Search results for: regular network d-dimensional
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5848

Search results for: regular network d-dimensional

2728 Cloud-Based Mobile-to-Mobile Computation Offloading

Authors: Ebrahim Alrashed, Yousef Rafique

Abstract:

Mobile devices have drastically changed the way we do things on the move. They are being extremely relied on to perform tasks that are analogous to desktop computer capability. There has been a rapid increase of computational power on these devices; however, battery technology is still the bottleneck of evolution. The primary modern approach day approach to tackle this issue is offloading computation to the cloud, proving to be latency expensive and requiring high network bandwidth. In this paper, we explore efforts to perform barter-based mobile-to-mobile offloading. We present define a protocol and present an architecture to facilitate the development of such a system. We further highlight the deployment and security challenges.

Keywords: computational offloading, power conservation, cloud, sandboxing

Procedia PDF Downloads 388
2727 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
2726 Efficacy and Safety of Updated Target Therapies for Treatment of Platinum-Resistant Recurrent Ovarian Cancer

Authors: John Hang Leung, Shyh-Yau Wang, Hei-Tung Yip, Fion, Ho Tsung-chin, Agnes LF Chan

Abstract:

Objectives: Platinum-resistant ovarian cancer has a short overall survival of 9–12 months and limited treatment options. The combination of immunotherapy and targeted therapy appears to be a promising treatment option for patients with ovarian cancer, particularly to patients with platinum-resistant recurrent ovarian cancer (PRrOC). However, there are no direct head-to-head clinical trials comparing their efficacy and toxicity. We, therefore, used a network to directly and indirectly compare seven newer immunotherapies or targeted therapies combined with chemotherapy in platinum-resistant relapsed ovarian cancer, including antibody-drug conjugates, PD-1 (Programmed death-1) and PD-L1 (Programmed death-ligand 1), PARP (Poly ADP-ribose polymerase) inhibitors, TKIs (Tyrosine kinase inhibitors), and antiangiogenic agents. Methods: We searched PubMed (Public/Publisher MEDLINE), EMBASE (Excerpta Medica Database), and the Cochrane Library electronic databases for phase II and III trials involving PRrOC patients treated with immunotherapy or targeted therapy plus chemotherapy. The quality of included trials was assessed using the GRADE method. The primary outcomes compared were progression-free survival, the secondary outcomes were overall survival and safety. Results: Seven randomized controlled trials involving a total of 2058 PRrOC patients were included in this analysis. Bevacizumab plus chemotherapy showed statistically significant differences in PFS (Progression-free survival) but not OS (Overall survival) for all interested targets and immunotherapy regimens; however, according to the heatmap analysis, bevacizumab plus chemotherapy had a statistically significant risk of ≥grade 3 SAEs (Severe adverse effects), particularly hematological severe adverse events (neutropenia, anemia, leukopenia, and thrombocytopenia). Conclusions: Bevacizumab plus chemotherapy resulted in better PFS as compared with all interested regimens for the treatment of PRrOC. However, statistical differences in SAEs as bevacizumab plus chemotherapy is associated with a greater risk for hematological SAE.

Keywords: platinum-resistant recurrent ovarian cancer, network meta-analysis, immune checkpoint inhibitors, target therapy, antiangiogenic agents

Procedia PDF Downloads 80
2725 Market Index Trend Prediction using Deep Learning and Risk Analysis

Authors: Shervin Alaei, Reza Moradi

Abstract:

Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.

Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks

Procedia PDF Downloads 156
2724 Integrated Education at Jazan University: Budding Hope for Employability

Authors: Jayanthi Rajendran

Abstract:

Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand a language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.

Keywords: consistent language, employability, phonological awareness, balanced curriculum

Procedia PDF Downloads 401
2723 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 55
2722 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators

Authors: Fathi Abid, Bilel Kaffel

Abstract:

The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.

Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode

Procedia PDF Downloads 339
2721 Pattern Identification in Statistical Process Control Using Artificial Neural Networks

Authors: M. Pramila Devi, N. V. N. Indra Kiran

Abstract:

Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.

Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping

Procedia PDF Downloads 372
2720 Factors Associated with Contraceptive Use and Nonuse, among Currently Married Young (15-24 Years) Women in Nepal

Authors: Bishnu Prasad Dulal, Sushil Chandra Baral, Radheshyam Bhattarai, Meera Tandan

Abstract:

Background: Non-use of contraceptives is a leading cause of unintended pregnancy. This study was done to explore the potential predictors of contraceptive used by young women, and the findings can inform policy makers to design the program to reduce unintended pregnancy for younger women who have a longer time of fecundity. Methodology: A nationally representative cross-sectional household survey was conducted by Health Research and Social Development Forum in 2012. Total 2259 currently married young women (15-24 years) were selected for the analysis out of 8578 women of reproductive age interviewed from the total 10260 households using systematic sampling. Binary logistic regression was used to identify factors associated with the use of modern contraceptive methods. Findings: The prevalence of modern contraceptive methods among young women was 25.2 %. Use of contraceptives was significantly associated with age at first marriage <15 year of age (OR:1.95) and ever delivered (OR: 1.8). Muslim women were significantly less likely to use contraceptives. Development region, wealth quintile, and awareness of abortion site were also statistically associated factors to use of contraceptives. Conclusion: The prevalence of contraceptives uses among young married women (25.2%) was lower than national prevalence (43%) of contraceptives use among married women of reproductive age. Our analysis focused on examining the association between women’s characteristics-related factors and use and nonuse of modern contraceptives. Awareness of safe abortion site is significantly associated while level of education was not. It is an interesting finding but difficult to interpret which needs further analysis on the basis of education. Maybe due to the underlying socio-religious practice of Muslim people, they had lower use of contraceptives. Programmers and policy makers could better help young women by increasing intervention activities to have a regular use of contraceptive-covering poor, Dalit and Muslim, and low aged women in order to reduce unintended pregnancy.

Keywords: unintended pregnancy, contraceptive, young women, Nepal

Procedia PDF Downloads 456
2719 Parent’s Expectations and School Achievement: Longitudinal Perspective among Chilean Pupils

Authors: Marine Hascoet, Valentina Giaconi, Ludivine Jamain

Abstract:

The aim of our study is to examine if the family socio-economic status (SES) has an influence on students’ academic achievement. We first make the hypothesis that the more their families have financial and social resources, the more students succeed at school. We second make the hypothesis that this family SES has also an impact on parents’ expectations about their children educational outcomes. Moreover, we want to study if that parents’ expectations play the role of mediator between parents’ socio-economic status and the student’ self-concept and academic outcome. We test this model with a longitudinal design thanks to the census-based assessment from the System of Measurement of the Quality of Education (SIMCE). The SIMCE tests aim to assess all the students attending to regular education in a defined level. The sample used in this study came from the SIMCE assessments done three times: in 4th, 8th and 11th grade during the years 2007, 2011 and 2014 respectively. It includes 156.619 students (75.084 boys and 81.535 girls) that had valid responses for the three years. The family socio-economic status was measured at the first assessment (in 4th grade). The parents’ educational expectations and the students’ self-concept were measured at the second assessment (in 8th grade). The achievement score was measured twice; once when children were in 4th grade and a second time when they were in 11th grade. To test our hypothesis, we have defined a structural equation model. We found that our model fit well the data (CFI = 0.96, TLI = 0.95, RMSEA = 0.05, SRMR = 0.05). Both family SES and prior achievements predict parents’ educational expectations and effect of SES is important in comparison to the other coefficients. These expectations predict students’ achievement three years later (with prior achievement controlled) but not their self-concept. Our model explains 51.9% of the achievement in the 11th grade. Our results confirm the importance of the parents’ expectations and the significant role of socio-economic status in students’ academic achievement in Chile.

