Search results for: vector information
8624 Evaluation of Massive Open Online Course in a Rural Marginalized Area: Case Study of Alice Community, Eastern Cape, South Africa
Authors: Dare Ebenezer Fatumo, Olusesan Emmanuel Adelabu
Abstract:
Online learning has taken another dimension through the introduction of Massive Open Online Courses (MOOCs), it has also become an important resource base for teaching and learning. This research aimed at investigating the use of Massive Open Online Course in a rural marginalized area. The survey research design of descriptive nature was adopted to evaluate the awareness and usage of Massive Open Online Course (MOOCs) in Alice community, Eastern Cape, South Africa. This study also employed quantitative approach by using self-structured questionnaire to evoke information from the respondents. The data collected were analyzed by Statistical Package for Social Sciences (SPSS). The findings revealed amongst others the efficacy of Massive Open Online Course (MOOCs) in fostering teaching and learning in rural marginalized areas. This study concludes that MOOCs is a veritable medium for busy or less privileged individual to acquire a degree or certification. Therefore, the study recommends MOOCs platform to be fully embraced by people in rural marginalized areas, awareness programs about its usefulness should be propagated across the municipalities nationwide.Keywords: distance learning, information and communication technology, massive open online course, online learning, teaching and learning
Procedia PDF Downloads 1808623 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank
Authors: Jalal Haghighat Monfared, Zahra Akbari
Abstract:
Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.Keywords: business intelligence, business intelligence capability, decision making, decision quality
Procedia PDF Downloads 1148622 Geographic Information System-Based Identification of Road Traffic Crash Hotspots on Rural Roads in Oman
Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon
Abstract:
The use of Geographic Information System (GIS) tools in the analysis of traffic crash data can help to identify locations or hotspots with high instances or risk of traffic crashes. The identification of traffic crash hotspots can effectively improve road safety measures. Mapping of road traffic crash hotspots can help the concerned authorities to give priority and take targeted measures and improvements to the road structure at these locations to reduce traffic crashes and fatalities. In Oman, there are countless rural roads that have more risks for traveling vehicles compared to urban roads. The likelihood of traffic crashes as well as fatality rate may increase with the presence of risks that are associated with the rural type of community. In this paper, the traffic crash hotspots on rural roads in Oman are specified using spatial analysis methods in GIS and traffic crash data. These hotspots are ranked based on the frequency of traffic crash occurrence (i.e., number of traffic crashes) and the rate of fatalities. The result of this study presents a map visualization of locations on rural roads with high traffic crashes and high fatalities rates.Keywords: road safety, rural roads, traffic crash, GIS tools
Procedia PDF Downloads 1518621 Regulation on the Protection of Personal Data Versus Quality Data Assurance in the Healthcare System Case Report
Authors: Elizabeta Krstić Vukelja
Abstract:
Digitization of personal data is a consequence of the development of information and communication technologies that create a new work environment with many advantages and challenges, but also potential threats to privacy and personal data protection. Regulation (EU) 2016/679 of the European Parliament and of the Council is becoming a law and obligation that should address the issues of personal data protection and information security. The existence of the Regulation leads to the conclusion that national legislation in the field of virtual environment, protection of the rights of EU citizens and processing of their personal data is insufficiently effective. In the health system, special emphasis is placed on the processing of special categories of personal data, such as health data. The healthcare industry is recognized as a particularly sensitive area in which a large amount of medical data is processed, the digitization of which enables quick access and quick identification of the health insured. The protection of the individual requires quality IT solutions that guarantee the technical protection of personal categories. However, the real problems are the technical and human nature and the spatial limitations of the application of the Regulation. Some conclusions will be drawn by analyzing the implementation of the basic principles of the Regulation on the example of the Croatian health care system and comparing it with similar activities in other EU member states.Keywords: regulation, healthcare system, personal dana protection, quality data assurance
Procedia PDF Downloads 428620 Arduino-Based Laser Communication
Authors: Simon Bambey, Edward Lim, Kai Corley-Jory, Pooya Taheri
Abstract:
The main goal of this paper is to propose a simple and low-cost microcontroller-based laser communication link. To demonstrate that laser communication is a viable and efficient means for transmitting data, a transceiver capable of transfer rates of approximately 0.7 kB/s is prototyped. The hardware used for the transceiver consists of Commercial Off-The-Shelf (COTS) lasers, photodiodes, and the Arduino Mega 2560 which is an open-source and easy-to-use microcontroller-based platform intended for making interactive projects. A graphic user interface utilizing the Meteor framework is developed to facilitate the communication between the user and transceiver. The developed transceiver prototype is capable of receiving and transmitting data at significant ranges with no loss of information. Furthermore, stable and secure communication is achieved through several mechanisms developed to manage simultaneous sending and receiving, in addition to detecting physical interruptions during transmission. The design setup is scalable and with further development can be transformed into a fiber-optic transmission system. Due to its nature, laser communication is very secure and can provide a safe and private communication link. Overall, this paper demonstrates how laser communication can be an economical, durable, and effective means of information transfer.Keywords: Arduino microcontrollers, laser applications, user interfaces, wireless communication
Procedia PDF Downloads 3038619 The Impact of Artificial Intelligence on Food Nutrition
Authors: Antonyous Fawzy Boshra Girgis
Abstract:
Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 438618 Addressing Supply Chain Data Risk with Data Security Assurance
Authors: Anna Fowler
Abstract:
When considering assets that may need protection, the mind begins to contemplate homes, cars, and investment funds. In most cases, the protection of those assets can be covered through security systems and insurance. Data is not the first thought that comes to mind that would need protection, even though data is at the core of most supply chain operations. It includes trade secrets, management of personal identifiable information (PII), and consumer data that can be used to enhance the overall experience. Data is considered a critical element of success for supply chains and should be one of the most critical areas to protect. In the supply chain industry, there are two major misconceptions about protecting data: (i) We do not manage or store confidential/personally identifiable information (PII). (ii) Reliance on Third-Party vendor security. These misconceptions can significantly derail organizational efforts to adequately protect data across environments. These statistics can be exciting yet overwhelming at the same time. The first misconception, “We do not manage or store confidential/personally identifiable information (PII)” is dangerous as it implies the organization does not have proper data literacy. Enterprise employees will zero in on the aspect of PII while neglecting trade secret theft and the complete breakdown of information sharing. To circumvent the first bullet point, the second bullet point forges an ideology that “Reliance on Third-Party vendor security” will absolve the company from security risk. Instead, third-party risk has grown over the last two years and is one of the major causes of data security breaches. It is important to understand that a holistic approach should be considered when protecting data which should not involve purchasing a Data Loss Prevention (DLP) tool. A tool is not a solution. To protect supply chain data, start by providing data literacy training to all employees and negotiating the security component of contracts with vendors to highlight data literacy training for individuals/teams that may access company data. It is also important to understand the origin of the data and its movement to include risk identification. Ensure processes effectively incorporate data security principles. Evaluate and select DLP solutions to address specific concerns/use cases in conjunction with data visibility. These approaches are part of a broader solutions framework called Data Security Assurance (DSA). The DSA Framework looks at all of the processes across the supply chain, including their corresponding architecture and workflows, employee data literacy, governance and controls, integration between third and fourth-party vendors, DLP as a solution concept, and policies related to data residency. Within cloud environments, this framework is crucial for the supply chain industry to avoid regulatory implications and third/fourth party risk.Keywords: security by design, data security architecture, cybersecurity framework, data security assurance
Procedia PDF Downloads 928617 The Capacity Building in the Natural Disaster Management of Thailand
Authors: Eakarat Boonreang
Abstract:
The past two decades, Thailand faced the natural disasters, for instance, Gay typhoon in 1989, tsunami in 2004, and huge flood in 2011. The disaster management in Thailand was improved both structure and mechanism for cope with the natural disaster since 2007. However, the natural disaster management in Thailand has various problems, for examples, cooperation between related an organizations have not unity, inadequate resources, the natural disaster management of public sectors not proactive, people has not awareness the risk of the natural disaster, and communities did not participate in the natural disaster management. Objective of this study is to find the methods for capacity building in the natural disaster management of Thailand. The concept and information about the capacity building and the natural disaster management of Thailand were reviewed and analyzed by classifying and organizing data. The result found that the methods for capacity building in the natural disaster management of Thailand should be consist of 1)link operation and information in the natural disaster management between nation, province, local and community levels, 2)enhance competency and resources of public sectors which relate to the natural disaster management, 3)establish proactive natural disaster management both planning and implementation, 4)decentralize the natural disaster management to local government organizations, 5)construct public awareness in the natural disaster management to community, 6)support Community Based Disaster Risk Management (CBDRM) seriously, and 7)emphasis on participation in the natural disaster management of all stakeholders.Keywords: capacity building, Community Based Disaster Risk Management (CBDRM), Natural Disaster Management, Thailand
Procedia PDF Downloads 5598616 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2558615 The Relationship between Eating Disorders (Anorexia and Bulimia Nervosa) with Some of the Demographic Factors among University Students
Authors: Shima Hashemi, Firoozeh Ghazanfari
Abstract:
Introduction: Eating disorder is a psychiatric disorder that is increasingly growing. This study aimed to determine the relationship between eating disorders (anorexia and bulimia nervosa) with some of the demographic factors among Lorestan University of Medical Sciences students. Materials and Methods: This study is a cross-sectional and descriptive study that was done at Lorestan University of Medical Sciences in 2019. Four hundred fifty students were studied by stratified and cluster sampling methods. For gathering data, we use the standard questionnaire Eating Attitudes Test EAT (26). Data were analyzed using statistical software SPSS. Results: According to the results, 144 (32%) males and 305 (67.8%) females were studied. 88.7% were single, and 8.9% were married. In the anorexia nervosa group, the results showed that there was a significant meaning between demographic information, and the number of family members, marital status, BMI, level of education, family income, father and mother education, as well as in the bulimia nervosa group, there was no significant meaning with any demographic information (p>0.05). Conclusion: Anorexia and bulimia nervosa are two known types of eating disorders, and some demographic factors can be effective in causing or aggravating these disorders.Keywords: eating disorder, anorexia nervosa, bulimia nervosa, students
Procedia PDF Downloads 998614 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language
Authors: Samal Abzhanova, Saule Mussabekova
Abstract:
Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.Keywords: interactive education, interactive methods, system of education, teaching a language
Procedia PDF Downloads 2968613 Management Practices and Economic Performance of Smallholder Dairy Cattle Farms in Southern Vietnam
Authors: Ngoc-Hieu Vu
Abstract:
Although dairy production in Vietnam is a relatively new agricultural activity, milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to characterize husbandry practices, educational experiences, decision-making practices, constraints, income and expenses of smallholder dairy farms in Southern Vietnam. A total of 200 farms, located in the regions Ho Chi Minh (HCM, N=80 farms), Lam Dong (N=40 farms), Binh Duong (N=40 farms) and Long An (N=40 farms) were included. Between October 2013 and December 2014 farmers were interviewed twice. On average, farms owned 3.200m2, 2.000m2, and 193m2 of pasture, cropping and housing area, respectively. The number of total, milking and dry cows, heifers, and calves were 20.4, 11.6, 4.7, 3.3, and 2.9 head. The number of lactating dairy cows was higher (p<0.001) in HCM (15.5) and Lam Dong (14.7) than in Binh Duong (6.7) and Long An (10.7). Animals were mainly crossbred Holstein-Friesian (HF) cows with at least 75% HF origin (84%), whereas a higher (P<0.001) percentage of purebred HF was found in HCM and Lam Dong and crossbreds in Binh Duong and Long An. Animals were mainly raised in tie-stalls (94%) and machine-milked (80%). Farmers used their own replacement animals (76%), and both genetic and phenotypic information (67%) for selecting sires. Farmers were predominantly educated at primary school level (53%). Major constraints for dairy farming were the lack of capital (43%), diseases (17%), marketing (22%), lack of knowledge (8%) and feed (7%). Monthly profit per lactating cow was superior in Lam Dong (2,817 thousand VND) and HCM (2,798 thousand VND) compared to other regions in Long An (2,597 thousand VND), and Binh Duong (1,775 thousand VND). Regional differences may be mainly attributed to environmental factors, urbanization, and particularly governmental support and the availability of extension and financial institutions. Results from this study provide important information on farming practices of smallholders in Southern Vietnam that are useful in determining regions that need to be addressed by authorities in order to improve dairy production.Keywords: dairy farms, milk yield, Southern Vietnam, socio-economics
