Search results for: heterogeneous massive data
22887 Health Perceptions in Elderly Population, before and after COVID-19
Authors: María José López Rey, Mar Chaves Carrillo, Manuela Caballero Guisado
Abstract:
The data presented here are part of a broader investigation on active population aging. The work was carried out in November 2020 in Extremadura, a region of southern Spain. This R + D + I project, called "Active aging scenarios in Extremadura: intervention proposals," was carried out by a team of professors, researchers from the University of Extremadura. The project has been financed by the European Regional Development Funds and the Government of Extremadura. Here, we focus on aspects that have to do with the experience of health, especially during the COVID-19 pandemic, and how this has affected the population related to the main sociodemographic variables. In an exercise of methodological triangulation, thus providing robustness to the analysis, primary data, obtained from the survey designed ad hoc, are combined with other secondary data from various sources and studies carried out in Spain (Sociological Research Centre, and National Institute of Statistics). The survey was carried out on a representative sample of the population over 55 years old, coming from Extremadura. Among the findings, we must highlight the practical invariability of perceptions based on the main sociodemographic variables, as well as some differences indicated by the variables sex and age.Keywords: aging, health, COVID-19, perceptions
Procedia PDF Downloads 18822886 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 7222885 Pharmacovigilance in Hospitals: Retrospective Study at the Pharmacovigilance Service of UHE-Oran, Algeria
Authors: Nadjet Mekaouche, Hanane Zitouni, Fatma Boudia, Habiba Fetati, A. Saleh, A. Lardjam, H. Geniaux, A. Coubret, H. Toumi
Abstract:
Medicines have undeniably played a major role in prolonging shelf life and improving quality. The absolute efficacy of the drug remains a lever for innovation, its benefit/risk balance is not always assured and it does not always have the expected effects. Prior to marketing, knowledge about adverse drug reactions is incomplete. Once on the market, phase IV drug studies begin. For years, the drug was prescribed with less care to a large number of very heterogeneous patients and often in combination with other drugs. It is at this point that previously unknown adverse effects may appear, hence the need for the implementation of a pharmacovigilance system. Pharmacovigilance represents all methods for detecting, evaluating, informing and preventing the risks of adverse drug reactions. The most severe adverse events occur frequently in hospital and that a significant proportion of adverse events result in hospitalizations. In addition, the consequences of hospital adverse events in terms of length of stay, mortality and costs are considerable. It, therefore, appears necessary to develop ‘hospital pharmacovigilance’ aimed at reducing the incidence of adverse reactions in hospitals. The most widely used monitoring method in pharmacovigilance is spontaneous notification. However, underreporting of adverse drug reactions is common in many countries and is a major obstacle to pharmacovigilance assessment. It is in this context that this study aims to describe the experience of the pharmacovigilance service at the University Hospital of Oran (EHUO). This is a retrospective study extending from 2011 to 2017, carried out on archived records of declarations collected at the level of the EHUO Pharmacovigilance Department. Reporting was collected by two methods: ‘spontaneous notification’ and ‘active pharmacovigilance’ targeting certain clinical services. We counted 217 statements. It involved 56% female patients and 46% male patients. Age ranged from 5 to 78 years with an average of 46 years. The most common adverse reaction was drug toxidermy. For the drugs in question, they were essentially according to the ATC classification of anti-infectives followed by anticancer drugs. As regards the evolution of declarations by year, a low rate of notification was noted in 2011. That is why we decided to set up an active approach at the level of some services where a resident of reference attended the staffs every week. This has resulted in an increase in the number of reports. The declarations came essentially from the services where the active approach was installed. This highlights the need for ongoing communication between all relevant health actors to stimulate reporting and secure drug treatments.Keywords: adverse drug reactions, hospital, pharmacovigilance, spontaneous notification
Procedia PDF Downloads 17522884 Interior Design: Changing Values
Authors: Kika Ioannou Kazamia
Abstract:
This paper examines the action research cycle of the second phase of longitudinal research on sustainable interior design practices, between two groups of stakeholders, designers and clients. During this phase of the action research, the second step - the change stage - of Lewin’s change management model has been utilized to change values, approaches, and attitudes toward sustainable design practices among the participants. Affective domain learning theory is utilized to attach new values. Learning with the use of information technology, collaborative learning, and problem-based learning are the learning methods implemented toward the acquisition of the objectives. Learning methods, and aims, require the design of interventions with participants' involvement in activities that would lead to the acknowledgment of the benefits of sustainable practices. Interventions are steered to measure participants’ decisions for the worth and relevance of ideas, and experiences; accept or commit to a particular stance or action. The data collection methods used in this action research are observers’ reports, participants' questionnaires, and interviews. The data analyses use both quantitative and qualitative methods. The main beneficial aspect of the quantitative method was to provide the means to separate many factors that obscured the main qualitative findings. The qualitative method allowed data to be categorized, to adapt the deductive approach, and then examine for commonalities that could reflect relevant categories or themes. The results from the data indicate that during the second phase, designers and clients' participants altered their behaviours.Keywords: design, change, sustainability, learning, practices
