=0.019). There was no significant relationship between the viral infection dynamics and overt medical consequences. This is the first study of risk factors for CMV infection in Serbian pediatric alloHSCT patients. Transplanted patients presented with a high incidence of CMV viremia. The HLA compatibility of donated graft is associated with the frequency of CMV positive events. Age, gender, underlying disease, and medically relevant events were not conducive to occurrences of viremia. Notably, substantial viral burdens were evidenced in females and patients with neoplastic diseases. Studies comprising larger populations are clearly needed to scrutinize current results.

Keywords: allogeneic hematopoietic stem cell transplantation, children, cytomegalovirus, risk factors, viral load

Procedia PDF Downloads 159
780 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61
779 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis

Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana

Abstract:

Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.

Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis

Procedia PDF Downloads 125
778 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean

Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi

Abstract:

The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.

Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean

Procedia PDF Downloads 228
777 Effects of Warning Label on Cigarette Package on Consumer Behavior of Smokers in Batangas City Philippines

Authors: Irene H. Maralit

Abstract:

Warning labels have been found to inform smokers about the health hazards of smoking, encourage smokers to quit, and prevent nonsmokers from starting to smoke. Warning labels on tobacco products are an ideal way of communicating with smokers. Since the intervention is delivered at the time of smoking, nearly all smokers are exposed to warning labels and pack-a-day smokers could be exposed to the warnings more than 7,000 times per year. Given the reach and frequency of exposure, the proponents want to know the effect of warning labels on smoking behavior. Its aims to identify the profile of the smokers associated with its behavioral variables that best describe the users’ perception. The behavioral variables are AVOID, THINK RISK and FORGO. This research study aims to determine if there is significant relationship between the effect of warning labels on cigarette package on Consumer behavior when grouped according to profile variable. The researcher used quota sampling to gather representative data through purposive means to determine the accurate representation of data needed in the study. Furthermore, the data was gathered through the use of a self-constructed questionnaire. The statistical method used were Frequency count, Chi square, multi regression, weighted mean and ANOVA to determine the scale and percentage of the three variables. After the analysis of data, results shows that most of the respondents belongs to age range 22–28 years old with percentage of 25.3%, majority are male with a total number of 134 with percentage of 89.3% and single with total number of 79 and percentage of 52.7%, mostly are high school graduates with total number of 59 and percentage of 39.3, with regards to occupation, skilled workers have the highest frequency of 37 with 24.7%, Majority of the income of the respondents falls under the range of Php 5,001-Php10,000 with 50.7%. And also with regards to the number of sticks consumed per day falls under 6–10 got the highest frequency with 33.3%. The respondents THINK RISK factor got the highest composite mean which is 2.79 with verbal interpretation of agree. It is followed by FORGO with 2.78 composite mean and a verbal interpretation of agree and AVOID variable with composite mean of 2.77 with agree as its verbal interpretation. In terms of significant relationship on the effects of cigarette label to consumer behavior when grouped according to profile variable, sex and occupation found to be significant.

Keywords: consumer behavior, smokers, warning labels, think risk avoid forgo

Procedia PDF Downloads 217
776 The Effect of Using the Active Learning on Achievement and Attitudes toward Studying the Human Rights Course for the Bahrain Teachers College Students

Authors: Abdelbaky Abouzeid

Abstract:

The study aimed at determining the effect of using the active learning on achievement and attitudes toward studying the human rights course for the Bahrain Teachers College students and the extent to which any differences of statistical significance according to gender and section can exist. To achieve the objectives of the study, the researcher developed and implemented research tools such as academic achievement test and the scale of attitudes towards the study of the Human Rights Course. The scale of attitudes towards Human Rights was constructed of 40 items investigating four dimensions; the cognitive dimension, the behavioral dimension, the affective dimension, and course quality dimension. The researcher then applied some of the active learning strategies in teaching this course to all students of the first year of the Bahrain Teachers College (102 male and female students) after excluding two students who did not complete the course requirements. Students were divided into five groups. These strategies included interactive lecturing, presentations, role playing, group projects, simulation, brainstorming, concept maps and mind maps, reflection and think-pair-share. The course was introduced to students during the second semester of the academic year 2016-2017. The study findings revealed that the use of active learning strategies affected the achievement of students of Bahrain Teachers College in the Human Rights course. The results of the T-test showed statistically significant differences on the pre-test and post-test in favor of the post-test. No statistically significant differences in the achievement of students according to the section and gender were found. The results also indicated that the use of active learning strategies had a positive effect on students' attitudes towards the study of the Human Rights Course on all the scale’s items. The general average reached (4.26) and the percentage reached (85.19%). Regarding the effect of using active learning strategies on students’ attitudes towards all the four dimensions of the scale, the study concluded that the behavioral dimension came first; the quality of the course came second, the cognitive dimension came third and in the fourth place came the affective dimension. No statistically significant differences in the attitude towards studying the Human Rights Course for the students according to their sections or gender were found. Based on the findings of the study, the researchers suggested some recommendations that can contribute to the development of teaching Human Rights Course at the University of Bahrain.

Keywords: attitudes, academic achievement, human rights, behavioral dimension, cognitive dimension, affective dimension, quality of the course

Procedia PDF Downloads 198