Keywords: Chilean context, parent’s expectations, school achievement, self-concept, socio-economic status

Procedia PDF Downloads 141
2718 Early Hypothyroidism after Radiotherapy for Nasopharyngeal Carcinoma

Authors: Nejla Fourati, Zied Fessi, Fatma Dhouib, Wicem Siala, Leila Farhat, Afef Khanfir, Wafa Mnejja, Jamel Daoud

Abstract:

Purpose: Radiation induced hypothyroidism in nasopharyngeal cancer (NPC) ranged from 15% to 55%. In reported data, it is considered as a common late complication of definitive radiation and is mainly observed 2 years after the end of treatment. The aim of this study was to evaluate the incidence of early hypothyroidism within 6 months after radiotherapy. Patients and methods: From June 2017 to February 2020, 35 patients treated with concurrent chemo-radiotherapy (CCR) for NPC were included in this prospective study. Median age was 49 years [23-68] with a sex ratio of 2.88. All patients received intensity modulated radiotherapy (IMRT) at a dose of 69.96 Gy in 33 daily fractions with weekly cisplatin (40mg/m²) chemotherapy. Thyroid stimulating hormone (TSH) and Free Thyroxine 4 (FT4) dosage was performed before the start of radiotherapy and 6 months after. Different dosimetric parameters for the thyroid gland were reported: the volume (cc); the mean dose (Dmean) and the %age of volume receiving more than 45 Gy (V45Gy). Wilcoxon Test was used to compare these different parameters between patients with or without hypothyroidism. Results: At baseline, 5 patients (14.3%) had hypothyroidism and were excluded from the analysis. For the remaining 30 patients, 9 patients (30%) developed a hypothyroidism 6 months after the end of radiotherapy. The median thyroid volume was 10.3 cc [4.6-23]. The median Dmean and V45Gy were 48.3 Gy [43.15-55.4] and 74.8 [38.2-97.9] respectively. No significant difference was noted for all studied parameters. Conclusion: Early hypothyroidism occurring within 6 months after CCR for NPC seems to be a common complication (30%) that should be screened. Good patient monitoring with regular dosage of TSH and FT4 makes it possible to treat hypothyroidism in asymptomatic phase. This would be correlated with an improvement in the quality of life of these patients. The results of our study do not show a correlation between the thyroid doses and the occurrence of hypothyroidism. This is probably related to the high doses received by the thyroid in our series. These findings encourage more optimization to limit thyroid doses and then the risk of radiation-induced hypothyroidism

Keywords: nasopharyngeal carcinoma, hypothyroidism, early complication, thyroid dose

Procedia PDF Downloads 131
2717 The Practice and Research of Computer-Aided Language Learning in China

Authors: Huang Yajing

Abstract:

Context: Computer-aided language learning (CALL) in China has undergone significant development over the past few decades, with distinct stages marking its evolution. This paper aims to provide a comprehensive review of the practice and research in this field in China, tracing its journey from the early stages of audio-visual education to the current multimedia network integration stage. Research Aim: The study aims to analyze the historical progression of CALL in China, identify key developments in the field, and provide recommendations for enhancing CALL practices in the future. Methodology: The research employs document analysis and literature review to synthesize existing knowledge on CALL in China, drawing on a range of sources to construct a detailed overview of the evolution of CALL practices and research in the country. Findings: The review highlights the significant advancements in CALL in China, showcasing the transition from traditional audio-visual educational approaches to the current integrated multimedia network stage. The study identifies key milestones, technological advancements, and theoretical influences that have shaped CALL practices in China. Theoretical Importance: The evolution of CALL in China reflects not only technological progress but also shifts in educational paradigms and theories. The study underscores the significance of cognitive psychology as a theoretical underpinning for CALL practices, emphasizing the learner's active role in the learning process. Data Collection and Analysis Procedures: Data collection involved extensive review and analysis of documents and literature related to CALL in China. The analysis was carried out systematically to identify trends, developments, and challenges in the field. Questions Addressed: The study addresses the historical development of CALL in China, the impact of technological advancements on teaching practices, the role of cognitive psychology in shaping CALL methodologies, and the future outlook for CALL in the country. Conclusion: The review provides a comprehensive overview of the evolution of CALL in China, highlighting key stages of development and emerging trends. The study concludes by offering recommendations to further enhance CALL practices in the Chinese context.

