Search results for: bone tissue density of phalanges of fingers
2365 Liquid Biopsy and Screening Biomarkers in Glioma Grading
Authors: Abdullah Abdu Qaseem Shamsan
Abstract:
Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches.Keywords: GBM: glioblastoma multiforme, CT: computed tomography, MRI: magnetic resonance imaging, ctRNA: circulating tumor RNA
Procedia PDF Downloads 512364 Observation and Analysis of Urban Micro-Climate and Urban Morphology on Block Scale in Zhengzhou City
Authors: Linlin Guo, Baofeng Li
Abstract:
Zhengzhou is a typical plain city with a high population density and a permanent population of 10 million, located in central China. The scale of this city is constantly expanding, and the urban form has changed dramatically by the accelerating process of urbanization, which makes a great effect on the urban microclimate. In order to study the influence of block morphology on urban micro-climate, air temperature, humidity, wind velocity and so on in three typical types of blocks in the center of Zhengzhou were collected, which was chosen to perform the fixed and mobile observation. After data handling and analysis, a series of graphs and diagrams were obtained to reflect the differences in the influence of different types of block morphology on the urban microclimate. These can provide targeted strategies for urban design to improve and regulate urban micro-climate.Keywords: urban micro-climate, block morphology, fixed and mobile observation, urban design
Procedia PDF Downloads 2402363 An Audit of Local Guidance Compliance For Stereotactic Core Biopsy For DCIS In The Breast Screening Programme
Authors: Aisling Eves, Andrew Pieri, Ross McLean, Nerys Forester
Abstract:
Background: The breast unit local guideline recommends that 12 cores should be used in a stereotactic-guided biopsy to diagnose DCIS. Twelve cores are regarded to provide good diagnostic value without removing more breast tissue than necessary. This study aimed to determine compliance with guidelines and investigated how the number of cores impacted upon the re-excision rate and size discrepancies. Methods: This single-centre retrospective cohort study of 72 consecutive breast screened patients with <15mm DCIS on radiological report underwent stereotactic-guided core biopsy and subsequent surgical excision. Clinical, radiological, and histological data were collected over 5 years, and ASCO guidelines for margin involvement of <2mm was used to guide the need for re-excision. Results: Forty-six (63.9%) patients had <12 cores taken, and 26 (36.1%) patients had ≥12 cores taken. Only six (8.3%) patients had 12 cores taken in their stereotactic biopsy. Incomplete surgical excision was seen in 17 patients overall (23.6%), and of these patients, twelve (70.6%) had fewer than 12 cores taken (p=0.55 for the difference between groups). Mammogram and biopsy underestimated the size of the DCIS in this subgroup by a median of 15mm (range: 6-135mm). Re-excision was required in 9 patients (12.5%), and five patients (6.9%) were found to have invasive ductal carcinoma on excision (80% had <12 cores, p=0.43). Discussion: There is poor compliance with the breast unit local guidelines and higher rates of re-excision in patients who did not have ≥12 cores taken. Taking ≥12 cores resulted in fewer missed invasive cancers lower incomplete excision and re-excision rates.Keywords: stereotactic core biopsy, DCIS, breast screening, Re-excision rates, core biopsy
Procedia PDF Downloads 1282362 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium
Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte
Abstract:
The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation
Procedia PDF Downloads 2642361 Specific Biomarker Level and Function Outcome Changes in Treatment of Patients with Frozen Shoulder Using Dextrose Prolotherapy Injection
Authors: Nuralam Sam, Irawan Yusuf, Irfan Idris, Endi Adnan
Abstract:
The most case in the shoulder in the the adult is the frozen shoulder. It make an uncomfortable sensation which disturbance daily activity. The studies of frozen shoulder are still limited. This study used a true experimental pre and post test design with a group design. The participant underwent dextrose prolotherapy injection in the rotator cuff, intraarticular glenohumeral joint, long head tendon biceps, and acromioclavicular joint injections with 15% dextrose, respectively, at week 2, week 4, and week 6. Participants were followed for 12 weeks. The specific biomarker MMP and TIMP, ROM, DASH score were measured at baseline, at week 6, and week 12. The data were analyzed by multivariate analysis (repeated measurement ANOVA, Paired T-Test, and Wilcoxon) to determine the effect of the intervention. The result showed a significant decrease in The Disability of the Arm, Shoulder, and Hand (DASH) score in prolo injection patients in each measurement week (p < 0.05). While the measurement of Range of Motion (ROM), each direction of shoulder motion showed a significant difference in average each week, from week 0 to week 6 (p <0.05).Dextrose prolotherapy injection results give a significant improvement in functional outcome of the shoulder joint, and ROMand did not show significant results in assessing the specific biomarker, MMP-1, and TIMP-1 in tissue repair. This study suggestion an alternative to the use of injection prolotherapy in Frozen shoulder patients, which has fewer side effects and better effectiveness than the use of corticosteroid injections.Keywords: frozen shoulder, ROM, DASH score, prolotherapy, MMP-1, TIMP-1
Procedia PDF Downloads 1152360 Determination of the Volatile Organic Compounds, Antioxidant and Antimicrobial Properties of Microwave-Assisted Green Extracted Ficus Carica Linn Leaves
Authors: Pelin Yilmaz, Gizemnur Yildiz Uysal, Elcin Demirhan, Belma Ozbek
Abstract:
The edible fig plant, Ficus carica Linn, belongs to the Moraceae family, and the leaves are mainly considered agricultural waste after harvesting. It has been demonstrated in the literature that fig leaves contain appealing properties such as high vitamins, fiber, amino acids, organic acids, and phenolic or flavonoid content. The extraction of these valuable products has gained importance. Microwave-assisted extraction (MAE) is a method using microwave energy to heat the solvents, thereby transferring the bioactive compounds from the sample to the solvent. The main advantage of the MAE is the rapid extraction of bioactive compounds. In the present study, the MAE was applied to extract the bioactive compounds from Ficus carica L. leaves, and the effect of microwave power (180-900 W), extraction time (60-180 s), and solvent to sample amount (mL/g) (10-30) on the antioxidant property of the leaves. Then, the volatile organic component profile was determined at the specified extraction point. Additionally, antimicrobial studies were carried out to determine the minimum inhibitory concentration of the microwave-extracted leaves. As a result, according to the data obtained from the experimental studies, the highest antimicrobial properties were obtained under the process parameters such as 540 W, 180 s, and 20 mL/g concentration. The volatile organic compound profile showed that isobergapten, which belongs to the furanocoumarins family exhibiting anticancer, antioxidant, and antimicrobial activity besides promoting bone health, was the main compound. Acknowledgments: This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FBA-2021-4409. The authors would like to acknowledge the financial support from Tubitak 1515 - Frontier R&D Laboratory Support Programme.Keywords: Ficus carica Linn leaves, volatile organic component, GC-MS, microwave extraction, isobergapten, antimicrobial
Procedia PDF Downloads 802359 Assessment of Residual Stress on HDPE Pipe Wall Thickness
Authors: D. Sersab, M. Aberkane
Abstract:
Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained.Keywords: residual stress, layer removal, ring splitting, HDPE, wall thickness
Procedia PDF Downloads 3382358 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran
Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam
Abstract:
Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.Keywords: erosion plot, rainfall simulator, soil properties, surface flow
Procedia PDF Downloads 672357 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG
Authors: R. Hariti, M. Saighi, H. Saidani-Scott
Abstract:
A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation
Procedia PDF Downloads 5422356 The Utilization of Magneto-Hydrodynamics Framework in Expansion of Magnetized Conformal Flow
Authors: Majid Karimabadi, Ahmad Farzaneh Kore, Behnam Azadegan
Abstract:
The evolution of magnetized quark gluon plasma (QGP) in the framework of magneto- hydrodynamics is the focus of our study. We are investigating the temporal and spatial evolution of QGP using a second order viscous hydrodynamic framework. The fluid is considered to be magnetized and subjected to the influence of a magnetic field that is generated during the early stages of relativistic heavy ion collisions. We assume boost invariance along the beam line, which is represented by the z coordinate, and fluid expansion in the x direction. Additionally, we assume that the magnetic field is perpendicular to the reaction plane, which corresponds to the y direction. The fluid is considered to have infinite electrical conductivity. To analyze this system, we solve the coupled Maxwell and conservation equations. By doing so, we are able to determine the time and space dependence of the energy density, velocity, and magnetic field in the transverse plane of the viscous magnetized hot plasma. Furthermore, we obtain the spectrum of hadrons and compare it with experimental data.Keywords: QGP, magnetohydrodynamics, hadrons, conversation
Procedia PDF Downloads 682355 Evaluation of Natural Frequency of Single and Grouped Helical Piles
Authors: Maryam Shahbazi, Amy B. Cerato
Abstract:
The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.Keywords: helical pile, natural frequency, pile group, shake table, stiffness
Procedia PDF Downloads 1332354 Fluorescent Ph-Sensing Bandage for Point-of-Care Wound Diagnostics
Authors: Cherifi Katia, Al-Hawat Marie-Lynn, Tricou Leo-Paul, Lamontagne Stephanie, Tran Minh, Ngu Amy Ching Yie, Manrique Gabriela, Guirguis Natalie, Machuca Parra Arturo Israel, Matoori Simon
Abstract:
Diabetic foot ulcers (DFUs) are a serious and prevalent complication of diabetes. Current diagnostic options are limited to macroscopic wound analysis such as wound size, depth, and infection. Molecular diagnostics promise to improve DFU diagnosis, staging, and assessment of treatment response. Here, we developed a rapid and easy-to-use fluorescent pH-sensing bandage for wound diagnostics. In a fluorescent dye screen, we identified pyranine as the lead compound due to its suitable pH-sensing properties in the clinically relevant pH range of 6 to 9. To minimize the release of this dye into the wound bed, we screened a library of ionic microparticles and found a strong adhesion of the anionic dye to a cationic polymeric microparticle. These dye-loaded microparticles showed a strong fluorescence response in the clinically relevant pH range of 6 to 9 and a dye release below 1% after one day in biological media. The dye-loaded microparticles were subsequently encapsulated in a calcium alginate hydrogel to minimize the interaction of the microparticles with the wound tissue. This pH-sensing diagnostic wound dressing was tested on full-thickness dorsal wounds of mice, and a linear fluorescence response (R2 = 0.9909) to clinically relevant pH values was observed. These findings encourage further development of this pH-sensing system for molecular diagnostics in DFUs.Keywords: wound ph, fluorescence, diagnostics, diabetic foot ulcer, wound healing, chronic wounds, diabetes
Procedia PDF Downloads 862353 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect
Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti
Abstract:
Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity
Procedia PDF Downloads 4282352 Native Point Defects in ZnO
Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani
Abstract:
Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.Keywords: DFT, native, n-type, ZnO
Procedia PDF Downloads 5942351 First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure
Authors: Abdennour Benmakhlouf, Abdelouahab Bentabet
Abstract:
In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.Keywords: pseudo-potential method, pressure, structural and elastic properties, scheelite BaWO4 phase
Procedia PDF Downloads 4392350 Effect of Dehydration Methods of the Proximate Composition, Mineral Content and Functional Properties of Starch Flour Extracted from Maize
Authors: Olakunle M. Makanjuola, Adebola Ajayi
Abstract:
Effect of the dehydrated method on proximate, functional and mineral properties of corn starch was evaluated. The study was carried and to determine the proximate, functional and mineral properties of corn starch produced using three different drying methods namely (sun) (oven) and (cabinet) drying methods. The corn starch was obtained by cleaning, steeping, milling, sieving, dewatering and drying corn starch was evaluated for proximate composition, functional properties, and mineral properties to determine the nutritional properties, moisture, crude protein, crude fat, ash, and carbohydrate were in the range of 9.35 to 12.16, 6.5 to 10.78 1.08 to 2.5, 1.08 to 2.5, 4.0 to 5.2, 69.58 to 75.8% respectively. Bulk density range between 0.610g/dm3 to 0.718 g/dm3, water, and oil absorption capacities range between 116.5 to 117.25 and 113.8 to 117.25 ml/g respectively. Swelling powder had value varying from 1.401 to 1.544g/g respectively. The results indicate that the cabinet method had the best result item of the quality attribute.Keywords: starch flour, maize, dehydration, cabinet dryer
Procedia PDF Downloads 2382349 Arthroscopic Fixation of Posterior Cruciate Ligament Avulsion Fracture through Posterior Trans Septal Portal Using Button Fixation Device: Mini Tight Rope
Authors: Ratnakar Rao, Subair Khan, Hari Haran
Abstract:
Posterior cruciate ligament (PCL) avulsion fractures is a rare condition and commonly mismanaged.Surgical reattachment has been shown to produce better result compared with conservative management.Only few techniques are reported in arthroscopic fixation of PCL Avulsion Fracture and they are complex.We describe a new technique in fixation of the PCL Avulsion fracture through a posterior trans septal portal using button fixation device (Mini Tight Rope). Eighteen patients with an isolated posterior cruciate ligament avulsion fracture were operated under arthroscopy. Standard Antero Medial Portal and Antero Lateral portals made and additional Postero Medial and Postero Lateral portals made and trans Septal portal established. Avulsion fracture identified, elevated, prepared. Reduction achieved using PCL Tibial guide (Arthrex) and fixation was achieved using Mini Tight Rope,Arthrex (2 buttons with a suture). Reduction confirmed using probe and Image intensifier. Postoperative assessment made clinically and radiologically. 15 patients had good to excellent results with no posterior sag or instability. The range of motion was normal. No complications were recorded per operatively. 2 patients had communition of the fragment while drilling, for one patient it was managed by suturing technique and the second patient PCL Reconstruction was done. One patient had persistent instability with poor outcome. Establishing trans septal portal helps in better visualization of the posterior compartment of the knee. Assessment of the bony fragment, preparation 0f the bone bed andit protects from injury to posterior neurovascular structures. Fixation using the button with suture (Mini Tight Rope) is stable and easily reproducible for PCL Avulsion fracture with single large fragment.Keywords: PCL avulsion, arthroscopy, transeptal, minitight rope technique
Procedia PDF Downloads 2582348 Nanocellulose Incorporated Polyvinyl Alcohol Hydrogel
Authors: Rosli Mohd Yunus, Zianor Azrina Zianon Abdin, Mohammad Dalour Hossen Beg, Ridzuan Ramli
Abstract:
Recently, nanocrystalline cellulose (NCC) has gained considerable interest as a promising biomaterial due to their outstanding properties such as high surface area, high mechanical properties, hydrophilicity, biocompatibility and biodegradability. The NCC also has good stability in water which is compatible for mixing of water based polymer solution or emulsions with NCC. Oil palm empty fruit bunch (EFB) contained different amount of lignocellulosic materials such as lignin, hemicellulose and cellulose. Cellulose is the most significant materials that can be extracted from EFB as nanocrystalline cellulose (NCC). In this work the nanocrystalline cellulose were produced through acid hydrolysis together with ultrasound technique. The morphology of NCC was characterized by TEM, thermal behavior has been studied with DSC, TGA analysis. Structural properties were illustrated X-Ray diffraction as well as FTIR. The hydrogel was produced using polyvinyl alcohol (PVA) with different concentration of NCC. The hydrogel composite was characterized by swelling ratio, crosslinking density, mechanical properties and morphology.Keywords: nanocellulose, oil palm, hydrogel, water treatment
Procedia PDF Downloads 2692347 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX
Procedia PDF Downloads 5002346 Near-Infrared Optogenetic Manipulation of a Channelrhodopsin via Upconverting Nanoparticles
Authors: Kanchan Yadav, Ai-Chuan Chou, Rajesh Kumar Ulaganathan, Hua-De Gao, Hsien-Ming Lee, Chien-Yuan Pan, Yit-Tsong Chen
Abstract:
Optogenetics is an innovative technology now widely adopted by researchers in different fields of the biological sciences. However, due to the weak tissue penetration capability of the short wavelengths used to activate light-sensitive proteins, an invasive light guide has been used in animal studies for photoexcitation of target tissues. Upconverting nanoparticles (UCNPs), which transform near-infrared (NIR) light to short-wavelength emissions, can help address this issue. To improve optogenetic performance, we enhance the target selectivity for optogenetic controls by specifically conjugating the UCNPs with light-sensitive proteins at a molecular level, which shortens the distance as well as enhances the efficiency of energy transfer. We tagged V5 and Lumio epitopes to the extracellular N-terminal of channelrhodopsin-2 with an mCherry conjugated at the intracellular C-terminal (VL-ChR2m) and then bound NeutrAvidin-functionalized UCNPs (NAv-UCNPs) to the VL-ChR2m via a biotinylated antibody against V5 (bV5-Ab). We observed an apparent energy transfer from the excited UCNP (donor) to the bound VL-ChR2m (receptor) by measuring emission-intensity changes at the donor-receptor complex. The successful patch-clamp electrophysiological test and an intracellular Ca2+ elevation observed in the designed UCNP-ChR2 system under optogenetic manipulation confirmed the practical employment of UCNP-assisted NIR-optogenetic functionality. This work represents a significant step toward improving therapeutic optogenetics.Keywords: Channelrhodopsin-2, near infrared, optogenetics, upconverting nanoparticles
Procedia PDF Downloads 2762345 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye
Authors: Vishakha Parihar
Abstract:
This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process
Procedia PDF Downloads 1842344 Effect of Dual Wavelength Light Exposure on Regeneration of Dugesia dorotocephala
Authors: Zayedali Shaikh
Abstract:
Increasingly now more than ever, UV damage brings with it a litany of minor deformities that can range from mild lesions and discoloring to cataracts and blindness. Pluripotent stem cells in planaria and human skin can be used to treat wounds and skin damage, with the primary limitations being inadequate growth factors. Photobiomodulation therapy in the form of low-intensity red light therapy has been proven to provide helpful benefits in the healing of skin that displays some of the symptoms of UV damage, such as burns and lesions, along with stimulating the proliferation of stem cells in recellularizing tissue. This paper puts forth an alternate means by which to treat the effects of UV damage using the freshwater planarian model system, Dugesia dorotocephala, known for its regenerative abilities and abundance of pluripotent stem cells, which allow for the rapid growth and repair of missing or damaged structures. Our work consisted of exposing planaria to different types of light: red light, blue light, white light, darkness, red and blue light together, UV light, and finally, red and UV light together. The primary focus of this research was on the red and UV lights, with six controls acting as metrics to compare our findings. Through computer-assisted morphological analysis, the results show that there is no significant difference in the rates of regeneration of planaria treated with simultaneous exposure to red and UV light versus planaria in darkness (p > .05), a representation of their preferred natural habitat. Our research suggests the viability of red-light therapy in actively combating UV damage and expediting the growth of epidermal stem cells by acting as another growth factor.Keywords: regenerative medicine, stem cells, planaria, photobiomodulation
Procedia PDF Downloads 772343 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications
Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin
Abstract:
Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.Keywords: palm oil, radiation processing, surface coatings, VOC
Procedia PDF Downloads 1832342 Levels of CTX1 in Premenopausal Osteoporotic Women Study Conducted in Khyberpuktoonkhwa Province, Pakistan
Authors: Mehwish Durrani, Rubina Nazli, Muhammad Abubakr, Muhammad Shafiq
Abstract:
Objectives: To evaluate the high socio-economic status, urbanization, and decrease ambulation can lead to early osteoporosis in women reporting from Peshawar region. Study Design: Descriptive cross-sectional study was done. Sample size was 100 subjects, using 30% proportion of osteoporosis, 95% confidence level, and 9% margin of error under WHO software for sample size determination. Place and Duration of study: This study was carried out in the tertiary referral health care facilities of Peshawar viz PGMI Hayatabad Medical Complex, Peshawar, Khyber Pakhtunkhwa Province, Pakistan. Ethical approval for the study was taken from the Institutional Ethical Research board (IERD) at Post Graduate Medical Institute, Hayatabad Medical Complex, and Peshawar.The study was done in six months time period. Patients and Methods: Levels of CTX1 as a marker of bone degradation in radiographically assessed perimenopausal women was determined. These females were randomly selected and screened for osteoporosis. Hemoglobin in gm/dl, ESR by Westergren method as millimeter in 1 hour, Serum Ca mg/dl, Serum alkaline Phosphatase international units per liter radiographic grade of osteoporosis according to Singh index as 1-6 and CTX 1 level in pg/ml. Results: High levels of CTX1 was observed in perimenopausal osteoporotic women which were radiographically diagnosed as osteoporotic patients. The High socio-economic class also predispose to osteoporosis. Decrease ambulation another risk factor showed significant association with the increased levels of CTX1. Conclusion: The results of this study propose that minimum ambulation and high socioeconomic class both had significance association with the increase levels of serum CTX1, which in turn will lead to osteoporosis and to its complications.Keywords: osteoporosis, CTX1, perimenopausal women, Hayatabad Medical Complex, Khyberpuktoonkhwa
Procedia PDF Downloads 3322341 High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell
Authors: A. Bouloufa, F. Khaled, K. Djessas
Abstract:
This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator.Keywords: optical window, thin film, solar cell, efficiency
Procedia PDF Downloads 2872340 Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene
Authors: Yingqian Chen, Sergei Manzhos
Abstract:
Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes.Keywords: organic ion batteries, tetracyanoethylene, cohesive energies, electrolytes
Procedia PDF Downloads 6402339 Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method
Authors: S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak
Abstract:
In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications.Keywords: sol-gel, ferroelectrics, lead-free, perovskites, energy storage
Procedia PDF Downloads 802338 Understanding Governance of Biodiversity-Supporting and Edible Landscapes Using Network Analysis in a Fast Urbanising City of South India
Authors: M. Soubadra Devy, Savitha Swamy, Chethana V. Casiker
Abstract:
Sustainable smart cities are emerging as an important concept in response to the exponential rise in the world’s urbanizing population. While earlier, only technical, economic and governance based solutions were considered, more and more layers are being added in recent times. With the prefix of 'sustainability', solutions which help in judicious use of resources without negatively impacting the environment have become critical. We present a case study of Bangalore city which has transformed from being a garden city and pensioners' paradise to being an IT city with a huge, young population from different regions and diverse cultural backgrounds. This has had a big impact on the green spaces in the city and the biodiversity that they support, as well as on farming/gardening practices. Edible landscapes comprising farms lands, home gardens and neighbourhood parks (NPs henceforth) were examined. The land prices of areas having NPs were higher than those that did not indicate an appreciation of their aesthetic value. NPs were part of old and new residential areas largely managed by the municipality. They comprised manicured gardens which were similar in vegetation structure and composition. Results showed that NPs that occurred in higher density supported reasonable levels of biodiversity. In situations where NPs occurred in lower density, the presence of a larger green space such as a heritage park or botanical garden enhanced the biodiversity of these parks. In contrast, farm lands and home gardens which were common within the city are being lost at an unprecedented scale to developmental projects. However, there is also the emergence of a 'neo-culture' of home-gardening that promotes 'locovory' or consumption of locally grown food as a means to a sustainable living and reduced carbon footprint. This