Search results for: spice simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5049

Search results for: spice simulation

1899 Working Fluids in Absorption Chillers: Investigation of the Use of Deep Eutectic Solvents

Authors: L. Cesari, D. Alonso, F. Mutelet

Abstract:

The interest in cold production has been on the increase in absorption chillers for many years. In fact, the absorption cycles replace the compressor and thus reduce electrical consumption. The devices also allow waste heat generated through industrial activities to be recovered and cooled to a moderate temperature in accordance with regulatory guidelines. Many working fluids were investigated but could not compete with the commonly used {H2O + LiBr} and {H2O + NH3} to author’s best knowledge. Yet, the corrosion, toxicity and crystallization phenomena of these mixtures prevent the development of the absorption technology. This work investigates the possible use of a glyceline deep eutectic solvent (DES) and CO2 as working fluid in an absorption chiller. To do so, good knowledge of the mixtures is required. Experimental measurements (vapor-liquid equilibria, density, and heat capacity) were performed to complete the data lacking in the literature. The performance of the mixtures was quantified by the calculation of the coefficient of performance (COP). The results show that working fluids containing DES + CO2 are an interesting alternative and lead to different trails of working mixtures for absorption and chiller.

Keywords: absorption devices, deep eutectic solvent, energy valorization, experimental data, simulation

Procedia PDF Downloads 111
1898 A Cost-Effective Evaluation of Proper Control Process of Air-Cooled Heat Exchanger

Authors: Ali Ghobadi, Eisa Bakhoda, Hamid R. Javdan

Abstract:

One of the key factors in air cooled heat exchangers operation is the proper control of process stream outlet temperature. In this study, performances of two different air cooled heat exchangers have been considered, one of them condenses Propane and the other one cools LPG streams. In order to predict operation of these air coolers at different operating conditions. The results of simulations were applied for both economical evaluations and operational considerations for using convenient air cooler control system. In this paper, using On-Off fans method and installing variable speed drivers have been studied. Finally, the appropriate methods for controlling outlet temperature of process fluid streams as well as saving energy consumption were proposed. Using On-Off method for controlling studied Propane condenser by multiple fans is proper; while controlling LPG air cooler with lesser fans by means of two variable speed drivers is economically convenient.

Keywords: air cooled heat exchanger, simulation, economical evaluation, energy, process control

Procedia PDF Downloads 413
1897 A Numerical Study on the Flow in a Pipe with Perforated Plates

Authors: Myeong Hee Jeong, Man Young Kim

Abstract:

The use of perforated plate and tubes is common in applications such as vehicle exhaust silencers, attenuators in air moving ducts and duct linings in jet engines. Also, perforated plate flow conditioners designed to improve flow distribution upstream of an orifice plate flow meter typically have 50–60% free area but these generally employ a non-uniform distribution of holes of several sizes to encourage the formation of a fully developed pipe flow velocity distribution. In this study, therefore, numerical investigations on the flow characteristics with the various perforated plates have been performed and then compared to the case without a perforated plate. Three different models are adopted such as a flat perforated plate, a convex perforated plate in the direction of the inlet, and a convex perforated plate in the direction of the outlet. Simulation results show that the pressure drop with and without perforated plates are similar each other. However, it can be found that that the different shaped perforated plates influence the velocity contour, flow uniformity index, and location of the fully developed fluid flow. These results can be used as a practical guide to the best design of pipe with the perforated plate.

Keywords: perforated plate, flow uniformity, pipe turbulent flow, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 692
1896 Power Supply Feedback Regulation Loop Design Using Cadence PSpice Tool: Determining Converter Stability by Simulation

Authors: Debabrata Das

Abstract:

This paper explains how to design a regulation loop for a power supply circuit. It also discusses the need of a regulation loop and the improvement of a circuit with regulation loop. A sample design is used to demonstrate how to use PSpice to design feedback loop to control output voltage of a power supply and how to check if the power supply is stable or oscillatory. A sample design is made using a specific Integrated Circuit (IC) available in the PSpice library. A designer can experiment feedback loop design using Cadence Pspice tool. PSpice is easy to use, reliable, and convenient. To test a feedback loop, generally, engineers use trial and error method with the hardware which takes a lot of time and manpower. Moreover, it is expensive because component and Printed Circuit Board (PCB) may go bad. PSpice can be used by designers to test their loop designs without using hardware circuits. A designer can save time, cost, manpower and simulate his/her power supply circuit accurately before making a real hardware using this software package.