Procedia PDF Downloads 7722883 Understanding Tacit Knowledge and DIKW
Authors: Bahadir Aydin
Abstract:
Today it is difficult to reach accurate knowledge because of mass data. This huge data makes the environment more and more caotic. Data is a main piller of intelligence. There is a close tie between knowledge and intelligence. Information gathered from different sources can be modified, interpreted and classified by using knowledge development process. This process is applied in order to attain intelligence. Within this process the effect of knowledge is crucial. Knowledge is classified as explicit and tacit knowledge. Tacit knowledge can be seen as "only the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose for all organization is to be succesful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. By the help of process the decision-maker can be presented with a clear holistic understanding, as early as possible in the decision making process. Planning, execution and assessments are the key functions that connects to information to knowledge. Altering from the current traditional reactive approach to a proactive knowledge development approach would reduce extensive duplication of work in the organization. By new approach to this process, knowledge can be used more effectively.Keywords: knowledge, intelligence cycle, tacit knowledge, KIDW
Procedia PDF Downloads 51922882 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.Keywords: bioassay, machine learning, preprocessing, virtual screen
Procedia PDF Downloads 27422881 Determinants of Foreign Direct Investment in Tourism: A Panel Data Analysis of Developing Countries
Authors: Malraj Bharatha Kiriella
Abstract:
The purpose of this paper is to investigate the determinants of tourism foreign direct investment (TFDI) to selected developing countries during 1978-2017. The study used pooled panel data to estimate an econometric model. The findings show that market size and institutional barriers are determining factors for TFDI in countries, while other variables of positive country conditions, FDI-related government policy, tourism-related infrastructure and labor conditions are insignificant. The result shows that institutional effects are positive, while market size negatively affects TFDI inflows. The research is limited to eight developing countries. The results can be used to support government policy on TFDI. The paper makes the following contributions: First, it provides important insight and understanding into the TFDI decision-making process in developing countries. Second, both TFDI theory and evidence are minimal, and an econometric model developed on the basis of available literature has been empirically tested.Keywords: determinants, developing countries, FDI in tourism, panel data
Procedia PDF Downloads 10722880 Systematic NIR of Internal Disorder and Quality Detection of Apple Fruit
Authors: Eid Alharbi, Yaser Miaji, Saeed Alzahrani
Abstract:
The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic convener belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300 nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950 nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950 nm region the online sorting system was constructed.Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology
Procedia PDF Downloads 49622879 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey
Authors: Lavanya Madhuri Bollipo, K. V. Kadambari
Abstract:
Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)
Procedia PDF Downloads 39922878 Secure Network Coding against Content Pollution Attacks in Named Data Network
Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang
Abstract:
Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.Keywords: named data networking, content polloution attack, network coding signature, internet architecture
Procedia PDF Downloads 33722877 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion
Authors: Hantian Wu, Bo Huang, Yuan Zeng
Abstract:
Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management
Procedia PDF Downloads 12622876 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria
Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter
Abstract:
Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis
Procedia PDF Downloads 7522875 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data
Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer
Abstract:
This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML
Procedia PDF Downloads 12922874 Library on the Cloud: Universalizing Libraries Based on Virtual Space
Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan
Abstract:
Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access
Procedia PDF Downloads 66222873 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data
Authors: J. Bahrawi, M. Elhag
Abstract:
Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta
Procedia PDF Downloads 25922872 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography
Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway
Abstract:
This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.Keywords: steganography, stego, LSB, crop
Procedia PDF Downloads 26922871 A Usability Framework to Influence the Intention to Use Mobile Fitness Applications in South Africa
Authors: Bulelani Ngamntwini, Liezel Cilliers
Abstract:
South Africa has one of the highest prevalence of obese people on the African continent. Forty-six percent of the adults in South Africa are physically inactive. Fitness applications can be used to increase physical inactivity. However, the uptake of mobile fitness applications in South Africa has been found to be poor due to usability challenges with the technology. The study developed a usability framework to influence the intention to use mobile fitness applications in South Africa. The study made use of a positivistic approach to collect data. A questionnaire was used to collect quantitative data from 377 respondents that have used mobile fitness applications in the past. A response rate of 80.90% was recorded. To analyse the data, the Pearson correlation was used to determine the relationships between the various hypotheses. There are four usability factors, efficiency, effectiveness, satisfaction, and learnability, which contribute to the intention of users to make use of mobile fitness applications. The study, therefore, recommends that for a mobile fitness application to be successful, these four factors must be considered and incorporated by developers when designing the applications.Keywords: obese, overweight, physical inactivity, mobile fitness application, usability factors
Procedia PDF Downloads 16522870 Non-Signaling Chemokine Receptor CCRL1 and Its Active Counterpart CCR7 in Prostate Cancer
Authors: Yiding Qu, Svetlana V. Komarova
Abstract:
Chemokines acting through their cognate chemokine receptors guide the directional migration of the cell along the chemokine gradient. Several chemokine receptors were recently identified as non-signaling (decoy), based on their ability to bind the chemokine but produce no measurable signal in the cell. The function of these decoy receptors is not well understood. We examined the expression of a decoy receptor CCRL1 and a signaling receptor that binds to the same ligands, CCR7, in prostate cancer using publically available microarray data (www.oncomine.org). The expression of both CCRL1 and CCR7 increased in an approximately half of prostate carcinoma samples and the majority of metastatic cancer samples compared to normal prostate. Moreover, the expression of CCRL1 positively correlated with the expression of CCR7. These data suggest that CCR7 and CCRL1 can be used as clinical markers for the early detection of transformation from carcinoma to metastatic cancer. In addition, these data support our hypothesis that the non-signaling chemokine receptors actively stimulate cell migration.Keywords: bioinformatics, cell migration, decoy receptor, meta-analysis, prostate cancer
Procedia PDF Downloads 47222869 Developing NAND Flash-Memory SSD-Based File System Design
Authors: Jaechun No
Abstract:
This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.Keywords: SSD, data section, I/O optimizations, hybrid system
Procedia PDF Downloads 41822868 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning
Procedia PDF Downloads 15422867 Construction of the Large Scale Biological Networks from Microarrays
Authors: Fadhl Alakwaa
Abstract:
One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.Keywords: gene regulatory network, biclustering, denoising, system biology
Procedia PDF Downloads 23922866 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 34322865 The Way of Ultimate Realization Through the Buddha’s Realization
Authors: Sujan Barua
Abstract:
Buddhism relies upon natural events which are appeared from the four auto-elements of nature. It has seemed to be an authentic proof of mono-actions that have chronically been existing through our lives circles into the action and reaction that can produce more and more suffering in entire beings. Religion is called such politic through giving up on worthy concerns. Birth, aging, getting sick, lamentation, and death are just a politic of four conditions that depend upon one mind. Those are greed, hatred, and delusion, which are the first fueling to fall into a worthy realm again and again. It is because of having numerous ways of sense faculties, six senses, and five aggregates. These are all defaults of the deluded mind’s conditions and total ignorance covered by not understanding through the emancipating religion. Buddhism is dependent upon the threefold morality, which is the basic politic of giving up birth, aging, getting sick, lamentation, and death. Morality is the primordial theme of reach at ultimate happiness called “Nirvana”. It is a politic of one’s non-understanding ignorance. In Buddhism, the Buddha emphasizes that to understand the politic of the samsara, one must profoundly understand the own action that appears from the threefold ways. One must need authentically verify the own karma and reflection from the self-mind. The worthy concerns are the cause of political suffering to fall in samsara. By avoiding the entire, one can attain ultimate happiness. To attain Nirvana is not like an achievement of worthy happiness and proper understanding of functionality as we comfort in our daily lives. There is no virtue or non-virtual deeds to rebirth, no gripes, no upsetting, no greed, no hatred, no aging, no sickness, no