Search results for: agricultural transformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3509

Search results for: agricultural transformation

359 Development of Two Phage Therapy-Based Strategies for the Treatment of American Foulbrood Disease Affecting Apis Mellifera capensis

Authors: Ridwaan N. Milase, Leonardo J. Van Zyl, Marla Trindade

Abstract:

American foulbrood (AFB) is the world’s most devastating honeybee disease that has drastically reduced the population of Apis mellifera capensis since 2009. The outbreak has jeopardized the South African bee keeping industry as well as the agricultural sector dependent on honeybees for honey production and pollination, leading to significant economic losses. AFB is caused by Paenibacillus larvae, a spore-forming, Gram positive facultative anaerobic and flagellated bacterium. The use of antibiotics within beehives has selected for resistant strains of P. larvae, while the current practice of burning spore contaminated beehives and equipment contributes to the economic losses in the honeybee-keeping industry. Therefore, phage therapy is proposed as a promising alternative to combat P. larvae strains affecting A. mellifera capensis. The genomes of two P. larvae strains isolated from infected combs in the Western Cape have been sequenced and annotated using bioinformatics tools. Genome analyses has revealed that these P. larvae strains are lysogens to more than 6 different prophages and possess different type of clustered regularly interspaced short palindromic repeat (CRISPRs) regions per strain. Active prophages from one of the two P. larvae strains were detected and identified using PCR. Electron microscopy was used to determine the family of the identified active prophages. Lytic bacteriophages that specifically target the two P. larvae strains were purified from sewage wastewater, beehive materials, and soil samples to investigate their potential development as anti-P. larvae agents. Another alternative treatment being investigated is the development of a prophage endolysin cocktail. Endolysin genes of the prophages have been targeted, cloned and expressed in Escherichia coli. The heterologously expressed endolysins have been purified and are currently being assessed for their lytic activity against P. larvae strains and other commensal microorganisms that compose the honeybee larvae microbiota. The study has shown that phage therapy and endolysins have a great potential as alternative control methods for AFB disease affecting A. mellifera capensis.

Keywords: American foulbrood, bacteriophage, honeybee, Paenibacillus larvae

Procedia PDF Downloads 174
358 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept

Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum

Abstract:

This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.

Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide

Procedia PDF Downloads 95
357 Valorizing Traditional Greek Wheat Varieties: Use of DNA Barcoding for Species Identification and Biochemical Analysis of Their Nutritional Value

Authors: Niki Mougiou, Spyros Didos, Ioanna Bouzouka, Athina Theodorakopoulou, Michael Kornaros, Anagnostis Argiriou

Abstract:

Grains from traditional old Greek cereal varieties were evaluated and compared to commercial cultivars, like Simeto and Mexicali 81, in an effort to valorize local products and assess the nutritional benefits of ancient grains. The samples studied in this research included common wheat, durum wheat, emmer (Triticum dicoccum) and einkorn (Triticum monococcum), as well as barley, oats and rye grains. The Internal Transcribed Spacer 2 (ITS2) nuclear region was amplified and sequenced as a barcode for species identification, allowing the verification of the label of each product. After that, the total content of bound and free polyphenols and flavonoids, as well as the antioxidant activity of bound and free compounds, was measured by classic colorimetric assays using Folin- Ciocalteu, AlCl₃ and DPPH‧ (2,2-diphenyl-1-picrylhydrazyl) reagents, respectively. Moreover, the level of variation of fatty acids was determined in all samples by gas chromatography. The results showed that local old landraces of emmer and einkorn had the highest polyphenol content, 2.4 and 3.3 times higher than the average value of 5 durum wheat samples, respectively. Regarding the total flavonoid content, einkorn had 2.6-fold and emmer 2-fold higher values than common wheat. The antioxidant activity of free or bound compounds was at the same level, at about 20-30% higher in both einkorn and emmer compared to common wheat. Five main fatty acids were detected in all samples, in order of decreasing amounts: linoleic (C18:2) > palmitic (C16:0) ≈ , oleic (C18:1) > eicosenoic (C20:1, cis-11) > stearic (C18:0). Emmer and einkorn showed a higher diversity of fatty acids and a higher content of mono-unsaturated fatty acids compared to common wheat. The results of this study demonstrate the high nutritional value of old local landraces that have been put aside by more productive, yet with lower qualitative characteristics, commercial cultivars, underlining the importance of maintaining sustainable agricultural practices to ensure their continued cultivation.

Keywords: biochemical analysis, nutritional value, plant barcoding, wheat

Procedia PDF Downloads 83
356 Inclusion Advances of Disabled People in Higher Education: Possible Alignment with the Brazilian Statute of the Person with Disabilities

Authors: Maria Cristina Tommaso, Maria Das Graças L. Silva, Carlos Jose Pacheco

Abstract:

