Search results for: painful vision loss
1464 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five
Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz
Abstract:
Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.Keywords: hydroxyl, global model, model maintenance, near infrared, polyol
Procedia PDF Downloads 1351463 Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation
Authors: Hani Baek, Gwang Min Sun, Chansun Shin, Sung Ho Ahn
Abstract:
Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO2 interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated.Keywords: NPT-IGBT, gamma irradiation, switching, turn-off delay time, recombination, trap center
Procedia PDF Downloads 1561462 Electrochemical Behavior of Cocaine on Carbon Paste Electrode Chemically Modified with Cu(II) Trans 3-MeO Salcn Complex
Authors: Alex Soares Castro, Matheus Manoel Teles de Menezes, Larissa Silva de Azevedo, Ana Carolina Caleffi Patelli, Osmair Vital de Oliveira, Aline Thais Bruni, Marcelo Firmino de Oliveira
Abstract:
Considering the problem of the seizure of illicit drugs, as well as the development of electrochemical sensors using chemically modified electrodes, this work shows the study of the electrochemical activity of cocaine in carbon paste electrode chemically modified with Cu (II) trans 3-MeO salcn complex. In this context, cyclic voltammetry was performed on 0.1 mol.L⁻¹ KCl supporting electrolyte at a scan speed of 100 mV s⁻¹, using an electrochemical cell composed of three electrodes: Ag /AgCl electrode (filled KCl 3 mol.L⁻¹) from Metrohm® (reference electrode); a platinum spiral electrode, as an auxiliary electrode, and a carbon paste electrode chemically modified with Cu (II) trans 3-MeO complex (as working electrode). Two forms of cocaine were analyzed: cocaine hydrochloride (pH 3) and cocaine free base form (pH 8). The PM7 computational method predicted that the hydrochloride form is more stable than the free base form of cocaine, so with cyclic voltammetry, we found electrochemical signal only for cocaine in the form of hydrochloride, with an anodic peak at 1.10 V, with a linearity range between 2 and 20 μmol L⁻¹ had LD and LQ of 2.39 and 7.26x10-5 mol L⁻¹, respectively. The study also proved that cocaine is adsorbed on the surface of the working electrode, where through an irreversible process, where only anode peaks are observed, we have the oxidation of cocaine, which occurs in the hydrophilic region due to the loss of two electrons. The mechanism of this reaction was confirmed by the ab-inito quantum method.Keywords: ab-initio computational method, analytical method, cocaine, Schiff base complex, voltammetry
Procedia PDF Downloads 1941461 Side Effects of COVID-19 Vaccine Investigated by Radiology
Authors: Mahdi Farajzadeh Ajirlou
Abstract:
The detailed serious adverse effects raised the stresses around the safety of individuals who have gotten COVID-19 vaccines. Numerous verification referrers that disease with COV-19 causes neurological dysfunction in a significant proportion of influenced patients, where these side effects show up seriously amid the disease, and still less is known approximately the potential long-term results for the brain, where the loss of olfaction could be a neurological sign and simple indications of COVID-19. Since publishing effective clinical trial results of mRNA coronavirus disease 2019 (COVID-19) and injecting it to the volunteers in 2020, numerous reports have emerged approximately about cardiovascular complications followed by the mRNA vaccination. Vaccination-associated adenopathy could be a constant imaging finding after the organization of COVID-19 antibodies that will lead to a symptomatic problem in patients with shown or suspected cancer, in whom it may be vague from dangerous nodal inclusion. In spite of all the benefits and viability of the coronavirus infection 2019 (COVID-19) antibodies specified in later clinical trials, a few other post-vaccination side impacts, such as lymphadenopathy (LAP), were observed. Also, numerous variables, including financial conditions, have played a critical part in expanding the number of people with COVID-19 infection and also much more side effects in that country. Amid the Coronavirus widespread, Iran has been experiencing extreme sanctions, which has faced this nation with an extreme financial crisis. Additionally, with COVID-19 widespread, there was a developing concern around the abuse of imaging exams extraordinarily within the pediatric populace, which highlights the issues pointed out by this review.Keywords: radiology, vaccines, COVID-19, side effect
Procedia PDF Downloads 641460 Corrosion Risk Assessment/Risk Based Inspection (RBI)
Authors: Lutfi Abosrra, Alseddeq Alabaoub, Nuri Elhaloudi
Abstract:
Corrosion processes in the Oil & Gas industry can lead to failures that are usually costly to repair, costly in terms of loss of contaminated product, in terms of environmental damage and possibly costly in terms of human safety. This article describes the results of the corrosion review and criticality assessment done at Mellitah Gas (SRU unit) for pressure equipment and piping system. The information gathered through the review was intended for developing a qualitative RBI study. The corrosion criticality assessment has been carried out by applying company procedures and industrial recommended practices such as API 571, API 580/581, ASME PCC 3, which provides a guideline for establishing corrosion integrity assessment. The corrosion review is intimately related to the probability of failure (POF). During the corrosion study, the process units are reviewed by following the applicable process flow diagrams (PFDs) in the presence of Mellitah’s personnel from process engineering, inspection, and corrosion/materials and reliability engineers. The expected corrosion damage mechanism (internal and external) was identified, and the corrosion rate was estimated for every piece of equipment and corrosion loop in the process units. A combination of both Consequence and Likelihood of failure was used for determining the corrosion risk. A qualitative consequence of failure (COF) for each individual item was assigned based on the characteristics of the fluid as per its flammability, toxicity, and pollution into three levels (High, Medium, and Low). A qualitative probability of failure (POF)was applied to evaluate the internal and external degradation mechanism, a high-level point-based (0 to 10) for the purpose of risk prioritizing in the range of Low, Medium, and High.Keywords: corrosion, criticality assessment, RBI, POF, COF
Procedia PDF Downloads 811459 Survey of the Relationship between Functional Movement Screening Tests and Anthropometric Dimensions in Healthy People, 2018
Authors: Akram Sadat Jafari Roodbandi, Parisa Kahani, Fatollah Rahimi Bafrani, Ali Dehghan, Nava Seyedi, Vafa Feyzi, Zohreh Forozanfar
Abstract:
Introduction: Movement function is considered as the ability to produce and maintain balance, stability, and movement throughout the movement chain. Having a score of 14 and above on 7 sub-tests in the functional movement screening (FMS) test shows agility and optimal movement performance. On the other hand, the person's body is an important factor in physical fitness and optimal movement performance. The aim of this study was to identify effective anthropometric dimensions in increasing motor function. Methods: This study was a descriptive-analytical and cross-sectional study using simple random sampling. FMS test and 25 anthropometric dimensions and subcutaneous in five body regions measured in 139 healthy students of Bam University of Medical Sciences. Data analysis was performed using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: 139 students were enrolled in the study, 51.1% (71 subjects) and the rest were female. The mean and standard deviation of age, weight, height, and arm subcutaneous fat were 21.5 ± 1.45, 12.6 ± 64.3, 168.7 ± 9.8, 15.3 ± 7, respectively. 17 subjects (12.2%) of the participants in the study have a score of less than 14, and the rest were above 14. Using regression analysis, it was found that exercise and arm subcutaneous fat are predictive variables associated with obtaining a high score in the FMS test. Conclusion: Exercise and weight loss are effective factors for increasing the movement performance of individuals, and this factor is independent of the size of other physical dimensions.Keywords: functional movement, screening test, anthropometry, ergonomics
Procedia PDF Downloads 1481458 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support
Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha
Abstract:
Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron
Procedia PDF Downloads 1791457 An Exploratory Case Study of the Interference of Erotic Transference in the Longevity of Psychoanalytic Treatment
Authors: Mehravar Javid, Rohma Hassan, J. DeSilva
Abstract:
In this exploratory case study, a 37-year-old male patient who previously terminated treatment after four months of therapy with a different therapist begins anew with a 38-year-old female therapist and undergoes a similar cycle of premature termination, with added discourse caused by erotic transference. Process notes and records of the therapy treatment indicate that during the short course of treatment, the patient explored his difficulties navigating personal relationships, both current and past, and his difficulties coping with hypochondriasis. The therapist becomes tasked with not only navigating the patient’s inner conflict but also how she relates to the patient in the countertransference process while maintaining professional boundaries. This includes empathizing with the patient while also experiencing discomfort in the erotic transference from a professional standpoint. When the patient terminates once more, the therapist reflects on the possible reasons for termination. This includes the patient’s difficulties with tolerating interpretations, which cause him to blame himself for past events. These interpretations were also very frequent, contributing to the emotional burden the patient experienced. The therapist reflected on the use of interpretation versus exploration of the patient’s feelings and how exploring his feelings, including his feelings towards her, would have allowed for an opportunity to explore the emotions that troubled him more deeply. This includes exploring the patient’s anger and fear, which stem from unresolved conflicts from his childhood. Moreover, the erotic transference served as an enactment of previous experiences in which the patient feared losing what he loved, leading him to opt for premature termination instead of losing his ability to control the relationship and experience loss.Keywords: countertransference, erotic transference, premature termination, therapist-client boundaries, transference
