Search results for: healthcare networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4330

Search results for: healthcare networks

1210 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 82
1209 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power

Procedia PDF Downloads 234
1208 Assessment of the Impact of Family Care Team in the District Health System of Regional Health, Thailand

Authors: Nithra Kitreerawutiwong, Sunsanee Mekrungrongwong, Artitaya Wongwonsin, Chakkraphan Phetphoom, Buaploy Phromjang

Abstract:

Background: Thailand has implemented a district health system based on the concept of primary health care. Since 2014, Family Care Team (FCT) was launched to improve the quality of care through a multidisciplinary team include not only the health sector but also social sector work together. FCT classified into 3 levels: district, sub-district, and community. This system now consists of 66,353 teams, including 3,890 teams at district level, 12,237 teams at the sub-district level, and 50,326 teams at the community level. There is a report regarding assessment the situation and perception on FCT, however, relatively few examined the operationality of this policy. This study aimed to explore the perception of district manager on the process of the implementation of FCT policy and the factors associating to implement FCT in the district health system. Methods/Results: Forty in-depth interviews were performed: 5 of primary care manager at the provincial medical health office, 5 of community hospital director, 5 of district administrative health office, 10 of sub-district health promoting hospital, and 10 of local organization. Semi-structure interview guidelines were used in the discussions. The data was analyzed by thematic analysis. This policy was formulated based on the demographic change and epidemiology transition to serve a long term care for elderly. Facilitator factors are social capital in district health systems such as family health leader and multidisciplinary team. Barrier factors are communication to the frontline provider and local organization. The output of this policy in relation to the structure of FCT is well-defined. Unanticipated effects include training of FCT in community level. Conclusion: Early feedback from healthcare manager is valuable information for the improvement of FCT to function optimally. Moreover, in the long term, health outcome need to be evaluated.

Keywords: family care team, district health system, primary care, qualitative study

Procedia PDF Downloads 404
1207 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 495
1206 Regional Anesthesia: A Vantage Point for Management of Normal Pressure Hydrocephalus

Authors: Kunal K. S., Shwetashri K. R., Keerthan G., Ajinkya R.

Abstract:

Background: Normal pressure hydrocephalus is a condition caused by abnormal accumulation of cerebrospinal fluid (CSF) within the brain resulting in enlarged cerebral ventricles due to a disruption of CSF formation, absorption, or flow. Over the course of time, ventriculoperitoneal shunt under general anesthesia has become a standard of care. Yet only a finite number of centers have started the inclusion of regional anesthesia techniques for the such patient cohort. Stem Case: We report a case of a 75-year-old male with underlying aortic sclerosis and cardiomyopathy who presented with complaints of confusion, forgetfulness, and difficulty in walking. Neuro-imaging studies revealed disproportionally enlarged subarachnoid space hydrocephalus (DESH). The baseline blood pressure was 116/67 mmHg with a heart rate of 106 beats/min and SpO2 of 96% on room air. The patient underwent smooth induction followed by sonographically guided superficial cervical plexus block and transverse abdominis plane block. Intraoperative pain indices were monitored with Analgesia nociceptive index monitor (ANI, MdolorisTM) and surgical plethysmographic index (SPI, GE Healthcare, Helsinki, FinlandTM). These remained stable during the application of the block and the entire surgical duration. No significant hemodynamic response was observed during the tunneling of the skin by the surgeon. The patient underwent a smooth recovery and emergence. Conclusion: Our decision to incorporate peripheral nerve blockade in conjunction with general anesthesia resulted in opioid-sparing anesthesia and decreased post-operative analgesic requirement by the patient. This blockade was successful in suppressing intraoperative stress responses. Our patient recovered adequately and underwent an uncomplicated post-operative stay.