Have the advances of the Brazilian legislation reflected or have been consonant with the inclusion of PwD in higher education? In 1990 the World Declaration on Education for All, a document organized by the United Nations Educational, Scientific and Cultural Organization (UNESCO), stated that the basic learning needs of people with disabilities, as they were called, required special attention. Since then, legislation in signatory countries such as Brazil has made considerable progress in guaranteeing, in a gradual and increasing manner, the rights of persons with disabilities to education. Principles, policies, and practices of special educational needs were created and guided action at the regional, national and international levels on the structure of action in Special Education such as administration, recruitment of educators and community involvement. Brazilian Education Law No. 3.284 of 2003 ensures inclusion of people with disabilities in Brazilian higher education institutions and also in 2015 the Law 13,146/2015 - Brazilian Law on the Inclusion of Persons with Disabilities (Statute of the Person with Disabilities) regulates the inclusion of PwD by the guarantee of their rights. This study analyses data related to people with disability inclusion in High Education in the south region of Rio de Janeiro State - Brazil during the period between 2008 and 2018, based in its correlation with the changes in the Brazilian legislation in the last ten years that were subjected by PwD inclusion processes in the Brazilian High Education Systems. The region studied is composed by sixteen cities and this research refers to the largest one, Volta Redonda that represents 25 percent of the total regional population. The PwD reception process had the dicing data at the Volta Redonda University Center with 35 percent of high education students in this territorial area. The research methodology analyzed the changes occurring in the legislation about the inclusion of people with disability in High Education in the last ten years and its impacts on the samples of this study during the period between 2008 and 2018. It was verified an expressive increasing of the number of PwD students, from two in 2008 to 190 PwD students in 2018. The data conclusions are presented in quantitative terms and the aim of this study was to verify the effectiveness of the PwD inclusion in High Education, allowing visibility of this social group. This study verified that the fundamental human rights guarantees have a strong relation to the advances of legislation and the State as a guarantor instance of the rights of the people with disability and must be considered a mean of consolidation of their education opportunities isonomy. The recognition of full rights and the inclusion of people with disabilities requires the efforts of those who have decision-making power. This study aimed to demonstrate that legislative evolution is an effective instrument in the social integration of people with disabilities. The study confirms the fundamental role of the state in guaranteeing human rights and demonstrates that legislation not only protects the interests of vulnerable social groups, but can also, and this is perhaps its main mission, to change behavior patterns and provoke the social transformation necessary to the reduction of inequality of opportunity.

Keywords: high education, inclusion, legislation, people with disability

Procedia PDF Downloads 146
355 Assessment of Seeding and Weeding Field Robot Performance

Authors: Victor Bloch, Eerikki Kaila, Reetta Palva

Abstract:

Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.

Keywords: agricultural robot, field robot, plant detection, robot performance

Procedia PDF Downloads 68
354 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 68
353 Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin

Authors: Cristina Opris, Bogdan Cojocaru, Madalina Tudorache, Simona M. Coman, Vasile I. Parvulescu, Camelia Bala, Bahir Duraki, Jeroen A. Van Bokhoven

Abstract:

The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: superparamagnetic core-shell catalysts, environmental production of fuels, renewable lignin, recyclable catalysts

Procedia PDF Downloads 324
352 Flood Hazards, Vulnerability and Adaptations in Upper Imo River Basin of South Eastern Nigera Introduction

Authors: Christian N. Chibo

Abstract:

Imo River Basin is located in South Eastern Nigeria comprising of 11 states of Imo, Abia, Anambra, Ebonyi, Enugu, Edo, Rivers, Cross river, AkwaIbom, Bayelsa, Delta, and Bayelsa states. The basin has a fluvial erosional system dominated by powerful rivers coming down from steep slopes in the area. This research investigated various hazards associated with flood, the vulnerable areas, elements at risk of flood and various adaptation strategies adopted by local inhabitants to cope with the hazards. The research aim is to identify, examine and assess flood hazards, vulnerability and adaptations in the Upper Imo River Basin. The study identified the role of elevation in cause of flood, elements at risk of flood as well as examine the effectiveness or otherwise of the adaptation strategies for coping with the hazards. Data for this research is grouped as primary and secondary. Their various methods of generation are field measurement, questionnaire, library websites etc. Other types of data were generated from topographical, geological, and Digital Elevation model (DEM) maps, while the hydro meteorological data was sourced from Nigeria Meteorological Agency (NIMET), Meteorological stations of Geography and Environmental Management Departments of Imo State University and Alvan Ikoku Federal College of Education. 800 copies of questionnaire were distributed using systematic sampling to 8 locations used for the pilot survey. About 96% of the questionnaire were retrieved and used for the study. 13 flood events were identified in the study area. Their causes, years and dates of events were documented in the text, and the damages they caused were evaluated. The study established that for each flood event, there is over 200mm of rain observed on the day of the flood and the day before the flood. The study also observed that the areas that situate at higher elevation (See DEM) are less prone to flood hazards while areas at low elevations are more prone to flood hazards. Elements identified to be at risk of flood are agricultural land, residential dwellings, retail trading and related services, public buildings and community services. The study thereby recommends non settlement at flood plains and flood prone areas and rearrangement of land use activities in the upper Imo River Basin among others

Keywords: flood hazard, flood plain, geomorphology, Imo River Basin

Procedia PDF Downloads 291
351 Morphological Differentiation and Temporal Variability in Essential Oil Yield and Composition among Origanum vulgare ssp. hirtum L., Origanum onites L. and Origanum x intercedens from Ikaria Island (Greece)

Authors: A.Assariotakis, P. Vahamidis, P. Tarantilis, G. Economou

Abstract:

Greece, due to its geographical location and the particular climatic conditions, presents high biodiversity of Medicinal and Aromatic Plants. Among them, the genus Origanum not only presents a wide distribution, but it also has great economic importance. After extensive surveys in Ikaria Island (Greece), 3 species of the genus Origanum were identified, namely, Origanum vulgare ssp. hirtum (Greek oregano), Origanum onites (Turkish oregano) and Origanum x intercedens (hybrid), a naturally occurring hybrid between O. hirtum and O. onites. The purpose of this study was to determine their morphological as well as their temporal variability in essential oil yield and composition under field conditions. For this reason, a plantation of each species was created using vegetative propagation and was established at the experimental field of the Agricultural University of Athens (A.U.A.). From the establishment year and for the following two years (3 years of observations), several observations were taken during each growing season with the purpose of identifying the morphological differences among the studied species. Each year collected plant (at bloom stage) material was air-dried at room temperature in the shade. The essential oil content was determined by hydrodistillation using a Clevenger-type apparatus. The chemical composition of essential oils was investigated by Gas Chromatography-Mass Spectrometry (GC – MS). Significant differences were observed among the three oregano species in terms of plant height, leaf size, inflorescence features, as well as concerning their biological cycle. O. intercedens inflorescence presented more similarities with O. hirtum than with O. onites. It was found that calyx morphology could serve as a clear distinction feature between O. intercedens and O. hirtum. The calyx in O. hirtum presents five isometric teeth whereas in O. intercedens two high and three shorter. Essential oil content was significantly affected by genotype and year. O. hirtum presented higher essential oil content than the other two species during the first year of cultivation, however during the second year the hybrid (O. intercedens) recorded the highest values. Carvacrol, p-cymene and γ-terpinene were the main essential oil constituents of the three studied species. In O. hirtum carvacrol content varied from 84,28 - 93,35%, in O. onites from 86,97 - 91,89%, whereas in O. intercedens it was recorded the highest carvacrol content, namely from 89,25 - 97,23%.

Keywords: variability, oregano biotypes, essential oil, carvacrol

Procedia PDF Downloads 123
350 Sustainable Development Goals and Gender Equality: Impact of Unpaid Labor on Women’s Leadership in India

Authors: Swati Vohra

Abstract:

A genuine economic and social transformation requires equal contribution and participation from both men and women; however, achieving this gender parity is a global concern. In the patriarchal societies around the world, women have been silenced, oppressed, and subjugated. Girls and women comprise half of the world’s population. This, however, must not be the lone reason for recognizing and providing equal opportunities to them. Every individual has a right to develop through opportunities without the biases of gender, caste, race, or ethnicity. The world today is confronted by pressing issues of climate change, economic crisis, violence against women and children, escalating conflicts, to name a few. Achieving gender parity is thus an essential component in meeting this wide array of challenges in order to create just, robust and inclusive societies. In 2015, The United Nation enunciated achieving 17 Sustainable Development Goals by 2030, one of which is SGD#5- Gender Equality, that is not merely a stand-alone goal. It is central to the achievement of all 17 SDG’s. Without progress on gender equality, the global community will not only fail to achieve the SDG5, but it will also lose the impetus towards achieving the broad 2030 agenda. This research is based on a hypothesis that aims to connect the targets laid by the UN under SDG#5 - 5.4 (Recognize and value unpaid care and domestic work) and 5.5 (Ensure women participation for leadership at all levels of decision-making). The study evaluates the impact of unpaid household responsibilities on women’s leadership in India. In Indian society, women have experienced a low social status for centuries, which is reflected throughout the Indian history with preference of a male child and common occurrences of female infanticides that are still prevalent in many parts of the country. Insistence on the traditional gender roles builds patriarchal inequalities into the structure of Indian society. It is argued that a burden of unpaid labor on women is placed, which narrows the opportunities and life chances women are given and the choices they are able to make, thereby shutting them from shared participation in public and economic leadership. The study investigates theoretical framework of social construction of gender, unpaid labor, challenges to women leaders and peace theorist perspective as the core components. The methodology used is qualitative research of comprehensive literature, accompanied by the data collected through interviews of representatives of women leaders from various fields within Delhi-National Capital Region (NCR). The women leaders interviewed had the privilege of receiving good education and a conducive family support; however, post marriage and children it was not the case and the social obligations weighed heavy on them. The research concludes by recommending the importance of gender-neutral parenting and education along with government ratified paternal leaves for at least six months and childcare facilities available for both the parents at workplace.

Keywords: gender equality, gender roles, peace studies, sustainable development goals, social construction, unpaid labor, women’s leadership

Procedia PDF Downloads 116
349 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada

Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck

Abstract:

It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.

Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions

Procedia PDF Downloads 326
348 Climate Impact on Spider Mite (Tetranychus Sp. Koch) Infesting Som Plant Leaves (Machilus Bombycina King) and Their Sustainable Management

Authors: Sunil Kumar Ghosh

Abstract:

Som plant (Machilus bombycina King) is an important plant in agroforestry system. It is cultivated in north -east part of India. It is cultivated in agricultural land by the marginal farmers for multi-storeyed cultivation with intercropping. Localized cottage industries are involved with this plant like sericulture industry (muga silk worm cultivation). Clothes are produced from this sericulture industry. Leaves of som plants are major food of muga silk worm ( Antherea assama ). Nutritional value of leaves plays an important role in the larval growth and silk productivity. The plant also has timber value. The plant is susceptible to mite pest (Tetranychus sp.) causes heavy damage to tender leaves. Lower population was recorded during 7th to 38th standard week, during 3rd week of February to 4th week of September and higher population was during 46th to 51st standard week, during 3rd week of November to 3rd week of December and peak population (6.06/3 leaves) was recorded on 46th standard week that is on 3rd week of November. Correlation studies revealed that mite population had a significant negative correlation with temperature and non-significant positive correlation with relative humidity. This indicates that activity of mites population increase with the rise of relative humidity and decrease with the rise of temperature. Tobacco leaf extracts was found most effective against mite providing 40.51% suppression, closely followed by extracts of Spilanthes (39.06% suppression). Extracts of Garlic and extracts of Polygonum plant gave moderate results, recording about 38.10% and 37.78% mite suppression respectively. The polygonum (Polygonum hydropiper) plant (floral parts), pongamia (Pongamia pinnata) leaves, garlic (Allium sativum), spilanthes (Spilanthes paniculata) (floral parts) were extracted in methanol. Synthetic insecticides contaminate plant leaves with the toxic chemicals. Plant extracts are of biological origin having low or no hazardous effect on health and environment and so can be incorporated in organic cultivation.

