Search results for: polymer concrete (PC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3232

Search results for: polymer concrete (PC)

112 Development of Social Competence in the Preparation and Continuing Training of Adult Educators

Authors: Genute Gedviliene, Vidmantas Tutlys

Abstract:

The aim of this paper is to reveal the deployment and development of the social competence in the higher education programmes of adult education and in the continuing training and competence development of the andragogues. There will be compared how the issues of cooperation and communication in the learning and teaching processes are treated in the study programmes and in the courses of continuing training of andragogues. Theoretical and empirical research methods were combined for research analysis. For the analysis the following methods were applied: 1) Literature and document analysis helped to highlight the communication and cooperation as fundamental phenomena of the social competence, it’s important for the adult education in the context of digitalization and globalization. There were also analyzed the research studies on the development of social competence in the field of andragogy, as well as on the place and weight of the social competence in the overall competence profile of the andragogue. 2) The empirical study is based on questionnaire survey method. The population of survey consists of 240 students of bachelor and master degree studies of andragogy in Lithuania and of 320 representatives of the different bodies and institutions involved in the continuing training and professional development of the adult educators in Lithuania. The themes of survey questionnaire were defined on the basis of findings of the literature review and included the following: 1) opinions of the respondents on the role and place of a social competence in the work of andragogue; 2) opinions of the respondents on the role and place of the development of social competence in the curricula of higher education studies and continuing training courses; 3) judgements on the implications of the higher education studies and courses of continuing training for the development of social competence and it’s deployment in the work of andragogue. Data analysis disclosed a wide range of ways and modalities of the deployment and development of social competence in the preparation and continuing training of the adult educators. Social competence is important for the students and adult education providers not only as the auxiliary capability for the communication and transfer of information, but also as the outcome of collective learning leading to the development of new capabilities applied by the learners in the learning process, their professional field of adult education and their social life. Equally so, social competence is necessary for the effective adult education activities not only as an auxiliary capacity applied in the teaching process, but also as a potential for improvement, development and sustainability of the didactic competence and know-how in this field. The students of the higher education programmes in the field of adult education treat social competence as important generic capacity important for the work of adult educator, whereas adult education providers discern the concrete issues of application of social competence in the different processes of adult education, starting from curriculum design and ending with assessment of learning outcomes.

Keywords: adult education, andragogues, social competence, curriculum

Procedia PDF Downloads 122
111 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Control Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, and natural compared to carbon nanotubes; its price is lower than carbon nanotubes and is cost-effective for industrialization. On the other hand, the presence of highly effective surfaces and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer 1 method. In comparison with the initial graphene, the resulting graphene oxide is heavier and has carboxyl, hydroxyl, and epoxy groups. Therefore, graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. On the other hand, because the hydroxyl, carboxyl, and epoxy groups created on the surface are highly reactive, they have the ability to work with other functional groups such as amines, esters, polymers, etc. Connect and bring new features to the surface of graphene. In fact, it can be concluded that the creation of hydroxyl groups, Carboxyl, and epoxy and in fact graphene oxidation is the first step and step in creating other functional groups on the surface of graphene. Chitosan is a natural polymer and does not cause toxicity in the body. Due to its chemical structure and having OH and NH groups, it is suitable for binding to graphene oxide and increasing its solubility in aqueous solutions. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of chitosan, the amino reaction was performed to form amide transplantation, and the doxorubicin was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX characterized by FT-IR, RAMAN, TGA, and SEM. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin

Procedia PDF Downloads 98
110 The Renewed Constitutional Roots of Agricultural Law in Hungary in Line with Sustainability

Authors: Gergely Horvath

Abstract:

The study analyzes the special provisions of the highest level of national agricultural legislation in the Fundamental Law of Hungary (25 April 2011) with descriptive, analytic and comparative methods. The agriculturally relevant articles of the constitution are very important, because –in spite of their high level of abstraction– they can determine and serve the practice comprehensively and effectively. That is why the objective of the research is to interpret the concrete sentences and phrases in connection with agriculture compared with the methods of some other relevant constitutions (historical-grammatical interpretation). The major findings of the study focus on searching for the appropriate provisions and approach capable of solving the problems of sustainable food production. The real challenge agricultural law must face with in the future is protecting or conserving its background and subjects: the environment, the ecosystem services and all the 'roots' of food production. In effect, agricultural law is the legal aspect of the production of 'our daily bread' from farm to table. However, it also must guarantee the safe daily food for our children and for all our descendants. In connection with sustainability, this unique, value-oriented constitution of an agrarian country even deals with uncustomary questions in this level of legislation like GMOs (by banning the production of genetically modified crops). The starting point is that the principle of public good (principium boni communis) must be the leading notion of the norm, which is an idea partly outside the law. The public interest is reflected by the agricultural law mainly in the concept of public health (in connection with food security) and the security of supply with healthy food. The construed Article P claims the general protection of our natural resources as a requirement. The enumeration of the specific natural resources 'which all form part of the common national heritage' also means the conservation of the grounds of sustainable agriculture. The reference of the arable land represents the subfield of law of the protection of land (and soil conservation), that of the water resources represents the subfield of water protection, the reference of forests and the biological diversity visualize the specialty of nature conservation, which is an essential support for agrobiodiversity. The mentioned protected objects constituting the nation's common heritage metonymically melt with their protective regimes, strengthening them and forming constitutional references of law. This regimes also mean the protection of the natural foundations of the life of the living and also the future generations, in the name of intra- and intergenerational equity.