Keywords: desh, NPH, VP shunt, cervical plexus block, transversus abdominis plane block

Procedia PDF Downloads 79
1205 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 187
1204 Ethnomedicinal Plants Used for Gastrointestinal Ailments by the People of Tribal District Kinnaur (Himachal Pradesh) India

Authors: Geeta, Richa, M. L. Sharma

Abstract:

Himachal Pradesh, a hilly State of India located in the Western Himalayas, with varied altitudinal gradients and climatic conditions, is a repository of plant diversity and the traditional knowledge associated with plants. The State is inhabited by various tribal communities who usually depend upon local plants for curing various ailments. Utilization of plant resources in their day-to-day life has been an age old practice of the people inhabiting this State. The present study pertains to the tribal district Kinnaur of Himachal Pradesh, located between 77°45’ and 79°00’35” east longitudes and between 31°05’50” and 32°05’15” north altitudes. Being a remote area with only very basic medical facilities, local people mostly use traditional herbal medicines for primary healthcare needs. Traditional healers called “Amji” are usually very secretive in revealing their medicinal knowledge to novice and pass on their knowledge to next generation orally. As a result, no written records of healing herbs are available. The aim of present study was to collect and consolidate the ethno-medicinal knowledge of local people of the district about the use of plants for treating gastrointestinal ailments. The ethnobotanical information was collected from the local practitioners, herbal healers and elderly people having rich knowledge about the medicinal herbs through semi-structured questionnaire and key informant discussions. A total 46 plant species belonging to 40 genera and 24 families have been identified which are used as cure for gastrointestinal ailments. Among the parts used for gastointestinal ailments, aerial parts (14%) were followed by the whole plant (13%), root (8%), leaves (6%), flower (5%), fruit and seed (3%) and tuber (1%). These plant species could be prioritized for conservation and subject to further studies related to phytochemical screening for their authenticity. Most of the medicinal plants of the region are collected from the wild and are often harvested for trade. Sustainable harvesting and domestication of the highly traded species from the study area is needed.

Keywords: Amji, gastrointestinal, Kinnaur, medicinal plants, traditional knowledge

Procedia PDF Downloads 393
1203 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach

Authors: Tesfaw Belayneh Abebe

Abstract:

Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.

Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)

Procedia PDF Downloads 45
1202 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle

Authors: Mostafa Mjahed

Abstract:

Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.

Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV

Procedia PDF Downloads 117
1201 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 77
1200 Enhancing Urban Sustainability through Integrated Green Spaces: A Focus on Tehran

Authors: Azadeh Mohajer Milani

Abstract:

Urbanization constitutes an irreversible global trend, presenting myriad challenges such as heightened energy consumption, pollution, congestion, and the depletion of natural resources. Today's urban landscapes have emerged as focal points for economic, social, and environmental challenges, underscoring the pressing need for sustainable development. This article delves into the realm of sustainable urban development, concentrating on the pivotal role played by integrated green spaces as an optimal solution to address environmental concerns within cities. The study utilizes Tehran as a case study. Our findings underscore the imperative of preserving and expanding green spaces in urban areas, coupled with the establishment of well-designed ecological networks, to enhance environmental quality and elevate the sustainability of cities. Notably, Tehran's urban green spaces exhibit a disjointed design, lacking a cohesive network to connect various patches and corridors, resulting in significant environmental impacts. The results emphasize the necessity of a balanced and proportional distribution of urban green spaces and the creation of a cohesive patch-corridor-matrix network tailored to the ecological and social needs of residents. This approach is crucial for fostering a more sustainable and livable urban environment for all species, with a specific focus on humans.