Procedia PDF Downloads 671456 Unveiling the Impact of Ultra High Vacuum Annealing Levels on Physico-Chemical Properties of Bulk ZnSe Semiconductor
Authors: Kheira Hamaida, Mohamed Salah Halati
Abstract:
In this current paper, our aim work is to link as possible the obtained simulation results and the other experimental ones, just focusing on the electronic and optical properties of ZnSe. The predictive spectra of the total and partial densities of states using the Full Potential Linearized/Augmented Plane Wave method with the newly Tran-Blaha (TB) modified Becke-Johnson (mBJ) exchange-correlation potential (EXC). So the upper valence energy (UVE) levels contain the relative contribution of Se-(4p and 3d) states with considerable contribution from the electrons of Zn-2s orbital. The dielectric function of w-ZnSe, with its two parts, appears with a noticeable anisotropy character. The microscopic origins of the electronic states that are responsible for the observed peaks in the spectrum are determined through the decomposition of the spectrum to the individual contributions of the electronic transitions between the pairs of bands, where Vi is an occupied state in the valence band, and Ci is an unoccupied state in the conduction band. X-PES (X Ray-Photo Electron Spectroscopy) is an important technique used to probe the homogeneity, stoichiometry, and purity state of the title compound. In order to check the electron transitions derived from simulations and the others from Reflected Electron Energy Loss Spectroscopy (REELS) technique which was of great sensitivity, is used to determine the interband electronic transitions. In the optical window (Eg), all the electron energy states created were also determined through the specific gaussian deconvolution of the photoluminescence spectrum (PLS) that probed under a room temperature (RT).Keywords: spectroscopy, WIEN2K, IIB-VIA semiconductors, dielectric function
Procedia PDF Downloads 641455 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images
Procedia PDF Downloads 4261454 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress
Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan
Abstract:
HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation
Procedia PDF Downloads 2231453 Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates
Authors: Jefri Draup, Antoine Ambard, Chi-Toan Nguyen
Abstract:
Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent.Keywords: accident, fuel, modelling, zirconium
Procedia PDF Downloads 1421452 Improve of Biomass Properties through Torrefaction Process
Authors: Malgorzata Walkowiak, Magdalena Witczak, Wojciech Cichy
Abstract:
Biomass is an important renewable energy source in Poland. As a biofuel, it has many advantages like renewable in noticeable time and relatively high energy potential. But disadvantages of biomass like high moisture content and hygroscopic nature causes that gaining, transport, storage and preparation for combustion become troublesome and uneconomic. Thermal modification of biomass can improve hydrophobic properties, increase its calorific value and natural resistance. This form of thermal processing is known as torrefaction. The aim of the study was to investigate the effect of the pre-heat treatment of wood and plant lignocellulosic raw materials on the properties of solid biofuels. The preliminary studies included pine, beech and willow wood and other lignocellulosic raw materials: mustard, hemp, grass stems, tobacco stalks, sunflower husks, Miscanthus straw, rape straw, cereal straw, Virginia Mallow straw, rapeseed meal. Torrefaction was carried out using variable temperatures and time of the process, depending on the material used. It was specified the weight loss and the ash content and calorific value was determined. It was found that the thermal treatment of the tested lignocellulosic raw materials is able to provide solid biofuel with improved properties. In the woody materials, the increase of the lower heating value was in the range of 0,3 MJ/kg (pine and beech) to 1,1 MJ/kg (willow), in non-woody materials – from 0,5 MJ/kg (tobacco stalks, Miscanthus) to 3,5 MJ/kg (rapeseed meal). The obtained results indicate for further research needs, particularly in terms of conditions of the torrefaction process.Keywords: biomass, lignocellulosic materials, solid biofuels, torrefaction
Procedia PDF Downloads 2381451 Risk Reassessment Using GIS Technologies for the Development of Emergency Response Management Plans for Water Treatment Systems
Authors: Han Gul Lee
Abstract:
When water treatments utilities are designed, an initial construction site risk assessment is conducted. This helps us to understand general safety risks that each utility needs to be complemented in the designing stage. Once it’s built, an additional risk reassessment process secures and supplements its disaster management and response plan. Because of its constantly changing surroundings with city renovation and developments, the degree of various risks that each facility has to face changes. Therefore, to improve the preparedness for spill incidents or disasters, emergency managers should run spill simulations with the available scientific technologies. This research used a two-dimensional flow routing model to simulate its spill disaster scenario based on its digital elevation model (DEM) collected with drone technologies. The results of the simulations can help emergency managers to supplement their response plan with concrete situational awareness in advance. Planning based on this simulation model minimizes its potential loss and damage when an incident like earthquakes man-made disaster happens, which could eventually be a threat in a public health context. This pilot research provides an additional paradigm to increase the preparedness to spill disasters. Acknowledgment: This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program funded by Korea Ministry of Environment (MOE) (No.202002860001).Keywords: risk assessment, disaster management, water treatment utilities, situational awareness, drone technologies
Procedia PDF Downloads 1441450 Effect of Omeprazole on the Renal Cortex of Adult Male Albino Rats and the Possible Protective Role of Ginger: Histological and Immunohistochemical study
Authors: Nashwa A. Mohamed
Abstract:
Introduction: Omeprazole is a proton pump inhibitor used commonly in the treatment of acid-peptic disorders. Although omeprazole is generally well tolerated, serious adverse effects such as renal failure have been reported. Ginger is an antioxidant that could play a protective role in models of experimentally induced nephropathies. Aim of the work: The aim of this work was to study the possible histological changes induced by omeprazole on renal cortex and evaluate the possible protective effect of ginger on omeprazole-induced renal damage in adult male albino rats. Materials and methods: Twenty-four adult male albino rats divided into four groups (six rats each) were used in this study. Group I served as the control group. Rats of group II received only an aqueous extract of ginger daily for 3 months through a gastric tube. Rats of group III were received omeprazole orally through a gastric tube for 3 months. Rats of group IV were given both ginger and omeprazole at the same doses and through the same routes as the previous two groups. At the end of the experiment, the rats were sacrificed. Renal tissue samples were processed for light, immunohistochemical and electron microscopic examination. The obtained results were analysed morphometrically and statistically. Results: Omeprazole caused several histological changes in the form of loss of normal appearance of renal cortex with degenerative changes in the renal corpuscle and tubules. Cellular infilteration was also observed. The filteration barrier was markedly affected. Ginger ameliorated the omeprazole-induced histological changes. Conclusion: Omeprazole induced injurious effects on renal cortex. Coadministration of ginger can ameliorate the histological changes induced by omeprazole.Keywords: ginger, kidney, omeprazole, rat
Procedia PDF Downloads 2521449 Internet of Things in Higher Education: Implications for Students with Disabilities
Authors: Scott Hollier, Ruchi Permvattana
Abstract:
The purpose of this abstract is to share the findings of a recently completed disability-related Internet of Things (IoT) project undertaken at Curtin University in Australia. The project focused on identifying how IoT could support people with disabilities with their educational outcomes. To achieve this, the research consisted of an analysis of current literature and interviews conducted with students with vision, hearing, mobility and print disabilities. While the research acknowledged the ability to collect data with IoT is now a fairly common occurrence, its benefits and applicability still need to be grounded back into real-world applications. Furthermore, it is important to consider if there are sections of our society that may benefit from these developments and if those benefits are being fully realised in a rush by large companies to achieve IoT dominance for their particular product or digital ecosystem. In this context, it is important to consider a group which, to our knowledge, has had little specific mainstream focus in the IoT area –people with disabilities. For people with disabilities, the ability for every device to interact with us and with each other has the potential to yield significant benefits. In terms of engagement, the arrival of smart appliances is already offering benefits such as the ability for a person in a wheelchair to give verbal commands to an IoT-enabled washing machine if the buttons are out of reach, or for a blind person to receive a notification on a smartphone when dinner has finished cooking in an IoT-enabled microwave. With clear benefits of IoT being identified for people with disabilities, it is important to also identify what implications there are for education. With higher education being a critical pathway for many people with disabilities in finding employment, the question as to whether such technologies can support the educational outcomes of people with disabilities was what ultimately led to this research project. This research will discuss several significant findings