Keywords: agricultural law, constitutional values, natural resources, sustainability

Procedia PDF Downloads 140
109 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 243
108 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 136
107 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles

Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi

Abstract:

Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.

Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures

Procedia PDF Downloads 233
106 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 247
105 Material Chemistry Level Deformation and Failure in Cementitious Materials

Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo

Abstract:

Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.

Keywords: cementitious materials, deformation, failure, material chemistry modeling

Procedia PDF Downloads 265
104 Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin

Authors: Hend Ben Tkhayat , Khaled Al Zahabi, Husam Younes

Abstract:

Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved.

Keywords: vildagliptin, spray congealing, microparticles, controlled release

Procedia PDF Downloads 105
103 Developing Confidence of Visual Literacy through Using MIRO during Online Learning

Authors: Rachel S. E. Lim, Winnie L. C. Tan

Abstract:

Visual literacy is about making meaning through the interaction of images, words, and sounds. Graphic communication students typically develop visual literacy through critique and production of studio-based projects for their portfolios. However, the abrupt switch to online learning during the COVID-19 pandemic has made it necessary to consider new strategies of visualization and planning to scaffold teaching and learning. This study, therefore, investigated how MIRO, a cloud-based visual collaboration platform, could be used to develop the visual literacy confidence of 30 diploma in graphic communication students attending a graphic design course at a Singapore arts institution. Due to COVID-19, the course was taught fully online throughout a 16-week semester. Guided by Kolb’s Experiential Learning Cycle, the two lecturers developed students’ engagement with visual literacy concepts through different activities that facilitated concrete experiences, reflective observation, abstract conceptualization, and active experimentation. Throughout the semester, students create, collaborate, and centralize communication in MIRO with infinite canvas, smart frameworks, a robust set of widgets (i.e., sticky notes, freeform pen, shapes, arrows, smart drawing, emoticons, etc.), and powerful platform capabilities that enable asynchronous and synchronous feedback and interaction. Students then drew upon these multimodal experiences to brainstorm, research, and develop their motion design project. A survey was used to examine students’ perceptions of engagement (E), confidence (C), learning strategies (LS). Using multiple regression, it¬ was found that the use of MIRO helped students develop confidence (C) with visual literacy, which predicted performance score (PS) that was measured against their application of visual literacy to the creation of their motion design project. While students’ learning strategies (LS) with MIRO did not directly predict confidence (C) or performance score (PS), it fostered positive perceptions of engagement (E) which in turn predicted confidence (C). Content analysis of students’ open-ended survey responses about their learning strategies (LS) showed that MIRO provides organization and structure in documenting learning progress, in tandem with establishing standards and expectations as a preparatory ground for generating feedback. With the clarity and sequence of the mentioned conditions set in place, these prerequisites then lead to the next level of personal action for self-reflection, self-directed learning, and time management. The study results show that the affordances of MIRO can develop visual literacy and make up for the potential pitfalls of student isolation, communication, and engagement during online learning. The context of how MIRO could be used by lecturers to orientate students for learning in visual literacy and studio-based projects for future development are discussed.

Keywords: design education, graphic communication, online learning, visual literacy

Procedia PDF Downloads 91
102 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 207
101 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 248
100 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 86
99 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review

Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos

Abstract:

Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.

Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation

Procedia PDF Downloads 126
98 Rapid, Automated Characterization of Microplastics Using Laser Direct Infrared Imaging and Spectroscopy

Authors: Andreas Kerstan, Darren Robey, Wesam Alvan, David Troiani

Abstract:

Over the last 3.5 years, Quantum Cascade Lasers (QCL) technology has become increasingly important in infrared (IR) microscopy. The advantages over fourier transform infrared (FTIR) are that large areas of a few square centimeters can be measured in minutes and that the light intensive QCL makes it possible to obtain spectra with excellent S/N, even with just one scan. A firmly established solution of the laser direct infrared imaging (LDIR) 8700 is the analysis of microplastics. The presence of microplastics in the environment, drinking water, and food chains is gaining significant public interest. To study their presence, rapid and reliable characterization of microplastic particles is essential. Significant technical hurdles in microplastic analysis stem from the sheer number of particles to be analyzed in each sample. Total particle counts of several thousand are common in environmental samples, while well-treated bottled drinking water may contain relatively few. While visual microscopy has been used extensively, it is prone to operator error and bias and is limited to particles larger than 300 µm. As a result, vibrational spectroscopic techniques such as Raman and FTIR microscopy have become more popular, however, they are time-consuming. There is a demand for rapid and highly automated techniques to measure particle count size and provide high-quality polymer identification. Analysis directly on the filter that often forms the last stage in sample preparation is highly desirable as, by removing a sample preparation step it can both improve laboratory efficiency and decrease opportunities for error. Recent advances in infrared micro-spectroscopy combining a QCL with scanning optics have created a new paradigm, LDIR. It offers improved speed of analysis as well as high levels of automation. Its mode of operation, however, requires an IR reflective background, and this has, to date, limited the ability to perform direct “on-filter” analysis. This study explores the potential to combine the filter with an infrared reflective surface filter. By combining an IR reflective material or coating on a filter membrane with advanced image analysis and detection algorithms, it is demonstrated that such filters can indeed be used in this way. Vibrational spectroscopic techniques play a vital role in the investigation and understanding of microplastics in the environment and food chain. While vibrational spectroscopy is widely deployed, improvements and novel innovations in these techniques that can increase the speed of analysis and ease of use can provide pathways to higher testing rates and, hence, improved understanding of the impacts of microplastics in the environment. Due to its capability to measure large areas in minutes, its speed, degree of automation and excellent S/N, the LDIR could also implemented for various other samples like food adulteration, coatings, laminates, fabrics, textiles and tissues. This presentation will highlight a few of them and focus on the benefits of the LDIR vs classical techniques.

Keywords: QCL, automation, microplastics, tissues, infrared, speed

Procedia PDF Downloads 41
97 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan

Authors: Munenari Inoguchi, Keiko Tamura

Abstract:

In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.

Keywords: building damage inspection, flood, geographic information system, spatial interpolation

Procedia PDF Downloads 104
96 The Effect of Disseminating Basic Knowledge on Radiation in Emergency Distance Learning of COVID-19

Authors: Satoko Yamasaki, Hiromi Kawasaki, Kotomi Yamashita, Susumu Fukita, Kei Sounai

Abstract:

People are susceptible to rumors when the cause of their health problems is unknown or invisible. In order for individuals to be unaffected by rumors, they need basic knowledge and correct information. Community health nursing classes use cases where basic knowledge of radiation can be utilized on a regular basis, thereby teaching that basic knowledge is important in preventing anxiety caused by rumors. Nursing students need to learn that preventive activities are essential for public health nursing care. This is the same methodology used to reduce COVID-19 anxiety among individuals. This study verifies the learning effect concerning the basic knowledge of radiation necessary for case consultation by emergency distance learning. Sixty third-year nursing college students agreed to participate in this research. The knowledge tests conducted before and after classes were compared, with the chi-square test used for testing. There were five knowledge questions regarding distance lessons. This was considered to be 5% significant. The students’ reports which describe the results of responding to health consultations, were analyzed qualitatively and descriptively. In this case study, a person living in an area not affected by radiation was anxious about drinking water and, thus, consulted with a student. The contents of the lecture were selected the minimum amount of knowledge used for the answers of the consultant; specifically hot spots, internal exposure risk, food safety, characteristics of cesium-137, and precautions for counselors. Before taking the class, the most correctly answered question by students concerned daily behavior at risk of internal exposure (52.2%). The question with the fewest correct answers was the selection of places that are likely to be hot spots (3.4%). All responses increased significantly after taking the class (p < 0.001). The answers to the counselors, as written by the students, were 'Cesium is strongly bound to the soil, so it is difficult to transfer to water' and 'Water quality test results of tap water are posted on the city's website.' These were concrete answers obtained by using specialized knowledge. Even in emergency distance learning, the students gained basic knowledge regarding radiation and created a document to utilize said knowledge while assuming the situation concretely. It was thought that the flipped classroom method, even if conducted remotely, could maintain students' learning. It was thought that setting specific knowledge and scenes to be used would enhance the learning effect. By changing the case to concern that of the anxiety caused by infectious diseases, students may be able to effectively gain the basic knowledge to decrease the anxiety of residents due to infectious diseases.

Keywords: effect of class, emergency distance learning, nursing student, radiation

Procedia PDF Downloads 93
95 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context

Authors: Andrea Fiorista

Abstract:

The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.

Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL

Procedia PDF Downloads 66
94 Benefits of High Power Impulse Magnetron Sputtering (HiPIMS) Method for Preparation of Transparent Indium Gallium Zinc Oxide (IGZO) Thin Films

Authors: Pavel Baroch, Jiri Rezek, Michal Prochazka, Tomas Kozak, Jiri Houska

Abstract:

Transparent semiconducting amorphous IGZO films have attracted great attention due to their excellent electrical properties and possible utilization in thin film transistors or in photovoltaic applications as they show 20-50 times higher mobility than that of amorphous silicon. It is also known that the properties of IGZO films are highly sensitive to process parameters, especially to oxygen partial pressure. In this study we have focused on the comparison of properties of transparent semiconducting amorphous indium gallium zinc oxide (IGZO) thin films prepared by conventional sputtering methods and those prepared by high power impulse magnetron sputtering (HiPIMS) method. Furthermore we tried to optimize electrical and optical properties of the IGZO thin films and to investigate possibility to apply these coatings on thermally sensitive flexible substrates. We employed dc, pulsed dc, mid frequency sine wave and HiPIMS power supplies for magnetron deposition. Magnetrons were equipped with sintered ceramic InGaZnO targets. As oxygen vacancies are considered to be the main source of the carriers in IGZO films, it is expected that with the increase of oxygen partial pressure number of oxygen vacancies decreases which results in the increase of film resistivity. Therefore in all experiments we focused on the effect of oxygen partial pressure, discharge power and pulsed power mode on the electrical, optical and mechanical properties of IGZO thin films and also on the thermal load deposited to the substrate. As expected, we have observed a very fast transition between low- and high-resistivity films depending on oxygen partial pressure when deposition using conventional sputtering methods/power supplies have been utilized. Therefore we established and utilized HiPIMS sputtering system for enlargement of operation window for better control of IGZO thin film properties. It is shown that with this system we are able to effectively eliminate steep transition between low and high resistivity films exhibited by DC mode of sputtering and the electrical resistivity can be effectively controlled in the wide resistivity range of 10-² to 10⁵ Ω.cm. The highest mobility of charge carriers (up to 50 cm2/V.s) was obtained at very low oxygen partial pressures. Utilization of HiPIMS also led to significant decrease in thermal load deposited to the substrate which is beneficial for deposition on the thermally sensitive and flexible polymer substrates. Deposition rate as a function of discharge power and oxygen partial pressure was also systematically investigated and the results from optical, electrical and structure analysis will be discussed in detail. Most important result which we have obtained demonstrates almost linear control of IGZO thin films resistivity with increasing of oxygen partial pressure utilizing HiPIMS mode of sputtering and highly transparent films with low resistivity were prepared already at low pO2. It was also found that utilization of HiPIMS technique resulted in significant improvement of surface smoothness in reactive mode of sputtering (with increasing of oxygen partial pressure).

Keywords: charge carrier mobility, HiPIMS, IGZO, resistivity

Procedia PDF Downloads 272
93 Thinking Historiographically in the 21st Century: The Case of Spanish Musicology, a History of Music without History

Authors: Carmen Noheda

Abstract:

This text provides a reflection on the way of thinking about the study of the history of music by examining the production of historiography in Spain at the turn of the century. Based on concepts developed by the historical theorist Jörn Rüsen, the article focuses on the following aspects: the theoretical artifacts that structure the interpretation of the limits of writing the history of music, the narrative patterns used to give meaning to the discourse of history, and the orientation context that functions as a source of criteria of significance for both interpretation and representation. This analysis intends to show that historical music theory is not only a means to abstractly explore the complex questions connected to the production of historical knowledge, but also a tool for obtaining concrete images about the intellectual practice of professional musicologists. Writing about the historiography of contemporary Spanish music is a task that requires both a knowledge of the history that is being written and investigated, as well as a familiarity with current theoretical trends and methodologies that allow for the recognition and definition of the different tendencies that have arisen in recent decades. With the objective of carrying out these premises, this project takes as its point of departure the 'immediate historiography' in relation to Spanish music at the beginning of the 21st century. The hesitation that Spanish musicology has shown in opening itself to new anthropological and sociological approaches, along with its rigidity in the face of the multiple shifts in dynamic forms of thinking about history, have produced a standstill whose consequences can be seen in the delayed reception of the historiographical revolutions that have emerged in the last century. Methodologically, this essay is underpinned by Rüsen’s notion of the disciplinary matrix, which is an important contribution to the understanding of historiography. Combined with his parallel conception of differing paradigms of historiography, it is useful for analyzing the present-day forms of thinking about the history of music. Following these theories, the article will in the first place address the characteristics and identification of present historiographical currents in Spanish musicology to thereby carry out an analysis based on the theories of Rüsen. Finally, it will establish some considerations for the future of musical historiography, whose atrophy has not only fostered the maintenance of an ingrained positivist tradition, but has also implied, in the case of Spain, an absence of methodological schools and an insufficient participation in international theoretical debates. An update of fundamental concepts has become necessary in order to understand that thinking historically about music demands that we remember that subjects are always linked by reciprocal interdependencies that structure and define what it is possible to create. In this sense, the fundamental aim of this research departs from the recognition that the history of music is embedded in the conditions that make it conceivable, communicable and comprehensible within a society.

