Search results for: low order model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27286

Search results for: low order model

24166 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 180
24165 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce

Authors: Heiko Diefenbach, Christoph H. Glock

Abstract:

Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.

Keywords: an aging workforce, error prevention, order picking, storage assignment

Procedia PDF Downloads 204
24164 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.

Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle

Procedia PDF Downloads 416
24163 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning

Authors: Ezil Sam Leni, Shalen S.

Abstract:

Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.

Keywords: federated Learning, pothole detection, distributed framework, federated averaging

Procedia PDF Downloads 104
24162 Experimental Investigation of Hull Form for Electric Driven Ferry

Authors: Vasilij Djackov, Tomas Zapnickas, Evgenii Iamshchikov, Lukas Norkevicius, Rima Mickeviciene, Larisa Vasiljeva

Abstract:

In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units.

Keywords: electrical ferry, model tests, open flow channel, pitching, resistance

Procedia PDF Downloads 95
24161 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry

Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri

Abstract:

This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.

Keywords: goal programming approach, GP, production planning, serial manufacturing process, wire and cable industry

Procedia PDF Downloads 161
24160 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground

Authors: Bhim Kumar Dahal

Abstract:

Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies.  Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication.  And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.

Keywords: cement, improvement, physical properties, strength

Procedia PDF Downloads 174
24159 Lie Symmetry Treatment for Pricing Options with Transactions Costs under the Fractional Black-Scholes Model

Authors: B. F. Nteumagne, E. Pindza, E. Mare

Abstract:

We apply Lie symmetries analysis to price and hedge options in the fractional Brownian framework. The reputation of Lie groups is well spread in the area of Mathematical sciences and lately, in Finance. In the presence of transactions costs and under fractional Brownian motions, analytical solutions become difficult to obtain. Lie symmetries analysis allows us to simplify the problem and obtain new analytical solution. In this paper, we investigate the use of symmetries to reduce the partial differential equation obtained and obtain the analytical solution. We then proposed a hedging procedure and calibration technique for these types of options, and test the model on real market data. We show the robustness of our methodology by its application to the pricing of digital options.

Keywords: fractional brownian model, symmetry, transaction cost, option pricing

Procedia PDF Downloads 399
24158 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: climate change, Semnan province, Lars.WG model, climate parameters, HADCM₃ model

Procedia PDF Downloads 252
24157 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 441
24156 The Counselling Practice of School Social Workers in Swedish Elementary Schools - A Focus Group Study

Authors: Kjellgren Maria, Lilliehorn Sara, Markström Urban

Abstract:

This article describes the counselling practice of school social workers (SSWs) with individual children. SSWs work in the school system’s pupil health team, whose primary task is health promotion and prevention. The work of SSWs is about helping children and adolescents who, for various reasons, suffer from mental ill-health, school absenteeism, or stress that make them unable to achieve their intended goals. SSWs preferably meet these children in individual counselling sessions. The aim of this article is to describe and analyse SSWs’ experience of counselling with children and to examine the characteristics of counselling practice. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. SSWs provide counselling to children in order to bring about improved feelings or behavioural changes. It can be noted that SSWs put emphasis on both the counselling process and the alliance with the child. The interviews showed a common practice among SSWs regarding the structure of the counselling sessions, with certain steps and approaches being employed. However, the specific interventions differed and were characterised by an eclectic standpoint in which SSWs utilise a broad repertoire of therapeutic schools and techniques. Furthermore, a relational perspective emerged as a most prominent focus for the SSWs by re-emerging throughout the material. We believe that SSWs could benefit from theoretical perspectives on ‘contextual model’ and ‘attachment theory’ as ‘models of the mind’. Being emotionally close to the child and being able to follow their development requires a lot from SSWs, as both professional caregivers and as “safe havens”.