Keywords: English education, educational technology, computer-aided language teaching, applied linguistics

Procedia PDF Downloads 56
2716 Challenges of Management of Subaortic Membrane in a Young Adult Patient: A Case Review and Literature Review

Authors: Talal Asif, Maya Kosinska, Lucas Georger, Krish Sardesai, Muhammad Shah Miran

Abstract:

This article presents a case review and literature review focused on the challenges of managing subaortic membranes (SAM) in young adult patients with mild aortic regurgitation (AR) or aortic stenosis (AS). The study aims to discuss the diagnosis of SAM, imaging studies used for assessment, management strategies in young patients, the risk of valvular damage, and the controversy surrounding prophylactic resection in mild AR. The management of SAM in adults poses challenges due to limited treatment options and potential complications, necessitating further investigation into the progression of AS and AR in asymptomatic SAM patients. The case presentation describes a 40-year-old male with muscular dystrophy who presented with symptoms and was diagnosed with SAM. Various imaging techniques, including CT chest, transthoracic echocardiogram (TTE), and transesophageal echocardiogram (TEE), were used to confirm the presence and severity of SAM. Based on the patient's clinical profile and the absence of surgical indications, medical therapy was initiated, and regular outpatient follow-up was recommended to monitor disease progression. The discussion highlights the challenges in diagnosing SAM, the importance of imaging studies, and the potential complications associated with SAM in young patients. The article also explores the management options for SAM, emphasizing surgical resection as the definitive treatment while acknowledging the limited success rates of alternative approaches. Close monitoring and prompt intervention for complications are crucial in the management of SAM. The concluding statement emphasizes the need for further research to explore alternative treatments for SAM in young patients.

Keywords: subaortic membrane, management, case report, literature review, aortic regurgitation, aortic stenosis, left ventricular outflow obstruction, guidelines, heart failure

Procedia PDF Downloads 100
2715 The Effect of High Intensity by Intervals Training on Plasma Interleukin 13 and Insulin Resistance in Patients with Attention Deficit Hyperactivity Disorder (ADHD)

Authors: Goodarzvand Fatemeh, Soori Rahman, Effatpanah Mohammad, Ajbarnejad Ali

Abstract:

Attention deficit hyperactivity disorder (ADHD) is characterized by a pervasive pattern of developmentally inappropriate inattentive, impulsive and hyperactive behaviors that typically begin during the preschool ages and often persist into adulthood. This disorder is related to autism and schizophrenia and other psychological disorders and clinical conditions such as insulin resistance and they may operate through common pathways, and treatments used exclusively for one of these conditions may prove beneficial for the others. While ADHD is not fully understood as developmental disorder with an etiopathogeny, but studies show that core symptom of disorder was associated with and increased by the interleukins IL-13, where relation of IL-13 with inattention was notable. Regular exercise improves functions associated with attention deficit hyperactivity disorder (ADHD). However, the impact of exercise on cytokines associated with the disease activity remains relatively unexplored. The aim of this study was to examine the effects of 6 weeks high intensity by intervals training (HIIT) on IL-13 levels and insulin resistance in boys with ADHD. Twenty eight boys with ADHD disease in a range of 12-18 year of old participated in this study as the subject. Subjects were divided into control group (n=10) and training group (n=18) randomly. The training group performed progressive HIIT program, 3 days a week for 6 weeks. The control group was in absolute rest at the same time. The results showed that after six weeks of HIIT, IL-13 decreased in the exercise group and these changes achieved (p= 0.002) statistical significance (p < 0.005). The results suggest HIIT with specific intensity and duration utilized in this study had not significant effect on insulin resistance levels in female patients with ADHD (p=0.39), while the difference in the average control and case group was decreased.

Keywords: attention deficit hyperactivity disorder, interleukin 13, insulin resistance, high intensity by intervals training

Procedia PDF Downloads 512
2714 ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks

Authors: Jamaludin Sallim, Rozlina Mohamed, Roslina Abdul Hamid

Abstract:

In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns.