Keywords: historiography, Jörn Rüssen, Spanish musicology, theory of history of music

Procedia PDF Downloads 167
92 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 214
91 Support for Refugee Entrepreneurs Through International Aid

Authors: Julien Benomar

Abstract:

The World Bank report published in April 2023 called “Migrants, Refugees and Society” allows us to first distinguish migrants in search of economic opportunities and refugees that flee a situation of danger and choose their destination based on their immediate need for safety. Amongst those two categories, the report distinguished people having professional skills adapted to the labor market of the host country and those who have not. Out of that distinction of four categories, we choose to focus our research on refugees that do not have professional skills adapted to the labor market of the host country. Given that refugees generally have no recourse to public assistance schemes and cannot count on the support of their entourage or support network, we propose to examine the extent to which external assistance, such as international humanitarian action, is likely to accompany refugees' transition to financial empowerment through entrepreneurship. To this end, we propose to carry out a case study structured in three stages: (i) an exchange with a Non-Governmental Organisation (NGO) active in supporting refugee populations from Congo and Burundi to Rwanda, enabling us to (i.i) define together a financial empowerment income, and (i. ii) learn about the content of the support measures taken for the beneficiaries of the humanitarian project; (ii) monitor the population of 118 beneficiaries, including 73 refugees and 45 Rwandans (reference population); (iii) conduct a participatory analysis to identify the level of performance of the project and areas for improvement. The case study thus involved the staff of an international NGO active in helping refugees from Rwanda since 2015 and the staff of a Luxembourg NGO that has been funding this economic aid project through entrepreneurship since 2021. The case study thus involved the staff of an international NGO active in helping refugees from Rwanda since 2015 and the staff of a Luxembourg NGO, which has been funding this economic aid through an entrepreneurship project since 2021, and took place over a 48-day period between April and May 2023. The main results are of two types: (i) the need to associate indicators for monitoring the impact of the project on the indirect beneficiaries of the project (refugee community) and (ii) the identification of success factors making it possible to bring concrete and relevant responses to the constraints encountered. The first result thus made it possible to identify the following indicators: Indicator of community potential ((jobs, training or mentoring) promoted by the activity of the entrepreneur), Indicator of social contribution (tax paid by the entrepreneur), Indicator of resilience (savings and loan capacity generated, and finally impact on social cohesion. The second result made it possible to identify that among the 7 success factors tested, the sector of activity chosen and the level of experience in the sector of the future activity are those that stand out the most clearly.

Keywords: entrepreuneurship, refugees, financial empowerment, international aid

Procedia PDF Downloads 50
90 InAs/GaSb Superlattice Photodiode Array ns-Response

Authors: Utpal Das, Sona Das

Abstract:

InAs/GaSb type-II superlattice (T2SL) Mid-wave infrared (MWIR) focal plane arrays (FPAs) have recently seen rapid development. However, in small pixel size large format FPAs, the occurrence of high mesa sidewall surface leakage current is a major constraint necessitating proper surface passivation. A simple pixel isolation technique in InAs/GaSb T2SL detector arrays without the conventional mesa etching has been proposed to isolate the pixels by forming a more resistive higher band gap material from the SL, in the inter-pixel region. Here, a single step femtosecond (fs) laser anneal of the T2SL structure of the inter-pixel T2SL regions, have been used to increase the band gap between the pixels by QW-intermixing and hence increase isolation between the pixels. The p-i-n photodiode structure used here consists of a 506nm, (10 monolayer {ML}) InAs:Si (1x10¹⁸cm⁻³)/(10ML) GaSb SL as the bottom n-contact layer grown on an n-type GaSb substrate. The undoped absorber layer consists of 1.3µm, (10ML)InAs/(10ML)GaSb SL. The top p-contact layer is a 63nm, (10ML)InAs:Be(1x10¹⁸cm⁻³)/(10ML)GaSb T2SL. In order to improve the carrier transport, a 126nm of graded doped (10ML)InAs/(10ML)GaSb SL layer was added between the absorber and each contact layers. A 775nm 150fs-laser at a fluence of ~6mJ/cm² is used to expose the array where the pixel regions are masked by a Ti(200nm)-Au(300nm) cap. Here, in the inter-pixel regions, the p+ layer have been reactive ion etched (RIE) using CH₄+H₂ chemistry and removed before fs-laser exposure. The fs-laser anneal isolation improvement in 200-400μm pixels due to spatially selective quantum well intermixing for a blue shift of ~70meV in the inter-pixel regions is confirmed by FTIR measurements. Dark currents are measured between two adjacent pixels with the Ti(200nm)-Au(300nm) caps used as contacts. The T2SL quality in the active photodiode regions masked by the Ti-Au cap is hardly affected and retains the original quality of the detector. Although, fs-laser anneal of p+ only etched p-i-n T2SL diodes show a reduction in the reverse dark current, no significant improvement in the full RIE-etched mesa structures is noticeable. Hence for a 128x128 array fabrication of 8μm square pixels and 10µm pitch, SU8 polymer isolation after RIE pixel delineation has been used. X-n+ row contacts and Y-p+ column contacts have been used to measure the optical response of the individual pixels. The photo-response of these 8μm and other 200μm pixels under a 2ns optical pulse excitation from an Optical-Parametric-Oscillator (OPO), shows a peak responsivity of ~0.03A/W and 0.2mA/W, respectively, at λ~3.7μm. Temporal response of this detector array is seen to have a fast response ~10ns followed typical slow decay with ringing, attributed to impedance mismatch of the connecting co-axial cables. In conclusion, response times of a few ns have been measured in 8µm pixels of a 128x128 array. Although fs-laser anneal has been found to be useful in increasing the inter-pixel isolation in InAs/GaSb T2SL arrays by QW inter-mixing, it has not been found to be suitable for passivation of full RIE etched mesa structures with vertical walls on InAs/GaSb T2SL.