Keywords: power electronics, feedback loop, regulation, stability, pole, zero, oscillation

Procedia PDF Downloads 348
1895 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis

Procedia PDF Downloads 145
1894 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M. Adam, S. Masuri

Abstract:

Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS Fluent 14.

Keywords: turbulent flow, double forward, heat transfer, separation flow

Procedia PDF Downloads 463
1893 Radionuclides Transport Phenomena in Vadose Zone

Authors: R. Testoni, R. Levizzari, M. De Salve

Abstract:

Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes.

Keywords: HYDRUS 1D, radionuclides transport phenomena, site characterization, radiation protection

Procedia PDF Downloads 397
1892 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System

Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba

Abstract:

This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.

Keywords: battery storage buffer, charging station, electric vehicle, experimental analysis, management algorithm, switches control

Procedia PDF Downloads 166
1891 Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets

Authors: Yi-Tun Huang, Chih-Yang Wu, Shu-Wei Huang

Abstract:

In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account.

Keywords: microfluidics, mixing, longitudinal vortex generators, two stream interfaces

Procedia PDF Downloads 522
1890 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles

Authors: Siamack A. Shirazi, Farzin Darihaki

Abstract:

Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.

Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid

Procedia PDF Downloads 169
1889 Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Authors: Michaela Chovancova, Jakub Elcner

Abstract:

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculating the pressure losses in the real lungs is due to its complexity and diversity lengthy and inefficient process. For these calculations is necessary the lungs to slightly simplify (same cross-section over the length of individual generation) or use one of the models of lungs. The simplification could cause deviations from real values. The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli equation and continuity equation. Then, evaluate the desirability of using this formula to determine the pressure loss across the bronchial tree.

Keywords: pressure gradient, airways resistance, real geometry of bronchial tree, breathing

Procedia PDF Downloads 323
1888 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 285
1887 Impact of Hard Limited Clipping Crest Factor Reduction Technique on Bit Error Rate in OFDM Based Systems

Authors: Theodore Grosch, Felipe Koji Godinho Hoshino

Abstract:

In wireless communications, 3GPP LTE is one of the solutions to meet the greater transmission data rate demand. One issue inherent to this technology is the PAPR (Peak-to-Average Power Ratio) of OFDM (Orthogonal Frequency Division Multiplexing) modulation. This high PAPR affects the efficiency of power amplifiers. One approach to mitigate this effect is the Crest Factor Reduction (CFR) technique. In this work, we simulate the impact of Hard Limited Clipping Crest Factor Reduction technique on BER (Bit Error Rate) in OFDM based Systems. In general, the results showed that CFR has more effects on higher digital modulation schemes, as expected. More importantly, we show the worst-case degradation due to CFR on QPSK, 16QAM, and 64QAM signals in a linear system. For example, hard clipping of 9 dB results in a 2 dB increase in signal to noise energy at a 1% BER for 64-QAM modulation.

Keywords: bit error rate, crest factor reduction, OFDM, physical layer simulation

Procedia PDF Downloads 366
1886 Noninvasive Evaluation of Acupuncture by Measuring Facial Temperature through Thermal Image

Authors: An Guo, Hieyong Jeong, Tianyi Wang, Na Li, Yuko Ohno

Abstract:

Acupuncture, known as sensory simulation, has been used to treat various disorders for thousands of years. However, present studies had not addressed approaches for noninvasive measurement in order to evaluate therapeutic effect of acupuncture. The purpose of this study is to propose a noninvasive method to evaluate acupuncture by measuring facial temperature through thermal image. Three human subjects were recruited in this study. Each subject received acupuncture therapy for 30 mins. Acupuncture needles (Ø0.16 x 30 mm) were inserted into Baihui point (DU20), Neiguan points (PC6) and Taichong points (LR3), acupuncture needles (Ø0.18 x 39 mm) were inserted into Tanzhong point (RN17), Zusanli points (ST36) and Yinlingquan points (SP9). Facial temperature was recorded by an infrared thermometer. Acupuncture therapeutic effect was compared pre- and post-acupuncture. Experiment results demonstrated that facial temperature changed according to acupuncture therapeutic effect. It was concluded that proposed method showed high potential to evaluate acupuncture by noninvasive measurement of facial temperature.