Keywords: ant colony optimization algorithm, searching algorithm, protein functional module, protein interaction network

Procedia PDF Downloads 612
2713 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 125
2712 Maximum Power and Bone Variables in Young Adult Men

Authors: Anthony Khawaja, Jacques Prioux, Ghassan Maalouf, Rawad El Hage

Abstract:

The regular practice of physical activities characterized by significant mechanical stresses stimulates bone formation and improves bone mineral density (BMD) in the most solicited sites. The purpose of this study was to explore the relationships between maximum power and bone variables in a group of young adult men. Identification of new determinants of BMD, bone mineral content (BMC) and hip geometric indices in young adult men, would allow screening and early management of future cases of osteopenia and osteoporosis. Fifty-three young adult men (18 – 35yr) voluntarily participated in this study. Weight and height were measured, and body mass index was calculated. Body composition, BMC and BMD were determined for each individual by Dual-energy X-ray absorptiometry (DXA; GE Healthcare, Madison, WI) at whole body (WB), lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). FN cross-sectional area (CSA), strength index (SI), buckling ratio (BR), FN section modulus (Z), cross-sectional moment of inertia (CSMI) and L1-L4 TBS were also evaluated by DXA. The vertical jump was evaluated using a field test (sargent test). Two main parameters were retained: vertical jump performance (cm) and power (w). The subjects performed three jumps with 2 minutes of recovery between jumps. The highest vertical jump was selected. Maximum power (P max, in watts) was calculated. Maximum power was positively correlated to WB BMD (r = 0.41; p < 0.01), WB BMC (r = 0.65; p < 0.001), L1-L4 BMC (r = 0.54; p < 0.001), FN BMC (r = 0.35; p < 0.01), TH BMC (r = 0.50; p < 0.001), CSMI (r = 0.50; p < 0.001), CSA (r = 0.33; p < 0.05). Vertical jump was positively correlated to WB BMC (r = 0.31; p < 0.05), L1-L4 BMC (r = 0.40; p < 0.01), CSMI (r = 0.29; p < 0.05). The current study suggests that maximum power is a positive determinant of BMD, BMC and hip geometric indices in young adult men. In addition, it shows also that maximum power is a stronger positive determinant of bone variables than vertical jump in this population. Implementing strategies to increase maximum power in young adult men may be useful for preventing osteoporotic fractures later in life.

Keywords: bone variables, maximum power, osteopenia, osteoporosis, vertical jump, young adult men

Procedia PDF Downloads 178
2711 Nursing Experience in Improving Physical and Mental Well-Being of a Patient with Premature Menopause Osteoporosis and Sarcopenia in Nursing-Led Multi-Discipline Care

Authors: Huang Chiung Chiu

Abstract:

This article is about the nursing experience of assisting an outpatient with premature menopause, osteoporosis and sarcopenia through a multi-discipline care model. The nursing period is from September 22nd, 2020, to December 7th, 2020, collecting data through interviews with the patient, observation, and physical assessment. It was found that the main health problems were insufficient nutrition, less physical need, insomnia, and potentially dangerous falls. As an outpatient nurse, the author observed that in recent years, the age group of women with premature menopause, osteoporosis and sarcopenia had shifted downward. Integrated multi-disciplinary interventions were provided upon the initial diagnosis of osteoporosis and sarcopenia. Under the outpatient care setting, the collaborative team works between the doctors, nutritionists, osteoporosis educators, rehabilitates, physical therapists and other specialized teams were applied to provide individualized, integrated multi-disciplinary care. Through empathy and the establishment of attentive care, companionship and trust, we discussed care plans and treatment guidelines with the case, providing accurate, complete disease information and feedback education to strengthen the patient’s knowledge and motivation for exercise. Nursing guidance regarding the dietary nutrition and adjustment of daily routine was provided to increase the self-care ability, improve the health problems of muscle weakness and insomnia, and prevent falls. For patients with postmenopausal osteoporosis and sarcopenia, it is recommended that the nurses coordinate the multi-discipline integrated care model, adjust patients’ lifestyle and diet, and establish a regular exercise plan so that the cases can be evaluated holistically to improve the quality of care and physical and mental comfort.

Keywords: multi-discipline care model, premature menopause, osteoporosis, sarcopenia, insomnia

Procedia PDF Downloads 118
2710 A Long Tail Study of eWOM Communities

Authors: M. Olmedilla, M. R. Martinez-Torres, S. L. Toral

Abstract:

Electronic Word-Of-Mouth (eWOM) communities represent today an important source of information in which more and more customers base their purchasing decisions. They include thousands of reviews concerning very different products and services posted by many individuals geographically distributed all over the world. Due to their massive audience, eWOM communities can help users to find the product they are looking for even if they are less popular or rare. This is known as the long tail effect, which leads to a larger number of lower-selling niche products. This paper analyzes the long tail effect in a well-known eWOM community and defines a tool for finding niche products unavailable through conventional channels.