Keywords: band-gap blue-shift, fs-laser-anneal, InAs/GaSb T2SL, Inter-pixel isolation, ns-Response, photodiode array

Procedia PDF Downloads 126
89 Spatial Conceptualization in French and Italian Speakers: A Contrastive Approach in the Context of the Linguistic Relativity Theory

Authors: Camilla Simoncelli

Abstract:

The connection between language and cognition has been one of the main interests of linguistics from several years. According to the Sapir-Whorf Linguistic Relativity Theory, the way we perceive reality depends on the language we speak which in turn has a central role in the human cognition. This paper is in line with this research work with the aim of analyzing how language structures reflect on our cognitive abilities even in the description of space, which is generally considered as a human natural and universal domain. The main objective is to identify the differences in the encoding of spatial inclusion relationships in French and Italian speakers to make evidence that a significant variation exists at various levels even in two similar systems. Starting from the constitution a corpora, the first step of the study has been to establish the relevant complex prepositions marking an inclusion relation in French and Italian: au centre de, au cœur de, au milieu de, au sein de, à l'intérieur de and the opposition entre/parmi in French; al centro di, al cuore di, nel mezzo di, in seno a, all'interno di and the fra/tra contrast in Italian. These prepositions had been classified on the base of the type of Noun following them (e.g. mass nouns, concrete nouns, abstract nouns, body-parts noun, etc.) following the Collostructional Analysis of lexemes with the purpose of analyzing the preferred construction of each preposition comparing the relations construed. Comparing the Italian and the French results it has been possible to define the degree of representativeness of each target Noun for the chosen preposition studied. Lexicostatistics and Statistical Association Measures showed the values of attraction or repulsion between lexemes and a given preposition, highlighting which words are over-represented or under-represented in a specific context compared to the expected results. For instance, a Noun as Dibattiti has a negative value for the Italian Al cuore di (-1,91), but it has a strong positive representativeness for the corresponding French Au cœur de (+677,76). The value, positive or negative, is the result of a hypergeometric distribution law which displays the current use of some relevant nouns in relations of spatial inclusion by French and Italian speakers. Differences on the kind of location conceptualization denote syntactic and semantic constraints based on spatial features as well as on linguistic peculiarity, too. The aim of this paper is to demonstrate that the domain of spatial relations is basic to human experience and is linked to universally shared perceptual mechanisms which create mental representations depending on the language use. Therefore, linguistic coding strongly correlates with the way spatial distinctions are conceptualized for non-verbal tasks even in close language systems, like Italian and French.

Keywords: cognitive semantics, cross-linguistic variations, locational terms, non-verbal spatial representations

Procedia PDF Downloads 89
88 Privacy Rights of Children in the Social Media Sphere: The Benefits and Challenges Under the EU and US Legislative Framework

Authors: Anna Citterbergova

Abstract:

This study explores the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, namely the GDPR (2018) and COPPA (2000). Considering that children are online for the majority of their free time, one cannot overlook the negative side effects that may be associated with online participation, which may put children’s wellbeing and their fundamental rights at risk. The question of whether the current relevant legislative framework in relation to the responsibilities of the internet service providers (ISPs) are adequate safeguards and guarantees to children’s personal data protection has been an evolving debate both in the US and in the EU. From a children’s rights perspective, processors of personal data have certain obligations that must meet the international human rights principles (e. g. the CRC, ECHR), which require taking into account the best interest of the child. Accordingly, the need to protect children’s privacy online remains strong and relevant with the expansion of the number and importance of social media platforms to human life. At the same time, the landscape of the internet is rapidly evolving, and commercial interests are taking a more targeted approach in seeking children’s data. Therefore, it is essential to constantly evaluate the ongoing and evolving newly adopted market policies of ISPs that may misuse the gap in the current letter of the law. Previous studies in the field have already pointed out that both GDPR and COPPA may theoretically not be sufficient in protecting children’s personal data. With the focus on social media platforms, this study uses the doctrinal-descriptive method to identifiy the mechanisms enshrined in the GDPR and COPPA designed to protect children’s personal data. In its second part, the study includes a data gathering phase by the national data protection authorities responsible for monitoring and supervision of the GDPR in relation to children’s personal data protection who monitor the enforcement of the data protection rules throughout the European Union an contribute to their consistent application. These gathered primary source of data will later be used to outline the series of benefits and challenges to children’s persona lata protection faced by these institutes and the analysis that aims to suggest if and/or how to hold ISPs accountable while striking a fair balance between the commercial rights and the right to protection of the personal data of children. The preliminary results can be divided into two categories. First, conclusions in the doctrinal-descriptive part of the study. Second, specific cases and situations from the practice of national data protection authorities. While for the first part, concrete conclusions can already be presented, the second part is currently still in the data gathering phase. The result of this research is a comprehensive analysis on the safeguards and guarantees to children’s personal data protection under the current EU and US legislative framework, based on doctrinal-descriptive approach and original empirical data.