Keywords: acupuncture, facial temperature, noninvasive evaluation, thermal image

Procedia PDF Downloads 188
1885 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: composite column, reinforced concrete beam, steel column, transfer part

Procedia PDF Downloads 433
1884 Optimized Control of Roll Stability of Missile using Genetic Algorithm

Authors: Pham Van Hung, Nguyen Trong Hieu, Le Quoc Dinh, Nguyen Kiem Chien, Le Dinh Hieu

Abstract:

The article focuses on the study of automatic flight control on missiles during operation. The quality standards and characteristics of missile operations are very strict, requiring high stability and accurate response to commands within a relatively wide range of work. The study analyzes the linear transfer function model of the Missile Roll channel to facilitate the development of control systems. A two-loop control structure for the Missile Roll channel is proposed, with the inner loop controlling the Missile Roll rate and the outer loop controlling the Missile Roll angle. To determine the optimal control parameters, a genetic algorithm is applied. The study uses MATLAB simulation software to implement the genetic algorithm and evaluate the quality of the closed-loop system. The results show that the system achieves better quality than the original structure and is simple, reliable, and ready for implementation in practical experiments.

Keywords: genetic algorithm, roll chanel, two-loop control structure, missile

Procedia PDF Downloads 93
1883 Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia

Authors: T. Yuri, M. Zagloel, Inaki M. Hakim, Tegu Bintang Nugraha

Abstract:

In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity.

Keywords: automotive industry, demand uncertainty, flexible assembly system, line balancing, value stream mapping

Procedia PDF Downloads 331
1882 Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance

Authors: Huilan Yao, Huaixin Zhang

Abstract:

Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference.

Keywords: transition flow, model propellers, hydrodynamic performance, numerical simulation

Procedia PDF Downloads 263
1881 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator

Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin

Abstract:

Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.

Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification

Procedia PDF Downloads 326
1880 Shock Isolation Performance of a Pre-Compressed Large Deformation Shock Isolator with Quasi-Zero-Stiffness Characteristic

Authors: Ji Chen, Chunhui Zhang, Fanming Zeng, Lei Zhang, Ying Li, Wei Zhang

Abstract:

Based on the synthetic principle of force, a pre-compressed nonlinear isolator with quasi-zero-stiffness (QZS) is developed for shock isolation of ship equipment. The proposed isolator consists of a vertical spring with positive stiffness and several lateral springs with negative stiffness. An analytical expression of vertical stiffness of the nonlinear isolator is derived and numerical simulation on the effect of the geometric design parameters is carried out. Besides, a pre-compressed QZS shock isolation system model is established. The stiffness characteristic of the system is studied and the effects of excitation amplitude and friction damping on shock isolation performance are discussed respectively. The research results show that in comparison with linear shock isolation system, the pre-compressed QZS shock isolation system could realize constant-force or approximately constant-force function and perform better anti-impact performance.

Keywords: quasi-zero-stiffness, constant-force, pre-compressed, large deformation, shock isolation, friction damping

Procedia PDF Downloads 700
1879 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland

Authors: Ahmed Aisa, Tariq Iqbal

Abstract:

This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.

Keywords: water heating, thermal storage, capital cost solar, consumption

Procedia PDF Downloads 431
1878 Cross Coupling Sliding Mode Synchronization Control of Dual-Driving Feed System

Authors: Hong Lu, Wei Fan, Yongquan Zhang, Junbo Zhang

Abstract:

A cross coupling sliding synchronization control strategy is proposed for the dual-driving feed system. This technology will minimize the position error oscillation and achieve the precise synchronization performance in the high speed and high precision drive system, especially some high speed and high precision machine. Moreover, a cross coupling compensation matrix is provided to offset the mismatched disturbance and the disturbance observer is established to eliminate the chattering phenomenon. Performance comparisons of proposed dual-driving cross coupling sliding mode control (CCSMC), normal cross coupling control (CCC) strategy with PID control, and electronic virtual main shaft control (EVMSC) strategy with SMC control are investigated by simulation and a dual-driving control system; the results show the effectiveness of the proposed control scheme.