that have emerged from the research in relation to how consumer-based IoT can be used in the classroom to support the learning needs of students with disabilities, how industrial-based IoT sensors and actuators can be used to monitor and improve the real-time learning outcomes for the delivery of lectures and student engagement, and a proposed method for students to gain more control over their learning environment. The findings shared in this presentation are likely to have significant implications for the use of IoT in the classroom through the implementation of affordable and accessible IoT solutions and will provide guidance as to how policies can be developed as the implications of both benefits and risks continue to be considered by educators.Keywords: disability, higher education, internet of things, students
Procedia PDF Downloads 1191448 A New Approach in a Problem of a Supersonic Panel Flutter
Authors: M. V. Belubekyan, S. R. Martirosyan
Abstract:
On the example of an elastic rectangular plate streamlined by a supersonic gas flow, we have investigated the phenomenon of divergence and of panel flatter of the overrunning of the gas flow at a free edge under assumption of the presence of concentrated inertial masses and moments at the free edge. We applied a new approach of finding of solution of these problems, which was developed based on the algorithm for an analytical solution finding. This algorithm is easy to use for theoretical studies for the wides circle of nonconservative problems of linear elastic stability. We have established the relation between the characteristics of natural vibrations of the plate and velocity of the streamlining gas flow, which enables one to draw some conclusions on the stability of disturbed motion of the plate depending on the parameters of the system plate-flow. Its solution shows that either the divergence or the localized divergence and the flutter instability are possible. The regions of the stability and instability in space of parameters of the problem are identified. We have investigated the dynamic behavior of the disturbed motion of the panel near the boundaries of region of the stability. The safe and dangerous boundaries of region of the stability are found. The transition through safe boundary of the region of the stability leads to the divergence or localized divergence arising in the vicinity of free edge of the rectangular plate. The transition through dangerous boundary of the region of the stability leads to the panel flutter. The deformations arising at the flutter are more dangerous to the skin of the modern aircrafts and rockets resulting to the loss of the strength and appearance of the fatigue cracks.Keywords: stability, elastic plate, divergence, localized divergence, supersonic panels flutter
Procedia PDF Downloads 4611447 Scentscape of the Soul as a Direct Channel of Communication with the Psyche and Physical Body
Authors: Elena Roadhouse
Abstract:
“When it take the kitchen middens from the latest canning session out to the compost before going to bed, the orchestra is in full chorus. Night vapors and scents from the earth mingle with the fragrance of honeysuckle nearby and basil grown in the compost. They merge into the rhythmic pulse of night”. William Longgood Carl Jung did not specifically recognize scent and olfactory function as a window into the psyche. He did recognize instinct and the natural history of mankind as key to understanding and reconnecting with the Psyche. The progressive path of modern humans has brought incredible scientific and industrial advancements that have changed the human relationship with Mother Earth, the primal wisdom of mankind, and led to the loss of instinct. The olfactory bulbs are an integral part of our ancient brain and has evolved in a way that is proportional to the human separation with the instinctual self. If olfaction is a gateway to our instinct, then it is also a portal to the soul. Natural aromatics are significant and powerful instruments for supporting the mind, our emotional selves, and our bodies. This paper aims to shed light on the important role of scent in the understanding of the existence of the psyche, generational trauma, and archetypal fragrance. Personalized Natural Perfume combined with mindfulness practices can be used as an effective behavioral conditioning tool to promote the healing of transgenerational and individual trauma, the fragmented self, and the physical body.Keywords: scentscape of the soul, psyche, individuation, epigenetics, depth psychology, carl Jung, instinct, trauma, archetypal scent, personal myth, holistic wellness, natural perfumery
Procedia PDF Downloads 1041446 Investigation of the Mechanical Performance of Hot Mix Asphalt Modified with Crushed Waste Glass
Authors: Ayman Othman, Tallat Ali
Abstract:
The successive increase of generated waste materials like glass has led to many environmental problems. Using crushed waste glass in hot mix asphalt paving has been though as an alternative to landfill disposal and recycling. This paper discusses the possibility of utilizing crushed waste glass, as a part of fine aggregate in hot mix asphalt in Egypt. This is done through evaluation of the mechanical properties of asphalt concrete mixtures mixed with waste glass and determining the appropriate glass content that can be adapted in asphalt pavement. Four asphalt concrete mixtures with various glass contents, namely; 0%, 4%, 8% and 12% by weight of total mixture were studied. Evaluation of the mechanical properties includes performing Marshall stability, indirect tensile strength, fracture energy and unconfined compressive strength tests. Laboratory testing had revealed the enhancement in both compressive strength and Marshall stability test parameters when the crushed glass was added to asphalt concrete mixtures. This enhancement was accompanied with a very slight reduction in both indirect tensile strength and fracture energy when glass content up to 8% was used. Adding more than 8% of glass causes a sharp reduction in both indirect tensile strength and fracture energy. Testing results had also shown a reduction in the optimum asphalt content when the waste glass was used. Measurements of the heat loss rate of asphalt concrete mixtures mixed with glass revealed their ability to hold heat longer than conventional mixtures. This can have useful application in asphalt paving during cold whether or when a long period of post-mix transportation is needed.Keywords: waste glass, hot mix asphalt, mechanical performance, indirect tensile strength, fracture energy, compressive strength
Procedia PDF Downloads 3101445 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia
Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily
Abstract:
Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.Keywords: biodiversity, classification, conservation, ordination, Red Sea
Procedia PDF Downloads 3431444 Integrated Performance Management System a Conceptual Design for PT. XYZ
Authors: Henrie Yunianto, Dermawan Wibisono
Abstract:
PT. XYZ is a family business (private company) in Indonesia that provide an educational program and consultation services. Since its establishment in 2011, the company has run without any strategic management system implemented. Though the company could survive until now. The management of PT. XYZ sees the business opportunity for such product is huge, even though the targeted market is very specific (niche), the volume is large (due to large population of Indonesia) and numbers of competitors are low (now). It can be said if the product life cycle is in between ‘Introduction stage’ and ‘growth’ stage. It is observed that nowadays the new entrants (competitors) are increasing, thus PT. XYZ consider reacting in facing the intense business rivalry by conducting the business in an appropriate manner. A Performance Management System is important to be implemented in accordance with the business sustainability and growth. The framework of Performance Management System chosen is Integrated Performance Management System (IPMS). IPMS framework has the advantages of its simplicity, linkage between its business variables and indicators where the company can see the connections between all factors measured. IPMS framework consists of perspectives: (1) Business Result, (2) Internal Processes, (3) Resource Availability. Variables and indicators were examined through deep analysis of the business external and internal environments, Strength-Weakness-Opportunity-Threat (SWOT) analysis, Porter’s five forces analysis. Analytical Hierarchy Process (AHP) analysis was then used to quantify the weight of each variable/indicators. AHP is needed since in this study, PT. XYZ, the data of existing performance indicator was not available. Later, where the IPMS is implemented, the real data measured can be examined to determine the weight factor of each indicators using correlation analysis (or other methods). In this study of IPMS design for PT. XYZ, the analysis shows that with current company goals, along with the AHP methodology, the critical indicators for each perspective are: (1) Business results: Customer satisfaction and Employee satisfaction, (2) Internal process: Marketing performance, Supplier quality, Production quality, Continues improvement; (3) Resources Availability: Leadership and company culture & value, Personal Competences, Productivity. Company and/or organization require performance management system to help them in achieving their vision and mission. Company strategy will be effectively defined and addressed by using performance management system. Integrated Performance Management System (IPMS) framework and AHP analysis help us in quantifying the factors which influence the business output expected.Keywords: analytical hierarchy process, business strategy, differentiation strategy, integrated performance management system
Procedia PDF Downloads 3081443 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent
Authors: Hiroyuki Aoki
Abstract:
The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging
Procedia PDF Downloads 1311442 Histopathological Effects of Trichodiniasis in Farmed Freshwater Rainbow Trout, Oncorhynchus mykiss, in West of Iran
Authors: Zahra Khoshnood, Reza Khoshnood
Abstract:
The aim of present study was to monitor the presence of Trichodina sp. in Rainbow trout, Oncorhynchus mykiss collected from various fish farms in the western provinces of Iran during January, 2013- January, 2014. Out of 675 sampled fish 335, (49.16%) were infested with Trichodina. The highest prevalence was observed in the spring and winter followed by autumn and summer. In general, the intensity of infection was low except in cases where outbreaks of Trichodiniasis endangered the survival of fish in some ponds. In light infestation Trichodina is usually present on gills, fins and skin of apparently healthy fish. Clinical signs of Trichodiniasis only appear on fish with heavy infections and cases of moderate ones that are usually exposed to one or more stress factors including, rough handling during transportation from ponds, overcrowdness, malnutrition, high of free ammonia and low of oxygen concentration. Clinical signs of Trichodiniasis in sampled fish were sluggish movement, loss of appetite, black coloration, necrosis and ulcer on different parts of the body, detached scales and excessive accumulation of mucous in gill pouches. The most obvious histopathological changes in diseased fish were sloughing of the epidermal layer, aggregation of leucocytes and melanine-carrying cells (between the dermis and hypodermis) and proliferative changes including hyperplasia and hypertrophy of the epithelial lining cells of gill filaments which resulted in fusion of secondary lamellae. Control of Trichodiniasis, has been achieved by formalin bath treatment at a concentration of 250 ppm for one hour.Keywords: gill, histopathology, rainbow trout, Trichodina
Procedia PDF Downloads 4261441 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar
Abstract:
The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property
Procedia PDF Downloads 1701440 Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes
Authors: Jia-Jia He, Lin Jiang, Jin-Hua Sun
Abstract:
Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology.Keywords: rigid polyurethane foam, cone calorimeter, ignition time, external heat flux
Procedia PDF Downloads 2101439 Prevalence of Cytomegalovirus DNA in the Patients’ Serum with HIV using Real-Time PCR
Authors: Mohammadreza Aghasadeghi, Mojtaba Hamidi-Fard, Seyed Amir Sadeghi, Ashkan Noorbakhsh
Abstract:
Introduction: HIV is known as one of the most important pathogens and mortality in all human societies, but unfortunately, no definitive cure has been found for it. Due to its weakened immune system, this virus causes a variety of primary and secondary opportunistic infections. Cytomegalovirus (CMV) is one of the most relevant opportunistic viruses seen in HIV-positive people that cause various infections in HIV-positive people. This virus causes various infections in HIV-positive people, such as retinal infection (CMVR), gastrointestinal infections, diarrhea, severe weight loss, and cerebrospinal fluid problems. These various infections make it important to evaluate the prevalence of CMV in HIV-positive people to diagnose it quickly and in a timely manner. This infection in HIV-positive people reduces life expectancy and causes serious harm to patients. However, a simple test in HIV-positive people can prevent the virus from progressing. Material and Methods: In this study, we collected 200 blood samples (including 147 men and 53 women) from HIV-positive individuals and examined the frequency of CMV-DNA in these cases by real-time PCR method. In the next step, the data was analyzed by SPSS software, and then we obtained the relationship between age, sex, and the frequency of CMV in HIV-positive individuals. Results: The total frequency of CMV DNA was about 59%, which is a relatively high prevalence due to the age range of the subjects. The frequency in men was 61.2% and 52.8% in women. This frequency was also higher in males than females. We also observed more frequency in two age groups of 16 to 30 years and 31 to 45 years. Discussion: Due to the high prevalence of CMV in HIV-positive individuals and causing serious problems in this group of people, this study was shown that both the patients and the community should pay more attention to this issue. Ministry of Health, as a stakeholder organization, can make CMV DNA testing mandatory as soon as a person is HIV positive.Keywords: CMV, HIV, AIDS, real-time PCR, SPSS
Procedia PDF Downloads 2131438 Common Causes of Eye Removal Surgery in Turkish Patients: A Review of 226 Cases
Authors: Titap Yazicioglu
Abstract:
Purpose: To determine the etiological factors responsible for the eye removal surgery and to evaluate our surgical results. Material and Methods: Medical records of 226 patients, who underwent eye removal surgery, were analyzed retrospectively. Demographic information, clinical history, surgical procedure, and histopathological data were all collected. Evisceration surgery was performed under general anesthesia in all patients except tumor cases and one patient with rhino-orbital mucormycosis. The patients were followed for an average of 16.46±10.78 months and checked for the possible complications, cosmesis, and functional results.Results: 144 men, and 82 women,with a mean age of 41.78±22.6 years, were underwent enucleation (n=15) or evisceration (n=211) due to traumatic (n=169) and non-traumatic (n=57) causes. In the traumatic group, 79.8% of 169 patients were injured by penetrating and 14.2% by blunt trauma.3.6% of the patients were injured in a traffic accident, and 2.4% of them were injured by explosives. In the non-traumatic group, 40% of 25 patients had post-traumatic endophthalmitis, 32% had endophthalmitis due to corneal ulceration and melting, and 24% had endophthalmitis after cataract surgery. One patient had panophthalmitis due to rhino-orbital mucormycosis. Another cause in the non-traumatic group was glaucoma, of which 92.3% had neovascular glaucoma, and 8.7% had congenital glaucoma. Of the 14 patients who were enucleated for tumor, 35.7% had retinoblastoma, 14.3% had medulloepithelioma, 42.9% had uveal melanoma, and 7.1% had metastatic tumor from paranasal sinuses.The most common complaint in the follow-up period was discharging, seen in all prosthesis-wearing patients. 