Keywords: personal data of children, personal data protection, GDPR, COPPA, ISPs, social media

Procedia PDF Downloads 66
87 Tracing a Timber Breakthrough: A Qualitative Study of the Introduction of Cross-Laminated-Timber to the Student Housing Market in Norway

Authors: Marius Nygaard, Ona Flindall

Abstract:

The Palisaden student housing project was completed in August 2013 and was, with its eight floors, Norway’s tallest timber building at the time of completion. It was the first time cross-laminated-timber (CLT) was utilized at this scale in Norway. The project was the result of a concerted effort by a newly formed management company to establish CLT as a sustainable and financially competitive alternative to conventional steel and concrete systems. The introduction of CLT onto the student housing market proved so successful that by 2017 more than 4000 individual student residences will have been built using the same model of development and construction. The aim of this paper is to identify the key factors that enabled this breakthrough for CLT. It is based on an in-depth study of a series of housing projects and the role of the management company who both instigated and enabled this shift of CLT from the margin to the mainstream. Specifically, it will look at how a new building system was integrated into a marketing strategy that identified a market potential within the existing structure of the construction industry and within the economic restrictions inherent to student housing in Norway. It will show how a key player established a project model that changed both the patterns of cooperation and the information basis for decisions. Based on qualitative semi-structured interviews with managers, contractors and the interdisciplinary teams of consultants (architects, structural engineers, acoustical experts etc.) this paper will trace the introduction, expansion and evolution of CLT-based building systems in the student housing market. It will show how the project management firm’s position in the value chain enabled them to function both as a liaison between contractor and client, and between contractor and producer. A position that allowed them to improve the flow of information. This ensured that CLT was handled on equal terms to other structural solutions in the project specifications, enabling realistic pricing and risk evaluation. Secondly, this paper will describe and discuss how the project management firm established and interacted with a growing network of contractors, architects and engineers to pool expertise and broaden the knowledge base across Norway’s regional markets. Finally, it will examine the role of the client, the building typology, and the industrial and technological factors in achieving this breakthrough for CLT in the construction industry. This paper gives an in-depth view of the progression of a single case rather than a broad description of the state of the art of large-scale timber building in Norway. However, this type of study may offer insights that are important to the understanding not only of specific markets but also of how new technologies should be introduced in big and well-established industries.

Keywords: cross-laminated-timber (CLT), industry breakthrough, student housing, timber market

Procedia PDF Downloads 199
86 Pibid and Experimentation: A High School Case Study

Authors: Chahad P. Alexandre

Abstract:

PIBID-Institutional Program of Scholarships to Encourage Teaching - is a Brazilian government program that counts today with 48.000 students. It's goal is to motivate the students to stay in the teaching undergraduate programs and to help fill the gap of 100.000 teachers that are needed today in the under graduated schools. The major lack of teachers today is in physics, chemistry, mathematics, and biology. At IFSP-Itapetininga we formatted our physics PIBID based on practical activities. Our students are divided in two São Paulo state government high schools in the same city. The project proposes class activities based on experimentation, observation and understanding of physical phenomena. The didactical experiments are always in relation with the content that the teacher is working, he is the supervisor of the program in the school. Always before an experiment is proposed a little questionnaire to learn about the students preconceptions and one is filled latter to evaluate if now concepts have been created. This procedure is made in order to compare their previous knowledge and how it changed after the experiment is developed. The primary goal of our project is to make the Physics class more attractive to the students and to develop in high school students the interest in learning physics and to show the relation of Physics to the day by day and to the technological world. The objective of the experimental activities is to facilitate the understanding of the concepts that are worked on classes because under experimentation the PIBID scholarship student stimulate the curiosity of the high school student and with this he can develop the capacity to understand and identify the physical phenomena with concrete examples. Knowing how to identify this phenomena and where they are present at the high school student life makes the learning process more significant and pleasant. This proposal make achievable to the students to practice science, to appropriate of complex, in the traditional classes, concepts and overcoming the common preconception that physics is something distant and that is present only on books. This preconception is extremely harmful in the process of scientific knowledge construction. This kind of learning – through experimentation – make the students not only accumulate knowledge but also appropriate it, also to appropriate experimental procedures and even the space that is provided by the school. The PIBID scholarship students, as future teachers also have the opportunity to try experimentation classes, to intervene in the classes and to have contact with their future career. This opportunity allows the students to make important reflection about the practices realized and consequently about the learning methods. Due to this project, we found out that the high school students stay more time focused in the experiment compared to the traditional explanation teachers´ class. As a result in a class, as a participative activity, the students got more involved and participative. We also found out that the physics under graduated students drop out percentage is smaller in our Institute than before the PIBID program started.