Keywords: school social conselling, school social workers, contextual model, attachment thory

Procedia PDF Downloads 134
24155 Release of Calcein from Liposomes Using Low and High Frequency Ultrasound

Authors: Ghaleb A. Husseini, Salma E. Ahmed, Hesham G. Moussa, Ana M. Martins, Mohammad Al-Sayah, Nasser Qaddoumi

Abstract:

This abstract aims to investigate the use of targeted liposomes as anticancer drug carriers in vitro in combination with ultrasound applied as drug trigger; in order to reduce the side effects caused by traditional chemotherapy. Pegylated liposomes were used to encapsulate calcein and then release this model drug when 20-kHz, 40-kHz, 1-MHz and 3-MHz ultrasound were applied at different acoustic power densities. Fluorescence techniques were then used to measure the percent drug release of calcein from these targeted liposomes. Results showed that as the power density increases, at the four frequencies studied, the release of calcein also increased. Based on these results, we believe that ultrasound can be used to increase the rate and amount of chemotherapeutics release from liposomes.

Keywords: liposomes, calcein release, high frequency ultrasound, low frequency ultrasound, fluorescence techniques

Procedia PDF Downloads 424
24154 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model

Authors: Guanhua Zhou, Zhongqi Ma

Abstract:

Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.

Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices

Procedia PDF Downloads 262
24153 Empirical Modeling of Air Dried Rubberwood Drying System

Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit

Abstract:

Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (= 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.

Keywords: empirical models, rubberwood, moisture ratio, hot air drying

Procedia PDF Downloads 267
24152 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 308
24151 A Multi Objective Reliable Location-Inventory Capacitated Disruption Facility Problem with Penalty Cost Solve with Efficient Meta Historic Algorithms

Authors: Elham Taghizadeh, Mostafa Abedzadeh, Mostafa Setak

Abstract:

Logistics network is expected that opened facilities work continuously for a long time horizon without any failure; but in real world problems, facilities may face disruptions. This paper studies a reliable joint inventory location problem to optimize cost of facility locations, customers’ assignment, and inventory management decisions when facilities face failure risks and doesn’t work. In our model we assume when a facility is out of work, its customers may be reassigned to other operational facilities otherwise they must endure high penalty costs associated with losing service. For defining the model closer to real world problems, the model is proposed based on p-median problem and the facilities are considered to have limited capacities. We define a new binary variable (Z_is) for showing that customers are not assigned to any facilities. Our problem involve a bi-objective model; the first one minimizes the sum of facility construction costs and expected inventory holding costs, the second one function that mention for the first one is minimizes maximum expected customer costs under normal and failure scenarios. For solving this model we use NSGAII and MOSS algorithms have been applied to find the pareto- archive solution. Also Response Surface Methodology (RSM) is applied for optimizing the NSGAII Algorithm Parameters. We compare performance of two algorithms with three metrics and the results show NSGAII is more suitable for our model.

Keywords: joint inventory-location problem, facility location, NSGAII, MOSS

Procedia PDF Downloads 525
24150 Owner/Managers’ External Financing Used and Preference towards Islamic Banking

Authors: Khalid Hassan Abdesamed, Kalsom Abd Wahab

Abstract:

Economic development and growth are significantly linked to the consistent and sustainable sector of small and medium enterprises (SMEs). Banks are the frontrunners in financing and advising SMEs. The main objective of the study is to assess the tendency of SMEs to use the Islamic bank. Model was developed using quantitative method with a hypothetical-deductive testing approach. Model (N = 364) used primary data on the tendency of SMEs to use Islamic banks gathered from questionnaire. It is found by Mann-Whitney test that the tendency to use Islamic bank varies between those firms which consider formal financing with the ones relying on informal financing with the latter tends more to use Islamic bank. This study can serve academic researchers, policy makers, and developing countries as a model of SMEs’ desirability to Islamic banking.