movement overcomes the space constraint by using vertical and terrace gardening techniques. Food that is grown within cities comprises of vegetables and fruits which are largely pollinator dependent. This goes hand in hand with our landscape-level study that has shown that cities support pollinator diversity. Maintaining and improving these man-made ecosystems requires analysing the functioning and characteristics of the existing structures of governance. Social network analysis tool was applied to NPs to examine relationships, between actors and ties. The management structures around NPs, gaps, and means to strengthen the networks from the current state to a near-ideal state were identified for enhanced services. Learnings from NPs were used to build a hypothetical governance structure and functioning of integrated governance of NPs and edible landscapes to enhance ecosystem services such as biodiversity support, food production, and aesthetic value. They also contribute to the sustainability axis of smart cities.Keywords: biodiversity support, ecosystem services, edible green spaces, neighbourhood parks, sustainable smart city
Procedia PDF Downloads 1382337 Effect of Sprouting Period of Proximate Composition, Functional Properties and Mineral Content on Malted Sorghum Flour
Authors: Adebola Ajayi, Olakunle M. Makanjuola
Abstract:
Effect of sprouting period on proximate, functional and mineral properties of malted sorghum flour was evaluated. The study was carried out to determine the proximate, functional and mineral properties of sprouting period on malted sorghum flour produced. The malted sorghum flour was obtained by sorting, weighing, washing, steeping, draining, germination, drying, dry milling, sieving. Malted sorghum flour was evaluated for proximate composition, functional properties and mineral contents. Moisture, protein, fat content, crude fiber, ash contents and carbohydrate of 24 and 48 hours, were in the range of 10.50-11.0, 11.17-11.17, 1.50-4.00, 2.50-1.50, 1.50-1.54 and 73.15-70.79% respectively. Bulk density ranged between 0.64 and 0.59g/ml, water and oil absorption capacities ranged between 139.3 and 150.0 and 217.3 and 222.7g/g respectively. Calcium, Magnesium, Zinc, Iron and Manganese were also range of 12.5, 59.3-60.0, 3.22-3.25, 3.80-3.90 and 3.22-3.25 mg/100g respectively. The results indicate that the germination of red sorghum resulted in the enhancement of the nutritional quality and its functional properties.Keywords: sprouting, sorghum, malted sorghum flour, cabinet dryer
Procedia PDF Downloads 2082336 Extra Skeletal Manifestations of Histocytosis in Pediatrics
Authors: Ayda Youssef, Mohammed Ali Khalaf, Tarek Rafaat
Abstract:
Background: Langerhans cell histiocytosis (LCH) is a rare multi-systemic disease that shows an abnormal proliferation of these kinds of cells associated with a granular infiltration that affects different structures of the human body, including the lung, liver, spleen, lymph nodes, brain, mucocutaneous, soft tissue (head and neck), and salivary glands. Evaluation of the extent of disease is one of the major predictors of patient outcome. Objectives: To recognize the pathogenesis of Langerhans cell histiocytosis (LCH), describe the radiologic criteria that are suggestive of LCH in different organs rather than the bones and to illustrate the appropriate differential diagnoses for LCH in each of the common extra-osseous sites. Material and methods: A retrospective study was done on 150 biopsy-proven LCH patients from 2007 to 2012. All patients underwent imaging studies, mostly US, CT, and MRI. These patients were reviewed to assess the extra-skeletal manifestations of LCH. Results: In 150 patients with biopsy-proven LCH, There were 33 patients with liver affection, 5 patients with splenic lesions, 55 patients with enlarged lymph nodes, 9 patient with CNS disease and 11 patients with lung involvement. Conclusions: Because of the frequent LCH children and evaluation of the extent of disease is one of the major predictors of patient outcome. Radiologist need to be familiar with its presentation in different organs and regions of body outside the commonest site of affection (bones). A high-index suspicion should be raised a biopsy is recommended in the presence of radiological suspicion. Chemotherapy is the preferred therapeutic modality.Keywords: langerhans cell histiocytosis, extra-skeletal, pediatrics, radiology
Procedia PDF Downloads 437