Keywords: innovation, projects, PIBID, physics, pre-service teacher experiences

Procedia PDF Downloads 320
85 Land, History and Housing: Colonial Legacies and Land Tenure in Kuala Lumpur

Authors: Nur Fareza Mustapha

Abstract:

Solutions to policy problems need to be curated to the local context, taking into account the trajectory of the local development path to ensure its efficacy. For Kuala Lumpur, rapid urbanization and migration into the city for the past few decades have increased the demand for housing to accommodate a growing urban population. As a critical factor affecting housing affordability, land supply constraints have been attributed to intensifying market pressures, which grew in tandem with the demands of urban development, along with existing institutional constraints in the governance of land. While demand-side pressures are inevitable given the fixed supply of land, supply-side constraints in regulations distort markets and if addressed inappropriately, may lead to mistargeted policy interventions. Given Malaysia’s historical development, regulatory barriers for land may originate from the British colonial period, when many aspects of the current laws governing tenure were introduced and formalized, and henceforth, became engrained in the system. This research undertakes a postcolonial institutional analysis approach to uncover the causal mechanism driving the evolution of land tenure systems in post-colonial Kuala Lumpur. It seeks to determine the sources of these shifts, focusing on the incentives and bargaining positions of actors during periods of institutional flux/change. It aims to construct a conceptual framework to further this understanding and to elucidate how this historical trajectory affects current access to urban land markets for housing. Archival analysis is used to outline and analyse the evolution of land tenure systems in Kuala Lumpur while stakeholder interviews are used to analyse its impact on the current urban land market, with a particular focus on the provision of and access to affordable housing in the city. Preliminary findings indicate that many aspects of the laws governing tenure that were introduced and formalized during the British colonial period have endured until the present day. Customary rules of tenure were displaced by rules following a European tradition, which found legitimacy through a misguided interpretation of local laws regarding the ownership of land. Colonial notions of race and its binary view of native vs. non-natives have also persisted in the construction and implementation of current legislation regarding land tenure. More concrete findings from this study will generate a more nuanced understanding of the regulatory land supply constraints in Kuala Lumpur, taking into account both the long and short term spatial and temporal processes that affect how these rules are created, implemented and enforced.

Keywords: colonial discourse, historical institutionalism, housing, land policy, post-colonial city

Procedia PDF Downloads 104
84 The Meaning of Happiness and Unhappiness among Female Teenagers in Urban Finland: A Social Representations Approach

Authors: Jennifer De Paola

Abstract:

Objectives: The literature is saturated with figures and hard data on happiness and its rates, causes and effects at a large scale, whereas very little is known about the way specific groups of people within societies understand and talk about happiness in their everyday life. The present study contributes to fill this gap in the happiness research by analyzing social representations of happiness among young women through the theoretical frame provided by Moscovici’s Social Representation Theory. Methods: Participants were (N= 351) female students (16-18 year olds) from Finnish, Swedish and English speaking high schools in the Helsinki region, Finland. Main source of data collection were word associations using the stimulus word ‘happiness’ and word associations using as stimulus the term that in the participants’ opinion represents the opposite of happiness. The allowed number of associations was five per stimulus word (10 associations per participant). In total, the 351 participants produced 6973 associations with the two stimulus words given: 3500 (50,19%) associations with ‘happiness’ and 3473 (49,81%) associations with ‘opposite of happiness’. The associations produced were analyzed qualitatively to identify associations with similar meaning and then coded combining similar associations in larger categories. Results: In total, 33 categories were identified respectively for the stimulus word ‘happiness’ and for the stimulus word ‘opposite of happiness’. In general terms, the 33 categories identified for ‘happiness’ included associations regarding relationships with key people considered important, such as ‘family’, abstract concepts such as meaningful life, success and moral values as well as more mundane and hedonic elements like food, pleasure and fun. Similarly, the 33 categories emerged for ‘opposite of happiness’ included relationship problems and arguments, negative feelings such as sadness, depression, stress as well as more concrete issues such as financial problems. Participants were also asked to rate their own level of happiness on a scale from 1 to 10. Results indicated the mean of the self-rated level of happiness was 7,93 (the range varied from 1 to 10; SD = 1, 50). Participants’ responses were further divided into three different groups according to the self-rated level of happiness: group 1 (level 10-9), group 2 (level 8-6), and group 3 (level 5 and lower) in order to investigate the way the categories mentioned above were distributed among the different groups. Preliminary results show that the category ‘family’ is associated with higher level of happiness, whereas its presence gradually decreases among the participants with a lower level of happiness. Moreover, the category ‘depression’ seems to be mainly present among participants in group 3, whereas the category ‘sadness’ is mainly present among participants with higher level of happiness. Conclusion: In conclusion, this study indicates the prevalent ways of thinking about happiness and its opposite among young female students, suggesting that representations varied to some extent depending on the happiness level of the participants. This study contributes to bringing new knowledge as it considers happiness as a holistic state, thus going beyond the literature that so far has too often viewed happiness as a mere unidimensional spectrum.

Keywords: female, happiness, social representations, unhappiness

Procedia PDF Downloads 202
83 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 213