Keywords: ecology, sustainable urban development, sustainable landscape, urban green space network

Procedia PDF Downloads 82
1199 Drug Therapy Problems and Associated Factors among Patients with Heart Failure in the Medical Ward of Arba Minch General Hospital, Ethiopia

Authors: Debalke Dale, Bezabh Geneta, Yohannes Amene, Yordanos Bergene, Mohammed Yimam

Abstract:

Background: A drug therapy problem (DTP) is an event or circumstance that involves drug therapies that actually or potentially interfere with the desired outcome and requires professional judgment to resolve. Heart failure is an emerging worldwide threat whose prevalence and health loss burden constantly increase, especially in the young and in low-to-middle-income countries. There is a lack of population-based incidence and prevalence of heart failure (HF) studies in sub-Saharan African countries, including Ethiopia. Objective: The aim of this study was designed to assess drug therapy problems and associated factors among patients with HF in the medical ward of Arba Minch General Hospital(AGH), Ethiopia, from June 5 to August 20, 2022. Methods: A retrospective cross-sectional study was conducted among 180 patients with HF who were admitted to the medical ward of AGH. Data were collected from patients' cards by using questionnaires. The data were categorized and analyzed by using SPSS version 25.0 software, and data were presented in tables and words based on the nature of the data. Result: Out of the total, 85 (57.6%) were females, and 113 (75.3%) patients were aged over fifty years. Of the 150 study participants, 86 (57.3%) patients had at least one DTP identified, and a total of 116 DTPs were identified, which is 0.77 DTPs per patient. The most common types of DTP were unnecessary drug therapy (32%), followed by the need for additional drug therapy (36%), and dose too low (15%). Patients who used polypharmacy were 5.86 (AOR) times more likely to develop DTPs than those who did not (95% CI = 1.625–16.536, P = 0.005), and patients with more co-morbid conditions developed 3.68 (AOR) times more DTPs than those who had fewer co-morbidities (95% CI = 1.28–10.5, P = 0.015). Conclusion: The results of this study indicated that drug therapy problems were common among medical ward patients with heart failure. These problems are adversely affecting the treatment outcomes of patients, so it requires the special attention of healthcare professionals to optimize them.

Keywords: heart failure, drug therapy problems, Arba Minch general hospital, Ethiopia

Procedia PDF Downloads 104
1198 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study

Authors: M. Kosacka, I. Kudelska

Abstract:

Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.

Keywords: dismantling, end of life vehicles, sustainability, storage

Procedia PDF Downloads 270
1197 Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser

Authors: Moustafa Ahmed, Fumio Koyama

Abstract:

Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos.

Keywords: chirp, linewidth, optical feedback, semiconductor laser

Procedia PDF Downloads 480
1196 Investigating the Factors Affecting the Innovation of Firms in Metropolitan Regions: The Case of Mashhad Metropolitan Region, Iran

Authors: Hashem Dadashpoor, Sadegh Saeidi Shirvan

Abstract:

While with the evolution of the economy towards a knowledge-based economy, innovation is a requirement for metropolitan regions, the adoption of an open innovation strategy is an option and a requirement for many industrial firms in these regions. Studies show that investing in research and development units cannot alone increase innovation. Within the framework of the theory of learning regions, this gap, which scholars call it the ‘innovation gap’, is filled with regional features of firms. This paper attempts to investigate the factors affecting the open innovation of firms in metropolitan regions, and it searches for these in territorial innovation models and, in particular, the theory of learning regions. In the next step, the effect of identified factors which is considered as regional learning factors in this research is analyzed on the innovation of sample firms by SPSS software using multiple linear regression. The case study of this research is constituted of industrial enterprises from two groups of food industry and auto parts in Toos industrial town in Mashhad metropolitan region. For data gathering of this research, interviews were conducted with managers of industrial firms using structured questionnaires. Based on this study, the effect of factors such as size of firms, inter-firm competition, the use of local labor force and institutional infrastructures were significant in the innovation of the firms studied, and 44% of the changes in the firms’ innovation occurred as a result of the change in these factors.