Keywords: eWOM, online user reviews, long tail theory, product categorization, social network analysis

Procedia PDF Downloads 422
2709 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 11
2708 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN

Procedia PDF Downloads 526
2707 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
2706 Land Subsidence Monitoring in Semarang and Demak Coastal Area Using Persistent Scatterer Interferometric Synthetic Aperture Radar

Authors: Reyhan Azeriansyah, Yudo Prasetyo, Bambang Darmo Yuwono

Abstract:

Land subsidence is one of the problems that occur in the coastal areas of Java Island, one of which is the Semarang and Demak areas located in the northern region of Central Java. The impact of sea erosion, rising sea levels, soil structure vulnerable and economic development activities led to both these areas often occurs on land subsidence. To know how much land subsidence that occurred in the region needs to do the monitoring carried out by remote sensing methods such as PS-InSAR method. PS-InSAR is a remote sensing technique that is the development of the DInSAR method that can monitor the movement of the ground surface that allows users to perform regular measurements and monitoring of fixed objects on the surface of the earth. PS InSAR processing is done using Standford Method of Persistent Scatterers (StaMPS). Same as the recent analysis technique, Persistent Scatterer (PS) InSAR addresses both the decorrelation and atmospheric problems of conventional InSAR. StaMPS identify and extract the deformation signal even in the absence of bright scatterers. StaMPS is also applicable in areas undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate. In addition, this method can also cover a large area so that the decline in the face of the land can cover all coastal areas of Semarang and Demak. From the PS-InSAR method can be known the impact on the existing area in Semarang and Demak region per year. The PS-InSAR results will also be compared with the GPS monitoring data to determine the difference in land decline that occurs between the two methods. By utilizing remote sensing methods such as PS-InSAR method, it is hoped that the PS-InSAR method can be utilized in monitoring the land subsidence and can assist other survey methods such as GPS surveys and the results can be used in policy determination in the affected coastal areas of Semarang and Demak.

Keywords: coastal area, Demak, land subsidence, PS-InSAR, Semarang, StaMPS

Procedia PDF Downloads 267
2705 Phone Number Spoofing Attack in VoLTE 4G

Authors: Joo-Hyung Oh

Abstract:

The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on all-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. And in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.

Keywords: LTE, 4G, VoLTE, phone number spoofing

Procedia PDF Downloads 432
2704 Informal Self-Governance: The Formation of an Alternative Urban Framework in a Cairo Region

Authors: Noor Abdelhamid

Abstract:

Almost half of Cairo’s growing population is housed in self-built, self-governed informal settlements serving as an alternative in the absence of government-provided public housing. These settlements emerged as the spatial expression of informal practices or activities operating outside regulated, formal frameworks. A comprehensive narrative of political events, administrative decisions, and urban policies set the stage for the growth of informal expression in Egypt. The purpose of this qualitative inquiry is to portray informal self-governance practiced by residents in the Cairo region. This research argues that informal spatial practices offer an alternative urban framework for bottom-up development in the absence of government provisions. In the context of this study, informal self-governance is defined as the residents’ autonomous control and use of public urban space in informal settlements. The case study for this research is Ard al-Liwa, a semi-formal settlement representing the majority of informal settlement typologies in Egypt, which consist of the formal occupation of land through an uncontrolled land subdivision, zoning, and construction. An inductive methodological approach is adopted to first study informal practices as singular activities and then as components of a larger environment. The collected set of empirical data consists of audiovisual material and observations obtained during regular site visits and interviews with residents native to the settlement. Methods of analysis are synthesized to identify themes in the data: the static and dynamic use of sidewalks, the urban traces of informal building allocation and construction, the de facto right to urban space, and the resultant spatial patterns. The paper concludes by positioning the research in the context of the current architectural practice, questioning the role, and responsibility, of designers in these self-governed urban regions.