Keywords: formal financing, informal financing, Islamic bank, SMEs

Procedia PDF Downloads 353
24149 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
24148 Site Selection of CNG Station by Using FUZZY-AHP Model (Case Study: Gas Zone 4, Tehran City Iran)

Authors: Hamidrza Joodaki

Abstract:

The most complex issue in urban land use planning is site selection that needs to assess the verity of elements and factors. Multi Criteria Decision Making (MCDM) methods are the best approach to deal with complex problems. In this paper, combination of the analytical hierarchy process (AHP) model and FUZZY logic was used as MCDM methods to select the best site for gas station in the 4th gas zone of Tehran. The first and the most important step in FUZZY-AHP model is selection of criteria and sub-criteria. Population, accessibility, proximity and natural disasters were considered as the main criteria in this study. After choosing the criteria, they were weighted based on AHP by EXPERT CHOICE software, and FUZZY logic was used to enhance accuracy and to approach the reality. After these steps, criteria layers were produced and weighted based on FUZZY-AHP model in GIS. Finally, through ARC GIS software, the layers were integrated and the 4th gas zone in TEHRAN was selected as the best site to locate gas station.

Keywords: multiple criteria decision making (MCDM), analytic hierarchy process (AHP), FUZZY logic, geographic information system (GIS)

Procedia PDF Downloads 361
24147 The Effect of Degraded Shock Absorbers on the Safety-Critical Tipping and Rolling Behaviour of Passenger Cars

Authors: Tobias Schramm, Günther Prokop

Abstract:

In Germany, the number of road fatalities has been falling since 2010 at a more moderate rate than before. At the same time, the average age of all registered passenger cars in Germany is rising continuously. Studies show that there is a correlation between the age and mileage of passenger cars and the degradation of their chassis components. Various studies show that degraded shock absorbers increase the braking distance of passenger cars and have a negative impact on driving stability. The exact effect of degraded vehicle shock absorbers on road safety is still the subject of research. A shock absorber examination as part of the periodic technical inspection is only mandatory in very few countries. In Germany, there is as yet no requirement for such a shock absorber examination. More comprehensive findings on the effect of degraded shock absorbers on the safety-critical driving dynamics of passenger cars can provide further arguments for the introduction of mandatory shock absorber testing as part of the periodic technical inspection. The specific effect chains of untripped rollover accidents are also still the subject of research. However, current research results show that the high proportion of sport utility vehicles in the vehicle field significantly increases the probability of untripped rollover accidents. The aim of this work is to estimate the effect of degraded twin-tube shock absorbers on the safety-critical tipping and rolling behaviour of passenger cars, which can lead to untripped rollover accidents. A characteristic curve-based five-mass full vehicle model and a semi-physical phenomenological shock absorber model were set up, parameterized and validated. The shock absorber model is able to reproduce the damping characteristics of vehicle twin-tube shock absorbers with oil and gas loss for various excitations. The full vehicle model was validated with steering wheel angle sinus sweep driving maneuvers. The model was then used to simulate steering wheel angle sine and fishhook maneuvers, which investigate the safety-critical tipping and rolling behavior of passenger cars. The simulations were carried out in a realistic parameter space in order to demonstrate the effect of various vehicle characteristics on the effect of degraded shock absorbers. As a result, it was shown that degraded shock absorbers have a negative effect on the tipping and rolling behavior of all passenger cars. Shock absorber degradation leads to a significant increase in the observed roll angles, particularly in the range of the roll natural frequency. This superelevation has a negative effect on the wheel load distribution during the driving maneuvers investigated. In particular, the height of the vehicle's center of gravity and the stabilizer stiffness of the vehicles has a major influence on the effect of degraded shock absorbers on the overturning and rolling behaviour of passenger cars.

Keywords: numerical simulation, safety-critical driving dynamics, suspension degradation, tipping and rolling behavior of passenger cars, vehicle shock absorber

Procedia PDF Downloads 11
24146 Modeling of Historical Lime Masonry Structure in Abaqus

Authors: Ram Narayan Khare, Adhyatma Khare, Aradhna Shrivastava

Abstract:

In this study, numerical modeling of ‘Lime Surkhi’ masonry building has been carried out for a prototype ancient building situated at seismic zone III using the Finite Element Method by Abaqus software. The model is designed in order to get the failure envelope and then decide the best method of retrofitting the structure so that the structure is made to withstand more decades, given its historical background. Previously, due to a lack of technologies, it was difficult to determine the mode of failure. Present technological development can predict the mode of failure, and subsequently, the structure can be refabricated accordingly. The study makes an important addition to the understanding of retrofitting ancient and old buildings based on the results of FEM modeling.