13.3% of the patients had itching due to ocular prosthesis. 4.4% of the patients were complaining about deep superior sulcus. 4.4% had pyogenic granuloma, and 17.8% had implant exposure. Conclusion: Etiological factors should be carefully evaluated, and precautions should be taken in order to reduce the devastating effect of the physical loss of the eye.Keywords: enucleation, evisceration, ocular injury, etiology, frequency
Procedia PDF Downloads 1111437 The Femoral Eversion Endarterectomy Technique with Transection: Safety and Efficacy
Authors: Hansraj Riteesh Bookun, Emily Maree Stevens, Jarryd Leigh Solomon, Anthony Chan
Abstract:
Objective: This was a retrospective cross-sectional study evaluating the safety and efficacy of femoral endarterectomy using the eversion technique with transection as opposed to the conventional endarterectomy technique with either vein or synthetic patch arterioplasty. Methods: Between 2010 to mid 2017, 19 patients with mean age of 75.4 years, underwent eversion femoral endarterectomy with transection by a single surgeon. There were 13 males (68.4%), and the comorbid burden was as follows: ischaemic heart disease (53.3%), diabetes (43.8%), stage 4 kidney impairment (13.3%) and current or ex-smoking (73.3%). The indications were claudication (45.5%), rest pain (18.2%) and tissue loss (36.3%). Results: The technical success rate was 100%. One patient required a blood transfusion following bleeding from intraoperative losses. Two patients required blood transfusions from low post operative haemogloblin concentrations – one of them in the context of myelodysplastic syndrome. There were no unexpected returns to theatre. The mean length of stay was 11.5 days with two patients having inpatient stays of 36 and 50 days respectively due to the need for rehabilitation. There was one death unrelated to the operation. Conclusion: The eversion technique with transection is safe and effective with low complication rates and a normally expected length of stay. It poses the advantage of not requiring a synthetic patch. This technique features minimal extraneous dissection as there is no need to harvest vein for a patch. Additionally, future endovascular interventions can be performed by puncturing the native vessel. There is no change to the femoral bifurcation anatomy after this technique. We posit that this is a useful adjunct to the surgeon’s panoply of vascular surgical techniques.Keywords: endarterectomy, eversion, femoral, vascular
Procedia PDF Downloads 1991436 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks
Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari
Abstract:
With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.Keywords: water pipe networks, maintenance management, reliability analysis, optimum maintenance plan
Procedia PDF Downloads 1551435 From Liquid to Solid: Advanced Characterization of Glass Applying Oscillatory Rheometry
Authors: Christopher Giehl, Anja Allabar, Daniela Ehgartner
Abstract:
Rotational rheometry is standard practice for the viscosity measurement of molten glass, neglecting the viscoelastic properties of this material, especially at temperatures approaching the glass transition. Oscillatory rheometry serves as a powerful toolbox for glass melt characterization beyond viscosity measurements. Heating and cooling rates and the time-dependent visco-elastic behavior influence the temperature where materials undergo the glass transition. This study presents quantitative thermo-mechanical visco-elasticity measurements on three samples in the Na-K-Al-Si-O system. The measurements were performed with a Furnace Rheometer System combined with an air-bearing DSR 502 measuring head (Anton Paar) and a Pt90Rh10 measuring geometry. Temperature ramps were conducted in rotation and oscillation, and the (complex) viscosity values were compared to calculated viscosity values based on sample composition. Furthermore, temperature ramps with different frequencies were conducted, also revealing the frequency-dependence of the shear loss modulus G’’ and the shear storage modulus G’. Here, lower oscillatory frequency results in lower glass transition temperature, as defined by the G’-G’’ crossover point. This contribution demonstrates that oscillatory rheometry serves as a powerful toolbox beyond viscosity measurements, as it considers the visco-elasticity of glass melts quantifying viscous and elastic moduli. Further, it offers a strong definition of Tg beyond the 10^12 Pas concept, which cannot be utilized with rotational viscometry data.Keywords: frequency dependent glass transition, Na-K-Al-Si-O glass melts, oscillatory rheometry, visco-elasticity
Procedia PDF Downloads 107