Keywords: Abiotic factors, incidence, botanical extracts, organic cultivation, silk industry

Procedia PDF Downloads 132
347 Concentration of Droplets in a Transient Gas Flow

Authors: Timur S. Zaripov, Artur K. Gilfanov, Sergei S. Sazhin, Steven M. Begg, Morgan R. Heikal

Abstract:

The calculation of the concentration of inertial droplets in complex flows is encountered in the modelling of numerous engineering and environmental phenomena; for example, fuel droplets in internal combustion engines and airborne pollutant particles. The results of recent research, focused on the development of methods for calculating concentration and their implementation in the commercial CFD code, ANSYS Fluent, is presented here. The study is motivated by the investigation of the mixture preparation processes in internal combustion engines with direct injection of fuel sprays. Two methods are used in our analysis; the Fully Lagrangian method (also known as the Osiptsov method) and the Eulerian approach. The Osiptsov method predicts droplet concentrations along path lines by solving the equations for the components of the Jacobian of the Eulerian-Lagrangian transformation. This method significantly decreases the computational requirements as it does not require counting of large numbers of tracked droplets as in the case of the conventional Lagrangian approach. In the Eulerian approach the average droplet velocity is expressed as a function of the carrier phase velocity as an expansion over the droplet response time and transport equation can be solved in the Eulerian form. The advantage of the method is that droplet velocity can be found without solving additional partial differential equations for the droplet velocity field. The predictions from the two approaches were compared in the analysis of the problem of a dilute gas-droplet flow around an infinitely long, circular cylinder. The concentrations of inertial droplets, with Stokes numbers of 0.05, 0.1, 0.2, in steady-state and transient laminar flow conditions, were determined at various Reynolds numbers. In the steady-state case, flows with Reynolds numbers of 1, 10, and 100 were investigated. It has been shown that the results predicted using both methods are almost identical at small Reynolds and Stokes numbers. For larger values of these numbers (Stokes — 0.1, 0.2; Reynolds — 10, 100) the Eulerian approach predicted a wider spread in concentration in the perturbations caused by the cylinder that can be attributed to the averaged droplet velocity field. The transient droplet flow case was investigated for a Reynolds number of 200. Both methods predicted a high droplet concentration in the zones of high strain rate and low concentrations in zones of high vorticity. The maxima of droplet concentration predicted by the Osiptsov method was up to two orders of magnitude greater than that predicted by the Eulerian method; a significant variation for an approach widely used in engineering applications. Based on the results of these comparisons, the Osiptsov method has resulted in a more precise description of the local properties of the inertial droplet flow. The method has been applied to the analysis of the results of experimental observations of a liquid gasoline spray at representative fuel injection pressure conditions. The preliminary results show good qualitative agreement between the predictions of the model and experimental data.

Keywords: internal combustion engines, Eulerian approach, fully Lagrangian approach, gasoline fuel sprays, droplets and particle concentrations

Procedia PDF Downloads 254
346 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 319
345 Developing Allometric Equations for More Accurate Aboveground Biomass and Carbon Estimation in Secondary Evergreen Forests, Thailand

Authors: Titinan Pothong, Prasit Wangpakapattanawong, Stephen Elliott

Abstract:

Shifting cultivation is an indigenous agricultural practice among upland people and has long been one of the major land-use systems in Southeast Asia. As a result, fallows and secondary forests have come to cover a large part of the region. However, they are increasingly being replaced by monocultures, such as corn cultivation. This is believed to be a main driver of deforestation and forest degradation, and one of the reasons behind the recurring winter smog crisis in Thailand and around Southeast Asia. Accurate biomass estimation of trees is important to quantify valuable carbon stocks and changes to these stocks in case of land use change. However, presently, Thailand lacks proper tools and optimal equations to quantify its carbon stocks, especially for secondary evergreen forests, including fallow areas after shifting cultivation and smaller trees with a diameter at breast height (DBH) of less than 5 cm. Developing new allometric equations to estimate biomass is urgently needed to accurately estimate and manage carbon storage in tropical secondary forests. This study established new equations using a destructive method at three study sites: approximately 50-year-old secondary forest, 4-year-old fallow, and 7-year-old fallow. Tree biomass was collected by harvesting 136 individual trees (including coppiced trees) from 23 species, with a DBH ranging from 1 to 31 cm. Oven-dried samples were sent for carbon analysis. Wood density was calculated from disk samples and samples collected with an increment borer from 79 species, including 35 species currently missing from the Global Wood Densities database. Several models were developed, showing that aboveground biomass (AGB) was strongly related to DBH, height (H), and wood density (WD). Including WD in the model was found to improve the accuracy of the AGB estimation. This study provides insights for reforestation management, and can be used to prepare baseline data for Thailand’s carbon stocks for the REDD+ and other carbon trading schemes. These may provide monetary incentives to stop illegal logging and deforestation for monoculture.