Keywords: seismic retrofitting, Abaqus, FEM, historic building, Lime Surkhi masonry

Procedia PDF Downloads 31
24145 Contingent Presences in Architecture: Vitruvian Theory as a Beginning

Authors: Zelal Çınar

Abstract:

This paper claims that architecture is a contingent discipline, despite the fact that its contingency has long been denied through a retreat to Vitruvian writing. It is evident that contingency is rejected not only by architecture but also by modernity as a whole. Vitruvius attempted to cover the entire field of architecture in a systematic form in order to bring the whole body of this great discipline to a complete order. The legacy of his theory hitherto lasted not only that it is the only major work on the architecture of Classical Antiquity to have survived, but also that its conformity with the project of modernity. In the scope of the paper, it will be argued that contingency should be taken into account rather than avoided as a potential threat.

Keywords: architecture, contingency, modernity, Vitruvius

Procedia PDF Downloads 295
24144 Generation of Waste Streams in Small Model Reactors

Authors: Sara Mostofian

Abstract:

The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.

Keywords: SMRs, activity transport, model, radioactive waste

Procedia PDF Downloads 109
24143 Cessna Citation X Business Aircraft Stability Analysis Using Linear Fractional Representation LFRs Model

Authors: Yamina Boughari, Ruxandra Mihaela Botez, Florian Theel, Georges Ghazi

Abstract:

Clearance of flight control laws of a civil aircraft is a long and expensive process in the Aerospace industry. Thousands of flight combinations in terms of speeds, altitudes, gross weights, centers of gravity and angles of attack have to be investigated, and proved to be safe. Nonetheless, in this method, a worst flight condition can be easily missed, and its missing would lead to a critical situation. Definitively, it would be impossible to analyze a model because of the infinite number of cases contained within its flight envelope, that might require more time, and therefore more design cost. Therefore, in industry, the technique of the flight envelope mesh is commonly used. For each point of the flight envelope, the simulation of the associated model ensures the satisfaction or not of specifications. In order to perform fast, comprehensive and effective analysis, other varying parameters models were developed by incorporating variations, or uncertainties in the nominal models, known as Linear Fractional Representation LFR models; these LFR models were able to describe the aircraft dynamics by taking into account uncertainties over the flight envelope. In this paper, the LFRs models are developed using the speeds and altitudes as varying parameters; The LFR models were built using several flying conditions expressed in terms of speeds and altitudes. The use of such a method has gained a great interest by the aeronautical companies that have seen a promising future in the modeling, and particularly in the design and certification of control laws. In this research paper, we will focus on the Cessna Citation X open loop stability analysis. The data are provided by a Research Aircraft Flight Simulator of Level D, that corresponds to the highest level flight dynamics certification; this simulator was developed by CAE Inc. and its development was based on the requirements of research at the LARCASE laboratory. The acquisition of these data was used to develop a linear model of the airplane in its longitudinal and lateral motions, and was further used to create the LFR’s models for 12 XCG /weights conditions, and thus the whole flight envelope using a friendly Graphical User Interface developed during this study. Then, the LFR’s models are analyzed using Interval Analysis method based upon Lyapunov function, and also the ‘stability and robustness analysis’ toolbox. The results were presented under the form of graphs, thus they have offered good readability, and were easily exploitable. The weakness of this method stays in a relatively long calculation, equal to about four hours for the entire flight envelope.