Keywords: regional knowledge networks, learning regions, interactive learning, innovation

Procedia PDF Downloads 178
1195 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 127
1194 Analysis of Maternal Death Surveillance and Response: Causes and Contributing Factors in Addis Ababa, Ethiopia, 2022

Authors: Sisay Tiroro Salato

Abstract:

Background: Ethiopia has been implementing the maternal death surveillance and response system to provide real-time actionable information, including causes of death and contributing factors. Analysis of maternal mortality surveillance data was conducted to identify the causes and underlying factors in Addis Ababa, Ethiopia. Methods: We carried out a retrospective surveillance data analysis of 324 maternal deaths reported in Addis Ababa, Ethiopia, from 2017 to 2021. The data were extracted from the national maternal death surveillance and response database, including information from case investigation, verbal autopsy, and facility extraction forms. The data were analyzed by computing frequency and presented in numbers, proportions, and ratios. Results: Of 324 maternal deaths, 92% died in the health facilities, 6.2% in transit, and 1.5% at home. The mean age at death was 28 years, ranging from 17 to 45. The maternal mortality ratio per 100,000 live births was 77for the five years, ranging from 126 in 2017 to 21 in 2021. The direct and indirect causes of death were responsible for 87% and 13%, respectively. The direct causes included obstetric haemorrhage, hypertensive disorders in pregnancy, puerperal sepsis, embolism, obstructed labour, and abortion. The third delay (delay in receiving care after reaching health facilities) accounted for 57% of deaths, while the first delay (delay in deciding to seek health care) and the second delay (delay in reaching health facilities) and accounted for 34% and 24%, respectively. Late arrival to the referral facility, delayed management after admission, andnon-recognition of danger signs were underlying factors. Conclusion: Over 86% of maternal deaths were attributed by avoidable direct causes. The majority of women do try to reach health services when an emergency occurs, but the third delays present a major problem. Improving the quality of care at the healthcare facility level will help to reduce maternal death.

Keywords: maternal death, surveillance, delays, factors

Procedia PDF Downloads 110
1193 Perception of Quality of Life and Self-Assessed Health in Patients Undergoing Haemodialysis

Authors: Magdalena Barbara Kaziuk, Waldemar Kosiba

Abstract:

Introduction: Despite the development of technologies and improvements in the interior of dialysis stations, dialysis remains an unpleasant procedure, difficult to accept by the patients (who undergo it 2 to 3 times a week, a single treatment lasting several hours). Haemodialysis is one of the renal replacement therapies, in Poland most commonly used in patients with chronic or acute kidney failure. Purpose: An attempt was made to evaluate the quality of life in haemodialysed patients using the WHOQOL-BREF questionnaire. Material and methods: The study covered 422 patients (200 women and 222 men, aged 60.5 ± 12.9 years) undergoing dialysis at three selected stations in Poland. The patients were divided into 2 groups, depending on the duration of their dialysis treatment. The evaluation was conducted with the WHOQOL-BREF questionnaire containing 26 questions analysing 4 areas of life, as well as the perception of the quality of life and health self-assessment. A 5-point scale is used to answer them. The maximum score in each area is 20 points. The results in individual areas have a positive direction. Results: In patients undergoing dialysis for more than 3 years, a reduction in the quality of life was found in the physical area and in their environment versus a group of patients undergoing dialysis for less than 3 years, where a reduced quality of life was found in the areas of social relations and mental well-being (p < 0.05). A significant correlation (p < 0.01) between the two groups was found in self-perceived general health, while no significant differences were observed in the general perception of the quality of life (p > 0.05). Conclusions: The study confirmed that in patients undergoing dialysis for more than three years, the quality of life is especially reduced in their environment (access to and quality of healthcare, financial resources, and mental and physical safety). The assessment of the quality of life should form a part of the therapeutic process, in which the role of the patient in chronic renal care should be emphasised, reflected in the quality of services provided by dialysis stations.

Keywords: haemodialysis, perception of quality of life, quality of services provided, dialysis station

Procedia PDF Downloads 261
1192 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain

Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire

Abstract:

The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.

Keywords: knowledge, attitude, practice, supply chain, articifial intellegence

Procedia PDF Downloads 90
1191 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 187
1190 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption

Authors: Robert Joseph M. Licup

Abstract:

The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.

Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption

Procedia PDF Downloads 107
1189 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt

Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer

Abstract:

Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.

Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening

Procedia PDF Downloads 51
1188 Effectiveness of Opuntia ficus indica Cladodes Extract for Wound-Healing

Authors: Giuffrida Graziella, Pennisi Stefania, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta

Abstract:

Cladode chemical composition may vary according to soil factors, cultivation season, and plant age. The primary metabolites of cladodes are water, carbohydrates, and proteins. The carbohydrates in cladodes are divided into two types: structural and storage. Polysaccharides from Opuntia ficus‐indica (L.) Mill plants build molecular networks with the capacity to retain water; thus, they act as mucoprotective agents. Mucilage is the main polysaccharide of cladodes; it contains polymers of β‐d‐galacturonic acid bound in positions (1–4) and traces of R‐linked l‐rhamnose (1-2). Mucilage regulates both the cell water content during prolonged drought and the calcium flux in the plant cells. The in vitro analysis of keratinocytes in monolayer, through the scratch-wound-healing assay, provided promising results. After 48 hours of exposure, the wound scratch was almost completely closed in cells treated with cladode extract. After 72 hours, the treated cells reached complete confluence, while in the untreated cells (negative control) the confluence was reached after 96 hours. We also added a positive control group of cells treated with colchicine, which inhibited wound closure for a more comprehensive analysis.

Keywords: cladodes, metabolites, polysaccharide, scratch-wound-healing assay

Procedia PDF Downloads 52
1187 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders

Authors: Gregory Sullivan

Abstract:

The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.

Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders

Procedia PDF Downloads 69
1186 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study

Authors: Colin Smith, Linsey S Passarella

Abstract:

Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.

Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy

Procedia PDF Downloads 132
1185 Tibial Plateau Fractures During Covid-19 In A Trauma Unit. Impact of Lockdown and The Pressures on the Healthcare Provider

Authors: R. Gwynn, P. Panwalkar, K. Veravalli , M. Tofighi, R. Clement, A. Mofidi

Abstract:

The aim of this study was to access the impact of Covid-19 and lockdown on the incidence, injury pattern, and treatment of tibial plateau fractures in a combined rural and urban population in wales. Methods: Retrospective study was performed to identify tibial plateau fractures in 15-month period of Covid-19 lockdown 15-month period immediately before lockdown. Patient demographics, injury mechanism, injury severity (based on Schatzker classification), and associated injuries, treatment methods, and outcome of fractures in the Covid-19 period was studied. Results: The incidence oftibial plateau fracture was 9 per 100000 during Covid-19, and 8.5 per 100000, and both were similar to previous studies. The average age was 52, and female to male ratio was 1:1 in both control and study group. High energy injury was seen in only 20% of the patients and 35% in the control groups (2=12, p<0025). 14% of the covid-19 population sustained other injuries as opposed 16% in the control group(2=0.09, p>0.95). Lower severity isolated lateral condyle fracturesinjury (Schatzker 1-3) were seen in 40% of fractures this was 60% in the control populations. Higher bicondylar and shaft fractures (Schatzker 5-6) were seen in 60% of the Covid-19 group and 35% in the control groups(2=7.8, p<0.02). Treatment mode was not impacted by Covid-19. The complication rate was low in spite of higher number of complex fractures and the impact of covid-19 pandemic. Conclusion: The associated injuries were similar in spite of a significantly lower mechanism of injury. There were unexpectedly worst tibial plateau fracture based Schatzker classification in the Covid-19 period as compared to the control groups. This was especially relevant for medial condyle and shaft fractures. This was postulated to be caused by reduction in bone density caused by lack of vitamin D and reduction in activity. The treatment mode and outcome was not impacted by the impact of Covid-19 on care for tibial plateau fractures.