Keywords: cross coupling matrix, dual motors, synchronization control, sliding mode control

Procedia PDF Downloads 365
1877 Bit Error Rate Performance of MIMO Systems for Wireless Communications

Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.

Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR

Procedia PDF Downloads 490
1876 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM

Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract:

Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.

Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine

Procedia PDF Downloads 263
1875 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection

Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu

Abstract:

Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.

Keywords: mucus, flow control, noise control, flow-induced noise

Procedia PDF Downloads 147
1874 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: identification, neural networks, predictive control, transient stability, UPFC

Procedia PDF Downloads 375
1873 Stability and Sensitivity Analysis of Cholera Model with Treatment Class

Authors: Yunusa Aliyu Hadejia

Abstract:

Cholera is a gastrointestinal disease caused by a bacterium called Vibrio Cholerae which spread as a result of eating food or drinking water contaminated with feaces from an infected person. In this work we proposed and analyzed the impact of isolating infected people and give them therapeutic treatment, the specific objectives of the research was to formulate a mathematical model of cholera transmission incorporating treatment class, to make analysis on stability of equilibrium points of the model, positivity and boundedness was shown to ensure that the model has a biological meaning, the basic reproduction number was derived by next generation matrix approach. The result of stability analysis show that the Disease free equilibrium was both locally and globally asymptotically stable when R_0< 1 while endemic equilibrium has locally asymptotically stable when R_0> 1. Sensitivity analysis was perform to determine the contribution of each parameter to the basic reproduction number. Numerical simulation was carried out to show the impact of the model parameters using MAT Lab Software.

Keywords: mathematical model, treatment, stability, sensitivity

Procedia PDF Downloads 103
1872 Evaluation of MPPT Algorithms for Photovoltaic Generator by Comparing Incremental Conductance Method, Perturbation and Observation Method and the Method Using Fuzzy Logic

Authors: Elmahdi Elgharbaoui, Tamou Nasser, Ahmed Essadki

Abstract:

In the era of sustainable development, photovoltaic (PV) technology has shown significant potential as a renewable energy source. Photovoltaic generators (GPV) have a non-linear current-voltage characteristic, with a maximum power point (MPP) characterized by an optimal voltage, and depends on environmental factors such as temperature and irradiation. To extract each time the maximum power available at the terminals of the GPV and transfer it to the load, an adaptation stage is used, consisting of a boost chopper controlled by a maximum power point tracking technique (MPPT) through a stage of pulse width modulation (PWM). Our choice has focused on three techniques which are: the perturbation and observation method (P&O), the incremental conductance method (InCond) and the last is that of control using the fuzzy logic. The implementation and simulation of the system (photovoltaic generator, chopper boost, PWM and MPPT techniques) are then performed in the Matlab/Simulink environment.

Keywords: photovoltaic generator, technique MPPT, boost chopper, PWM, fuzzy logic, P&O, InCond

Procedia PDF Downloads 324
1871 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry

Authors: Rudi Kurniawan Arief

Abstract:

Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.

Keywords: press die, metal stamping, QDC system, single minute exchange die, manufacturing cost saving, SMED

Procedia PDF Downloads 171
1870 Electrolytic Capacitor-Less Transformer-Less AC-DC LED Driver with Current Ripple Canceller

Authors: Yasunori Kobori, Li Quan, Shu Wu, Nizam Mohyar, Zachary Nosker, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi

Abstract:

This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors which capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the typical current of 350 mA. We are now making the proposed circuit on a universal board in order to measure the experimental characteristics.

Keywords: LED driver, electrolytic, capacitor-less, AC-DC converter, buck-boost converter, current ripple canceller

Procedia PDF Downloads 477