Keywords: flight control clearance, LFR, stability analysis, robustness analysis

Procedia PDF Downloads 352
24142 A Mathematical Model of Blood Perfusion Dependent Temperature Distribution in Transient Case in Human Dermal Region

Authors: Yogesh Shukla

Abstract:

Many attempts have been made to study temperature distribution problem in human tissues under normal environmental and physiological conditions at constant arterial blood temperature. But very few attempts have been made to investigate temperature distribution in human tissues under different arterial blood temperature. In view of above, a finite element model has been developed to unsteady temperature distribution in dermal region in human body. The model has been developed for one dimension unsteady state case. The variation in parameters like thermal conductivity, blood mass flow and metabolic activity with respect to position and time has been incorporated in the model. Appropriate boundary conditions have been framed. The central difference approach has been used in space variable and trapezoidal rule has been employed a long time variable. Numerical results have been obtained to study relationship among temperature and time.

Keywords: rate of metabolism, blood mass flow rate, thermal conductivity, heat generation, finite element method

Procedia PDF Downloads 353
24141 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
24140 Dilution of Saline Irrigation Based on Plant's Physiological Responses to Salt Stress Following by Re-Watering

Authors: Qaiser Javed, Ahmad Azeem

Abstract:

Salinity and water scarcity are major environmental problems which are limiting the agricultural production. This research was conducted to construct a model to find out appropriate regime to dilute saline water based on physiological and electrophysiological properties of Brassica napus L., and Orychophragmus violaceus (L.). Plants were treated under salt-stressed concentrations of NaCl (NL₁: 2.5, NL₂: 5, NL₃: 10; gL⁻¹), Na₂SO₄ (NO₁: 2.5, NO₂: 5, NO₃: 10; gL⁻¹), and mixed salt concentration (MX₁: NL₁+ NO₃; MX₂: NL₃+ NO₁; MX₃: NL₂+ NO₂; gL⁻¹) and 0 as control, followed by re-watering. Growth, physiological and electrophysiology traits were highly restricted under high salt concentration levels at NL₃, NO₃, MX₁, and MX₂, respectively. However, during the rewatering phase, growth, electrophysiological, and physiological parameters were recovered well. Consequently, the increase in net photosynthetic rate was noted under moderate stress condition which was 44.13, 37.07, and 43.01%, respectively in Orychophragmus violaceus (L.) and 44.94%, 53.45%, and 63.04%, respectively were found in Brassica napus L. According to the results, the best dilution point was 5–2.5% for NaCl and Na₂SO₄ alternatively, whereas it was 10–0.0% for the mixture of salts. Therefore, the effect of salinity in O. violaceus and B. napus may also be reduced effectively by dilution of saline irrigation. It would be a better approach to utilize dilute saline water for irrigation instead of applies direct saline water to plant. This study provides new insight in the field of agricultural engineering to plan irrigation scheduling considering the crop ability to salt tolerance and irrigation water use efficiency by apply specific quantity of irrigation calculated based on the salt dilution point. It would be helpful to balance between irrigation amount and optimum crop water consumption in salt-affected regions and to utilize saline water in order to safe freshwater resources.

Keywords: dilution model, plant growth traits, re-watering, salt stress

Procedia PDF Downloads 159
24139 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 91
24138 Lean Healthcare: Barriers and Enablers in the Colombian Context

Authors: Erika Ruiz, Nestor Ortiz

Abstract:

Lean philosophy has evolved over time and has been implemented both in manufacturing and services, more recently lean has been integrated in the companies of the health sector. Currently it is important to understand the successful way to implement this philosophy and try to identify barriers and enablers to the sustainability of lean healthcare. The main purpose of this research is to identify the barriers and enablers in the implementation of Lean Healthcare based on case studies of Colombian healthcare centers. In order to do so, we conducted semi-structured interviews based on a maturity model. The main results indicate that the success of Lean implementation depends on its adaptation to contextual factors. In addition, in the Colombian context were identified new factors such as organizational culture, management models, integration of the care and administrative departments and triple helix relationship.

Keywords: barriers, enablers, implementation, lean healthcare, sustainability

Procedia PDF Downloads 366
24137 Heterogeneous Artifacts Construction for Software Evolution Control

Authors: Mounir Zekkaoui, Abdelhadi Fennan

Abstract:

The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.

Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture

Procedia PDF Downloads 445