Keywords: Covid-19, knee, tibial plateau fracture, trauma

Procedia PDF Downloads 121
1184 Report of a Realistic Simulation Training in Using Bougie Guide for Endotracheal Intubation

Authors: Cleto J. Sauer Jr., Rita C. Sauer, Chaider G. Andrade, Dóris F. Rabelo

Abstract:

Some patients with COVID-19 disease and difficult airway characteristics undergo to endotracheal intubation (ETI) procedure. The tracheal introducer, known as the bougie guide, can aid ETI in patients with difficult airway pattern. Realistic simulation (RS) is a methodology utilized for healthcare professionals training. To improve skills in using the bougie guide of physicians from Recôncavo da Bahia region in Brazil, during COVID-19 outbreak, RS training was carried out. Simulated scenario included the Nasco Lifeform realistic simulator for ETI and a bougie guide introducer. Training was a capacitation program organized by the Health Department of Bahia State. Objective: To report effects in participants´ self-confidence perception for using bougie guide after a RS based training. Methods: Descriptive study, secondary data extracted from questionnaires. Priority workplace and previous knowledge about bougie were reported on a preparticipation formulary. Participants also completed pre- and post-training qualitative self-assessment (10-point Likert scale) regarding to self-confidence in using bougie guide. Distribution analysis for qualitative data was performed with Wilcoxon Signed Rank Test, and self-confidence increase analysis in frequency contingency tables with Fisher's exact test. Results: From May to June 2020 a total of 36 physicians participated of training, 25 (69%) from primary care setting, 32 (89%) with no previous knowledge about the bougie guide utilization. For those who had previous knowledge about bougie pre-training self-confidence median was 6,5, and 2 for participants who had not. In overall there was an increase in self-confidence median for bougie utilization. Median (variation) before and after training was 2.5 (1-7) vs. 8 (4-10) (p <0.0001). Among those who had no previous knowledge about bougie (n = 32) an increase in self-confidence greater than 3 points for bougie utilization was reported by 31 vs. 1 participants (p = 0.71). Conclusions: Most of participants had no previous knowledge about using the bougie guide. RS training contributed to self-confidence increase for using bougie for ETI procedure. RS methodology can contribute for training in using the bougie guide for ETI procedure during COVID-19 outbreak.

Keywords: bougie, confidence, COVID-19, endotracheal intubation, realistic simulation

Procedia PDF Downloads 143
1183 Nutrition and Physical Activity Intervention on Health Screening Outcomes for Singaporean Employees: A Worksite Based Randomised Controlled Trial

Authors: Elaine Wong

Abstract:

This research protocol aims to explore and justify the need for nutrition and physical activity intervention to improve health outcomes among SME (Small Medium Enterprise) employees. It was found that the worksite is an ideal and convenient setting for employees to take charge of their health thru active participation in health programmes since they spent a great deal of time at their workplace. This study will examine the impact of both general or/and targeted health interventions in both SME and non-SME companies utilizing the Workplace Health Promotion (WHP) grant over a 12 months period and assessed the improvement in chronic health disease outcomes in Singapore. Random sampling of both non-SME and SME companies will be conducted to undergo health intervention and statistical packages such as Statistical Package for Social Science (SPSS) 25 will be used to examine the impact of both general and targeted interventions on employees who participate and those who do not participate in the intervention and their effects on blood glucose (BG), blood lipid, blood pressure (BP), body mass index (BMI), and body fat percentage. Using focus groups and interviews, the data results will be transcribed to investigate enablers and barriers to workplace health intervention revealed by employees and WHP coordinators that could explain the variation in the health screening results across the organisations. Dietary habits and physical activity levels of the employees participating and not participating in the intervention will be collected before and after intervention to assess any changes in their lifestyle practices. It makes economic sense to study the impact of these interventions on health screening outcomes across various organizations that are existing grant recipients to justify the sustainability of these programmes by the local government. Healthcare policy makers and employers can then tailor appropriate and relevant programmes to manage these escalating chronic health disease conditions which is integral to the competitiveness and productivity of the nation’s workforce.