Keywords: aboveground biomass, allometric equation, carbon stock, secondary forest

Procedia PDF Downloads 278
344 Balance of Natural Resources to Manage Land Use Changes in Subosukawonosraten Area

Authors: Sri E. Wati, D. Roswidyatmoko, N. Maslahatun, Gunawan, Andhika B. Taji

Abstract:

Natural resource is the main sources to fulfill human needs. Its utilization must consider not only human prosperity but also sustainability. Balance of natural resources is a tool to manage natural wealth and to control land use change. This tool is needed to organize land use planning as stated on spatial plan in a certain region. Balance of natural resources can be calculated by comparing two-series of natural resource data obtained at different year. In this case, four years data period of land and forest were used (2010 and 2014). Land use data were acquired through satellite image interpretation and field checking. By means of GIS analysis, its result was then assessed with land use plan. It is intended to evaluate whether existing land use is suitable with land use plan. If it is improper, what kind of efforts and policies must be done to overcome the situation. Subosukawonosraten is rapid developed areas in Central Java Province. This region consists of seven regencies/cities which are Sukoharjo Regency, Boyolali Regency, Surakarta City, Karanganyar Regency, Wonogiri Regency, Sragen Regency, and Klaten Regency. This region is regarding to several former areas under Karasidenan Surakarta and their location is adjacent to Surakarta. Balance of forest resources show that width of forest area is not significantly changed. Some land uses within the area are slightly changed. Some rice field areas are converted into settlement (0.03%) whereas water bodies become vacant areas (0.09%). On the other hand, balance of land resources state that there are many land use changes in this region. Width area of rice field decreases 428 hectares and more than 50% of them have been transformed into settlement area and 11.21% is converted into buildings such as factories, hotels, and other infrastructures. It occurs mostly in Sragen, Sukoharjo, and Karanganyar Regency. The results illustrate that land use change in this region is mostly influenced by increasing of population number. Some agricultural lands have been converted into built-up area since demand of settlement, industrial area, and other infrastructures also increases. Unfortunately, recent utilization of more than a half of total area is not appropriate with land use plan declared in spatial planning document. It means, local government shall develop a strict regulation and law enforcement related to any violation in land use management.

Keywords: balance, forest, land, spatial plan

Procedia PDF Downloads 313
343 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu

Abstract:

Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame

Procedia PDF Downloads 68
342 Innovation Mechanism in Developing Cultural and Creative Industries

Authors: Liou Shyhnan, Chia Han Yang

Abstract:

The study aims to investigate the promotion of innovation in the development of cultural and creative industries (CCI) and apply research on culture and creativity to this promotion. Using the research perspectives of culture and creativity as the starting points, this study has examined the challenges, trends, and opportunities that have emerged from the development of the CCI until the present. It is found that a definite context of cause and effect exist between them, and that a homologous theoretical basis can be used to understand and interpret them. Based on the characteristics of the aforementioned challenges and trends, this study has compiled two main theoretical systems for conducting research on culture and creativity: (i) reciprocal process between creativity and culture, and (ii) a mechanism for innovation involving multicultural convergence. Both theoretical systems were then used as the foundation to arrive at possible research propositions relating to the two developmental systems. This was respectively done through identification of the theoretical context through a literature review, and interviews and observations of actual case studies within Taiwan’s CCI. In so doing, the critical factors that can address the aforementioned challenges and trends were discovered. Our results indicated that, for reciprocal process between creativity and culture, we recognize that culture serves as creative resources in cultural and creative industries. According to shared consensus, culture provides symbolic meanings and emotional attachment for products and experiences offered by CCI. Besides, different cultures vary in their effects on creativity processes and standards, thus engendering distinctive preferences for and evaluations of the creative expressions and experiences of CCIs. In addition, we identify that creativity serves as the engine for driving the continuation and rebirth of cultures. Accounting for the core of culture, the employment of technology, design, and business facilitates the transformation and innovation mechanism for promoting culture continuity. In addition, with cultural centered, the digital technology, design thinking, and business model are critical constitutes of the innovation mechanism to promote the cultural continuity. Regarding cultural preservation and regeneration of local spaces and folk customs, we argue that the preservation and regeneration of local spaces and cultural cultures must embody the interactive experiences of present-day life. And cultural space and folk custom would regenerate with interact and experience in modern life. Regarding innovation mechanism for multicultural convergence, we propose that innovative stakeholders from different disciplines (e.g., creators, designers, engineers, and marketers) in CCIs rely on the establishment of a cocreation mechanism to promote interdisciplinary interaction. Furthermore, CCI development needs to develop a cocreation mechanism for enhancing the interdisciplinary collaboration among CCI innovation stakeholders. We further argue multicultural mixing would enhance innovation in developing CCI, and assuming an open and mutually enlightening attitude to enrich one another’s cultures in the multicultural exchanges under globalization will create diversity in homogenous CCIs. Finally, for promoting innovation in developing cultural and creative industries, we further propose a model for joint knowledge creation that can be established for enhancing the mutual reinforcement of theoretical and practical research on culture and creativity.

Keywords: culture and creativity, innovation, cultural and creative industries, cultural mixing

Procedia PDF Downloads 313
341 Effects of Hydrogen Bonding and Vinylcarbazole Derivatives on 3-Cyanovinylcarbazole Mediated Photo-Cross-Linking Induced Cytosine Deamination

Authors: Siddhant Sethi, Yasuharu Takashima, Shigetaka Nakamura, Kenzo Fujimoto

Abstract:

Site-directed mutagenesis is a renowned technique to introduce specific mutations in the genome. To achieve site-directed mutagenesis, many chemical and enzymatic approaches have been reported in the past like disulphite induced genome editing, CRISPR-Cas9, TALEN etc. The chemical methods are invasive whereas the enzymatic approaches are time-consuming and expensive. Most of these techniques are unusable in the cellular application due to their toxicity and other limitations. Photo-chemical cytosine deamination, introduced in 2010, is one of the major technique for enzyme-free single-point mutation of cytosine to uracil in DNA and RNA, wherein, 3-cyanovinylcarbazole nucleoside (CNVK) containing oligodeoxyribonucleotide (ODN) having CNVK at -1 position to that of target cytosine is reversibly crosslinked to target DNA strand using 366 nm and then incubated at 90ºC to accommodate deamination. This technique is superior to enzymatic methods of site-directed mutagenesis but has a disadvantage that it requires the use of high temperature for the deamination step which restricts its applicability in the in vivo applications. This study has been focused on improving the technique by reducing the temperature required for deamination. Firstly, the photo-cross-linker, CNVK has been modified by replacing cyano group attached to vinyl group with methyl ester (OMeVK), amide (NH2VK), and carboxylic acid (OHVK) to observe the acceleration in the deamination of target cytosine cross-linked to vinylcarbazole derivative. Among the derivatives, OHVK has shown 2 times acceleration in deamination reaction as compared to CNVK, while the other two derivatives have shown deceleration towards deamination reaction. The trend of rate of deamination reaction follows the same order as that of hydrophilicity of the vinylcarbazole derivatives. OHVK being most hydrophilic has shown highest acceleration while OMeVK is least hydrophilic has proven to be least active for deamination. Secondly, in the related study, the counter-base of the target cytosine, guanine has been replaced by inosine, 2-aminopurine, nebularine, and 5-nitroindole having distinct hydrogen bonding patterns with target cytosine. Among the ODNs with these counter bases, ODN with inosine has shown 12 fold acceleration towards deamination of cytosine cross-linked to CNVK at physiological conditions as compared to guanosine. Whereas, when 2-aminopurine, nebularine, and 5-nitroindole were used, no deamination reaction took place. It can be concluded that inosine has potential to be used as the counter base of target cytosine for the CNVK mediated photo-cross-linking induced deamination of cytosine. The increase in rate of deamination reaction has been attributed to pattern and number of hydrogen bonding between the cytosine and counter base. One of the important factor is presence of hydrogen bond between exo-cyclic amino group of cytosine and the counter base. These results will be useful for development of more efficient technique for site-directed mutagenesis for C → U transformations in the DNA/RNA which might be used in the living system for treatment of various genetic disorders and genome engineering for making designer and non-native proteins.

Keywords: C to U transformation, DNA editing, genome engineering, ultra-fast photo-cross-linking

Procedia PDF Downloads 228
340 Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

Authors: Orkan Ozcan, Nebiye Musaoglu, Murat Turkes

Abstract:

Climate change is largely recognized as one of the real, pressing and significant global problems. The concept of ‘climate change vulnerability’ helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. In this study, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. As a result, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem is based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a ‘very low’ vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as ‘very low’ account for 21% of the total area of the forest ecosystem, those classed as ‘low’ account for 36%, those classed as ‘medium’ account for 20%, and those classed as ‘high’ account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results and assessments summarized in the study show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.

Keywords: forest ecosystem, Mediterranean climate, RCP scenarios, vulnerability analysis

Procedia PDF Downloads 348
339 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context

Authors: Mohamed Redha Menani

Abstract:

The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.

Keywords: transboundary water resources, SASS, governance, climatic changes

Procedia PDF Downloads 78
338 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 143
337 Economic of Chickpea Cultivars as Influenced by Sowing Time and Seed Rate

Authors: Indu Bala Sethi, Meena Sewhag, Rakesh Kumar, Parveen Kumar

Abstract:

Field experiment was conducted at Pulse Research Area of CCS Haryana Agricultural University, Hisar during rabi 2012-13 to study the economics of chickpea cultivars as influenced by sowing time and seed rate on sandy loam soils under irrigated conditions. The factorial experiment consisting of 24 treatment combinations with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 was laid out in split plot design with three replications. The crop was sown with common row spacing of 30 cm as per the dates of sowing. The fertilizer was applied in the form of di- ammonium phosphate. The soil of the experimental site was deep sandy loam having pH of 7.9, EC of 0.13 dS/m and low in organic carbon (0.34%), low in available N status (193.36 kg ha-1), medium in available P2O5 (32.18 kg ha-1) and high in available K2O (249.67 kg ha-1). The crop was irrigated as and when required so as to maintain adequate soil moisture in the root zone The crop was sprayed with monocrotophos (1.25 l/ha) at initiation of flowering and at pod filling stage to protect the crop from pod borer attack. The yield was measured at the time of harvest. The cost of field preparation, sowing of seeds, thinning, weeding, plant protection, harvesting and cleaning contributed to fixed cost. The experiment was laid out in a split plot design with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 were kept in subplots and replicated thrice. Results revealed that 1st fortnight of November sowing recorded significantly higher gross (Rs.1, 01,254 ha-1), net returns (Rs. 68,504 ha-1) and BC (3.09) ratio as compared to delayed crop of chickpea. Highest gross (Rs.91826 ha-1), net returns (Rs. 59076ha-1) and BC ratio (2.81) was recorded with H08-18. Higher value of cost of cultivation of chickpea was observed in higher seed rate than the lower ones. However no significant variation in net and gross returns was observed due to seed rates. Highest BC (2.72) ratio was recorded with 50 kg ha-1 which differs significantly from 60 kg ha-1 but was at par with 40 kg ha-1. This is because of higher grain yield obtained with 50 kg ha-1 seed rate. Net profit for farmers growing chickpea with seed rate of 50 kg ha-1 was higher than the farmers growing chickpea with seed rate of 40 and 60 kg ha.