Keywords: Egypt, informal settlements, self-governance, urban framework

Procedia PDF Downloads 160
2703 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis

Authors: Ganbat Danaa, Chuluundorj Puntsag

Abstract:

The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.

Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability

Procedia PDF Downloads 67
2702 Using a GIS-Based Method for Green Infrastructure Accessibility of Different Socio-Economic Groups in Auckland, New Zealand

Authors: Jing Ma, Xindong An

Abstract:

Green infrastructure, the most important aspect of improving the quality of life, has been a crucial element of the liveability measurement. With demanding of more liveable urban environment from increasing population in city area, access to green infrastructure in walking distance should be taken into consideration. This article exemplifies the study on accessibility measurement of green infrastructure in central Auckland (New Zealand), using network analysis tool on the basis of GIS, to verify the accessibility levels of green infrastructure. It analyses the overall situation of green infrastructure and draws some conclusions on the city’s different levels of accessibility according to the categories and facilities distribution, which provides valuable references and guidance for the future facility improvement in planning strategies.

Keywords: quality of life, green infrastructure, GIS, accessibility

Procedia PDF Downloads 282
2701 Development of a Mathematical Model to Characterize the Oil Production in the Federal Republic of Nigeria Environment

Authors: Paul C. Njoku, Archana Swati Njoku

Abstract:

The study deals with the development of a mathematical model to characterize the oil production in Nigeria. This is calculated by initiating the dynamics of oil production in million barrels revenue plan cost of oil production in million nairas and unit cost of production from 1974-1982 in the contest of the federal Republic of Nigeria. This country export oil to other countries as well as importing specialized crude. The transport network from origin/destination tij to pairs is taking into account simulation runs, optimization have been considered in this study.

Keywords: mathematical oil model development dynamics, Nigeria, characterization barrels, dynamics of oil production

Procedia PDF Downloads 387
2700 Green Ports: Innovation Adopters or Innovation Developers

Authors: Marco Ferretti, Marcello Risitano, Maria Cristina Pietronudo, Lina Ozturk

Abstract:

A green port is the result of a sustainable long-term strategy adopted by an entire port infrastructure, therefore by the set of actors involved in port activities. The strategy aims to realise the development of sustainable port infrastructure focused on the reduction of negative environmental impacts without jeopardising economic growth. Green technology represents the core tool to implement sustainable solutions, however, they are not a magic bullet. Ports have always been integrated in the local territory affecting the environment in which they operate, therefore, the sustainable strategy should fit with the entire local systems. Therefore, adopting a sustainable strategy means to know how to involve and engage a wide stakeholders’ network (industries, production, markets, citizens, and public authority). The existing research on the topic has not well integrated this perspective with those of sustainability. Research on green ports have mixed the sustainability aspects with those on the maritime industry, neglecting dynamics that lead to the development of the green port phenomenon. We propose an analysis of green ports adopting the lens of ecosystem studies in the field of management. The ecosystem approach provides a way to model relations that enable green solutions and green practices in a port ecosystem. However, due to the local dimension of a port and the port trend on innovation, i.e., sustainable innovation, we draw to a specific concept of ecosystem, those on local innovation systems. More precisely, we explore if a green port is a local innovation system engaged in developing sustainable innovation with a large impact on the territory or merely an innovation adopter. To address this issue, we adopt a comparative case study selecting two innovative ports in Europe: Rotterdam and Genova. The case study is a research method focused on understanding the dynamics in a specific situation and can be used to provide a description of real circumstances. Preliminary results show two different approaches in supporting sustainable innovation: one represented by Rotterdam, a pioneer in competitiveness and sustainability, and the second one represented by Genoa, an example of technology adopter. The paper intends to provide a better understanding of how sustainable innovations are developed and in which manner a network of port and local stakeholder support this process. Furthermore, it proposes a taxonomy of green ports as developers and adopters of sustainable innovation, suggesting also best practices to model relationships that enable the port ecosystem in applying a sustainable strategy.

Keywords: green port, innovation, sustainability, local innovation systems

Procedia PDF Downloads 120
2699 Risks of Traditional Practices: Chemical and Health Assessment of Bakhour

Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes

Abstract:

Bakhour or Arabian incense is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.

Keywords: Bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis

Procedia PDF Downloads 428