Keywords: chronic diseases, health screening, nutrition and fitness intervention , workplace health

Procedia PDF Downloads 148
1182 Short Teaching Sessions for Emergency Front of Neck Access

Authors: S. M. C. Kelly, A. Hargreaves, S. Hargreaves

Abstract:

Introduction: The Can’t intubate, Can’t ventilate emergency scenario is one which has been shown to be managed badly in the past. Reasons identified included gaps in knowledge of the procedure and the emergency equipment used. We aimed to show an increase in confidence amongst anesthetists and operating department practitioners in the technique following a short tea trolley style teaching intervention. Methods: We carried out the teaching on a one-to-one basis. Two Anaesthetists visited each operating theatre during normal working days. One carried out the teaching session and one took over the intra‐operative care of the patient, releasing the listed anaesthetist for a short teaching session. The teaching was delivered to mixture of students and healthcare professionals, both anaesthetists and anaesthetic practitioners. The equipment includes a trolley, an airway manikin, size 10 scalpel, bougie and size 6.0 tracheal tube. The educator discussed the equipment, performed a demonstration and observed the participants performing the procedure. We asked each person to fill out a pre and post teaching questionnaire, stating their confidence with the procedure. Results: The teaching was delivered to 63 participants in total, which included 21 consultant anaesthetists, 23 trainee doctors and 19 anaesthetic practitioners. The teaching sessions lasted on average 9 minutes (range 5– 15 minutes). All participants reported an increase in confidence in both the equipment and technique in front of neck access. Anaesthetic practitioners reported the greatest increase in confidence (53%), with trainee anaesthetists reporting 27% increase and consultant anaesthetists 22%. Overall, confidence in the performance of emergency front of neck access increased by 31% after the teaching session. Discussion: Short ‘Trolley style’ teaching improves confidence in the equipment and technique used for the emergency front of neck access. This is true for students and for consultant anaesthetists. This teaching style is quick with minimal running costs and is relevant for all anesthetic departments.

Keywords: airway teaching, can't intubate can't ventilate, cricothyroidotomy, front-of-neck

Procedia PDF Downloads 149
1181 Planning the Journey of Unifying Medical Record Numbers in Five Facilities and the Expected Challenges: Case Study in Saudi Arabia

Authors: N. Al Khashan, H. Al Shammari, W. Al Bahli

Abstract:

Patients who are eligible to receive treatment at the National Guard Health Affairs (NGHA), Saudi Arabia will typically have four medical record numbers (MRN), one in each of the geographical areas. More hospitals and primary healthcare facilities in other geographical areas will launch soon which means more MRNs. When patients own four MRNs, this will cause major drawbacks in patients’ quality of care such as creating new medical files in different regions for relocated patients and using referral system among regions. Consequently, the access to a patient’s medical record from other regions and the interoperability of health information between the four hospitals’ information system would be challenging. Thus, there is a need to unify medical records among these five facilities. As part of the effort to increase the quality of care, a new Hospital Information Systems (HIS) was implemented in all NGHA facilities by the end of 2016. NGHA’s plan is put to be aligned with the Saudi Arabian national transformation program 2020; whereby 70% citizens and residents of Saudi Arabia would have a unified medical record number that enables transactions between multiple Electronic Medical Records (EMRs) vendors. The aim of the study is to explore the plan, the challenges and barriers of unifying the 4 MRNs into one Enterprise Patient Identifier (EPI) in NGHA hospitals by December 2018. A descriptive study methodology was used. A journey map and a project plan are created to be followed by the project team to ensure a smooth implementation of the EPI. It includes the following: 1) Approved project charter, 2) Project management plan, 3) Change management plan, 4) Project milestone dates. Currently, the HIS is using the regional MRN. Therefore, the HIS and all integrated health care systems in all regions will need modification to move from MRN to EPI without interfering with patient care. For now, the NGHA have successfully implemented an EPI connected with the 4 MRNs that work in the back end in the systems’ database.

Keywords: consumer health, health informatics, hospital information system, universal medical record number

Procedia PDF Downloads 196