death. It is totally uprooted from 31 types of states of worthy concerns. Nirvana is the stability of ultimate realization, but worthy states are the levels of grasping impurities in life span that make us fall into one clan according to our actions. By profoundly observing, the Buddha crucially founds that the source of rebirth is ignorance. Ignorance drives physical, verbal, and mental, which makes us reborn into the 31 types of realms in cycling existence. It is believed that the best knowledge of how many beings are in this world except the Enlightenment one. The enlightened one knows everything while he thinks about when it is causally necessary for demonstrating someone or verifying the truth of the relational way. It is a political view for entire beings that are chronic because covering by ignorance. It is tremendously toxic, and the person who truly understands this politic of turning here to there is a person who wishes to have eager to find the truth and way to leave those massive toxicities to discover the fixed state of nonexistence. The word non-existence is known as “Suiyata” or emptiness. One can able to find the ultimate truth with the effort of achieving the arch truth of leaving suffering from the cycling system.Keywords: ultimate realization, nirvana, the easiest way policy to give up worthily concerns, profound understanding of 31 types of cosmology, four noble truths
Procedia PDF Downloads 6722864 Despiking of Turbulent Flow Data in Gravel Bed Stream
Authors: Ratul Das
Abstract:
The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra
Procedia PDF Downloads 29922863 RS Based SCADA System for Longer Distance Powered Devices
Authors: Harkishen Singh, Gavin Mangeni
Abstract:
This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900’s auto baud rate process is key to successful implementation of this project.Keywords: SCADA, RS485, CC2540, labview, Si8900
Procedia PDF Downloads 30122862 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project
Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen
Abstract:
This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project
Procedia PDF Downloads 16822861 Blockchain Technology for Secure and Transparent Oil and Gas Supply Chain Management
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry, characterized by its complex and global supply chains, faces significant challenges in ensuring security, transparency, and efficiency. Blockchain technology, with its decentralized and immutable ledger, offers a transformative solution to these issues. This paper explores the application of blockchain technology in the oil and gas supply chain, highlighting its potential to enhance data security, improve transparency, and streamline operations. By leveraging smart contracts, blockchain can automate and secure transactions, reducing the risk of fraud and errors. Additionally, the integration of blockchain with IoT devices enables real-time tracking and monitoring of assets, ensuring data accuracy and integrity throughout the supply chain. Case studies and pilot projects within the industry demonstrate the practical benefits and challenges of implementing blockchain solutions. The findings suggest that blockchain technology can significantly improve trust and collaboration among supply chain participants, ultimately leading to more efficient and resilient operations. This study provides valuable insights for industry stakeholders considering the adoption of blockchain technology to address their supply chain management challenges.Keywords: blockchain technology, oil and gas supply chain, data security, transparency, smart contracts, IoT integration, real-time tracking, asset monitoring, fraud reduction, supply chain efficiency, data integrity, case studies, industry implementation, trust, collaboration.
Procedia PDF Downloads 3722860 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems
Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari
Abstract:
Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.Keywords: environment, organic pollutant, phosphate ore, photodegradation
Procedia PDF Downloads 13222859 The Inequality Effects of Natural Disasters: Evidence from Thailand
Authors: Annop Jaewisorn
Abstract:
This study explores the relationship between natural disasters and inequalities -both income and expenditure inequality- at a micro-level of Thailand as the first study of this nature for this country. The analysis uses a unique panel and remote-sensing dataset constructed for the purpose of this research. It contains provincial inequality measures and other economic and social indicators based on the Thailand Household Survey during the period between 1992 and 2019. Meanwhile, the data on natural disasters, which are remote-sensing data, are received from several official geophysical or meteorological databases. Employing a panel fixed effects, the results show that natural disasters significantly reduce household income and expenditure inequality as measured by the Gini index, implying that rich people in Thailand bear a higher cost of natural disasters when compared to poor people. The effect on income inequality is mainly driven by droughts, while the effect on expenditure inequality is mainly driven by flood events. The results are robust across heterogeneity of the samples, lagged effects, outliers, and an alternative inequality measure.Keywords: inequality, natural disasters, remote-sensing data, Thailand
Procedia PDF Downloads 12422858 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data
Authors: Fanqiang Kong, Chending Bian
Abstract:
Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means
Procedia PDF Downloads 246