Keywords: chickpea, cultivars, seed rate, sowing time

Procedia PDF Downloads 439
336 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 238
335 Northern Istanbul Urban Infrastructure Projects: A Critical Account on the Environmental, Spatial, Social and Economical Impacts

Authors: Evren Aysev Denec

Abstract:

As an urban settlement dating as early as 8000 years and the capital for Byzantine and Ottoman empires; İstanbul has been a significant global city throughout history. The most drastic changes in the macro form of Istanbul have taken place in the last seven decades; starting from 1950’s with rapid industrialization and population growth; pacing up after the 1980’s with the efforts of integration to the global capitalist system; reaching to a climax in the 2000’s with the adaptation of a neoliberal urban regime. Today, the rate of urbanization together with land speculation and real estate investment has been growing enormously. Every inch of urban land is conceptualized as a commodity to be capitalized. This neoliberal mindset has many controversial implementations, from the privatization of public land to the urban transformation of historic neighbourhoods and consumption of natural resources. The planning decisions concerning the city have been mainly top down initiations; conceptualising historical, cultural and natural heritage as commodities to be capitalised and consumed in favour of creating rent value. One of the most crucial implementations of this neoliberal urban regime is the project of establishing a ‘new city’ around northern Istanbul; together with a number of large-scale infrastructural projects such as the Third Bosporus Bridge; a new highway system, a Third Airport Project and a secondary Bosporus project called the ‘Canal Istanbul’. Urbanizing northern Istanbul is highly controversial as this area consists of major natural resources of the city; being the northern forests, water supplies and wildlife; which are bound to be destroyed to a great extent following the implementations. The construction of the third bridge and the third airport has begun in 2013, despite environmental objections and protests. Over five hundred thousand trees are planned be cut for solely the construction of the bridge and the Northern Marmara Motorway. Yet the real damage will be the urbanization of the forest area; irreversibly corrupting the natural resources and attracting millions of additional population towards Istanbul. Furthermore, these projects lack an integrated planning scope as the plans prepared for Istanbul are constantly subjected to alterations forced by the central government. Urban interventions mentioned above are executed despite the rulings of Istanbul Environmental plan, due to top down planning decisions. Instead of an integrated action plan that prepares for the future of the city, Istanbul is governed by partial plans and projects that are issued by a profit based agenda; supported by legal alterations and laws issued by the central government. This paper aims to discuss the ongoing implementations with regards to northern Istanbul; claiming that they are not merely infrastructural interventions but parts of a greater neoliberal urbanization strategy. In the course of the study, firstly a brief account on the northern forests of Istanbul will be presented. Then, the projects will be discussed in detail, addressing how the current planning schemes deal with the natural heritage of the city. Lastly, concluding remarks on how the implementations could affect the future of Istanbul will be presented.

Keywords: Istanbul, urban design, urban planning, natural resources

Procedia PDF Downloads 185
334 Factors Influencing Milk Yield, Quality, and Revenue of Dairy Farms in Southern Vietnam

Authors: Ngoc-Hieu Vu

Abstract:

Dairy production in Vietnam is a relatively new agricultural activity and milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to determine factors influencing milk yield and quality (milk fat, total solids, solids-not-fat, total number of bacteria, and somatic cell count) and revenue of dairy farms in Southern Vietnam. The collection of data was at the farm level; individual animal records were unavailable. The 539 studied farms were located in the provinces Lam Dong (N=111 farms), Binh Duong (N=69 farms), Long An (N=174 farms), and Ho Chi Minh city (N=185 farms). The dataset included 9221 monthly test-day records of the farms from January 2013 to May 2015. Seasons were defined as rainy and dry. Farms sizes were classified as small (< 10 milking cows), medium (10 to 19 milking cows) and large (≥ 20 milking cows). The model for each trait contained year-season and farm region-farm size as subclass fixed effects, and individual farm and residual as random effects. Results showed that year-season, region, and farm size were determining sources of variation affecting all studied traits. Milk yield was higher in dry than in rainy seasons (P < 0.05), while it tended to increase from years 2013 to 2015. Large farms had higher yields (445.6 kg/cow) than small (396.7 kg/cow) and medium (428.0 kg/cow) farms (P < 0.05). Small farms, in contrast, were superior to large farms in terms of milk fat, total solids, solids-not-fat, total number of bacteria, and somatic cell count than large farms (P < 0.05). Revenue per cow was higher in large compared with medium and small farms. In conclusion, large farms achieved higher milk yields and revenues per cow, while small farms were superior in milk quality. Overall, milk yields were low and better training, financial support and marketing opportunities for farmers are needed to improve dairy production and increase farm revenues in Southern Vietnam.

Keywords: farm size, milk yield and quality, season, Southern Vietnam

Procedia PDF Downloads 355
333 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt

Authors: Sammar Zain Allam

Abstract:

Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.

Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density

Procedia PDF Downloads 421
332 Understanding the Cultural Landscape of Kuttanad: Life within the Constraints of Nature

Authors: K. Nikilsha, Lakshmi Manohar, Debayan Chatterjee

Abstract:

Landscape is a setting that informs the way of life of a set of people, and the repository of intangible values and human meanings that nurture our very existence. Along with the linkage that it forms with our lives, it can be argued that landscape and memory cannot be separated, as landscape is the nucleus of our memories. In this context, this paper studies landscape evolution of a region with unique geographic setting, where the dependency of the inhabitants on its resources, led to the formation of certain peculiar beliefs and taboos that formed the basis of a set of unwritten rules and guidelines which they still follow as a part of their lifestyle. One such example is Kuttanad, a low lying region in Kerala which is a complex mosaic of fragmented agricultural landscape incorporating coastal backwaters, rivers, marshes, paddy fields and water channels. The more the physical involvement with the resources, the more was the inhabitants attachment towards it. This attachment of the inhabitants to the place is very strong because the creation of this land was the result of the toil of the low caste labourers who strived day and night to create Kuttanad, which was reclaimed from water with the help of the finance supplied by their landlords. However, the greatest challenge faced by them is posed by the forces of water in the form of floods. As this land is fed by five rivers, even the slight variation in rainfall in its watershed area can cause a large imbalance in the water level causing the reclaimed land to be inundated. The effects of climate change including increase in rainfall, rise in sea level and change of seasons can act as a catalyst to this damage. Hasty urbanization has led to the conversion of paddy fields to housing plots and coconut/plantain fields giving no regard to the traditional systems which had once respected nature and combated floods and draughts through the various cultural practices and taboos practiced by the people. Thus it is essential to look back at the landscape evolution of Kuttanad and to recognise methods used traditionally in the region to establish a cultural landscape, and to understand how climate change and urbanisation shall pose a challenge to the existing landscape and lifestyle. This research also explores the possibilities of alternative and sustainable approaches for resilient urban development learned from Kuttanad as a case study.

Keywords: ecological conservation, landscape and ecological engineering, landscape evolution, man-made landscapes

Procedia PDF Downloads 260
331 A Critical Examination of the Iranian National Legal Regulation of the Ecosystem of Lake Urmia

Authors: Siavash Ostovar

Abstract:

The Iranian national Law on the Ramsar Convention (officially known as the Convention of International Wetlands and Aquatic Birds' Habitat Wetlands) was approved by the Senate and became a law in 1974 after the ratification of the National Council. There are other national laws with the aim of preservation of environment in the country. However, Lake Urmia which is declared a wetland of international importance by the Ramsar Convention in 1971 and designated a UNESCO Biosphere Reserve in 1976 is now at the brink of total disappearance due mainly to the climate change, water mismanagement, dam construction, and agricultural deficiencies. Lake Urmia is located in the north western corner of Iran. It is the third largest salt water lake in the world and the largest lake in the Middle East. Locally, it is designated as a National Park. It is, indeed, a unique lake both nationally and internationally. This study investigated how effective the national legal regulation of the ecosystem of Lake Urmia is in Iran. To do so, the Iranian national laws as Enforcement of Ramsar Convention in the country including three nationally established laws of (i) Five sets of laws for the programme of economic, social and cultural development of Islamic Republic of Iran, (ii) The Iranian Penal Code, (iii) law of conservation, restoration and management of the country were investigated. Using black letter law methods, it was revealed that (i) regarding the national five sets of laws; the benchmark to force the implementation of the legislations and policies is not set clearly. In other words, there is no clear guarantee to enforce these legislations and policies at the time of deviation and violation; (ii) regarding the Penal Code, there is lack of determining the environmental crimes, determining appropriate penalties for the environmental crimes, implementing those penalties appropriately, monitoring and training programmes precisely; (iii) regarding the law of conservation, restoration and management, implementation of this regulation is adjourned to preparation, announcement and approval of several categories of enactments and guidelines. In fact, this study used a national environmental catastrophe caused by drying up of Lake Urmia as an excuse to direct the attention to the weaknesses of the existing national rules and regulations. Finally, as we all depend on the natural world for our survival, this study recommended further research on every environmental issue including the Lake Urmia.

Keywords: conservation, environmental law, Lake Urmia, national laws, Ramsar Convention, water management, wetlands

Procedia PDF Downloads 195
330 Comparative Research on Culture-Led Regeneration across Cities in China

Authors: Fang Bin Guo, Emma Roberts, Haibin Du, Yonggang Wang, Yu Chen, Xiuli Ge

Abstract:

This paper explores the findings so far from a major externally-funded project which operates internationally in China, Germany and the UK. The research team is working in the context of the redevelopment of post-industrial sites in China and how these might be platforms for creative enterprises and thereby, the economy and welfare to flourish. Results from the project are anticipated to inform urban design policies in China and possibly farther afield. The research has utilised ethnographic studies and participatory design methods to investigate alternative strategies for sustainable urban renewal of China’s post-industrial areas. Additionally, it has undertaken comparative studies of successful examples of European and Chinese urban regeneration cases. The international cross-disciplinary team has been seeking different opportunities for developing relevant creative industries whilst retaining cultural and industrial heritage. This paper will explore the research conducted so far by the team and offer initial findings. Findings point out the development challenges of cities respecting the protection of local culture/heritages, history of the industries and transformation of the local economies. The preliminary results and pilot analysis of the current research have demonstrated that local government policyholders, business investors/developers and creative industry practitioners are the three major stakeholders that will impact city revitalisations. These groups are expected to work together with asynchronous vision in order for redevelopments to be successful. Meanwhile, local geography, history, culture, politics, economy and ethnography have been identified as important factors that impact on project design and development during urban transformations. Data is being processed from the team’s research conducted across the focal Western and Chinese cities. This has provided theoretical guidance and practical support to the development of significant experimental projects. Many were re-examined with a more international perspective, and adjustments have been based on the conclusions of the research. The observations and research are already generating design solutions in terms of ascertaining essential site components, layouts, visual design and practical facilities for regenerated sites. Two significant projects undertaken by this project team have been nominated by the central Chinese government as the most successful exemplars. They have been listed as outstanding national industry heritage projects; in particular, one of them was nominated by ArchDaily as Building of the Year 2019, and so this project outcome has made a substantial contribution to research and innovation. In summary, this paper will outline the funded project, discuss the work conducted so far, and pinpoint the initial discoveries. It will detail the future steps and indicate how these will impact on national and local governments in China, designers, local citizens and building users.

Keywords: cultural & industrial heritages, ethnographic research, participatory design, regeneration of post-industrial sites, sustainable

Procedia PDF Downloads 142