Procedia PDF Downloads 4668612 Spatial Analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients in Lagos, Nigeria
Authors: Akinsola Oluwatosin, Udofia Samuel, Odofin Mayowa
Abstract:
The study is aimed at assessing the Geographic Information System (GIS)-based spatial analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) cases for Lagos, Nigeria, with an objective to inform priority areas for public health planning and resource allocation. Multi-drug resistant tuberculosis (MDR-TB) develops due to problems such as irregular drug supply, poor drug quality, inappropriate prescription, and poor adherence to treatment. The shapefile(s) for this study were already georeferenced to Minna datum. The patient’s information was acquired on MS Excel and later converted to . CSV file for easy processing to ArcMap from various hospitals. To superimpose the patient’s information the spatial data, the addresses was geocoded to generate the longitude and latitude of the patients. The database was used for the SQL query to the various pattern of the treatment. To show the pattern of disease spread, spatial autocorrelation analysis was used. The result was displayed in a graphical format showing the areas of dispersing, random and clustered of patients in the study area. Hot and cold spot analysis was analyzed to show high-density areas. The distance between these patients and the closest health facility was examined using the buffer analysis. The result shows that 22% of the points were successfully matched, while 15% were tied. However, the result table shows that a greater percentage of it was unmatched; this is evident in the fact that most of the streets within the State are unnamed, and then again, most of the patients are likely to supply the wrong addresses. MDR-TB patients of all age groups are concentrated within Lagos-Mainland, Shomolu, Mushin, Surulere, Oshodi-Isolo, and Ifelodun LGAs. MDR-TB patients between the age group of 30-47 years had the highest number and were identified to be about 184 in number. The outcome of patients on ART treatment revealed that a high number of patients (300) were not ART treatment while a paltry 45 patients were on ART treatment. The result shows the Z-score of the distribution is greater than 1 (>2.58), which means that the distribution is highly clustered at a significance level of 0.01.Keywords: tuberculosis, patients, treatment, GIS, MDR-TB
Procedia PDF Downloads 1548611 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy
Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren
Abstract:
Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment
Procedia PDF Downloads 418610 Enhancement of Environmental Security by the Application of Wireless Sensor Network in Nigeria
Authors: Ahmadu Girgiri, Lawan Gana Ali, Mamman M. Baba
Abstract:
Environmental security clearly articulates the perfections and developments of various communities around the world irrespective of the region, culture, religion or social inclination. Although, the present state of insecurity has become serious issue devastating the peace, unity, stability and progress of man and his physical environment particularly in developing countries. Recently, measure of security and it management in Nigeria has been a bottle-neck to the effectiveness and advancement of various sectors that include; business, education, social relations, politics and above all an economy. Several measures have been considered on mitigating environment insecurity such as surveillance, demarcation, security personnel empowerment and the likes, but still the issue remains disturbing. In this paper, we present the application of new technology that contributes to the improvement of security surveillance known as “Wireless Sensor Network (WSN)”. The system is new, smart and emerging technology that provides monitoring, detection and aggregation of information using sensor nodes and wireless network. WSN detects, monitors and stores information or activities in the deployed area such as schools, environment, business centers, public squares, industries, and outskirts and transmit to end users. This will reduce the cost of security funding and eases security surveillance depending on the nature and the requirement of the deployment.Keywords: application, environment, insecurity, sensor, wireless sensor network
Procedia PDF Downloads 2678609 RSU Aggregated Message Delivery for VANET
Authors: Auxeeliya Jesudoss, Ashraph Sulaiman, Ratnakar Kotnana
Abstract:
V2V communication brings up several questions of scalability issues although message sharing in vehicular ad-hoc networks comprises of both Vehicle-to-Vehicle communications (V2V) and Vehicle to Infrastructure communication (V2I). It is not an easy task for a vehicle to verify all signatures of the messages sent by its neighboring vehicles in a timely manner, without resulting in message loss. Moreover, the communication overhead of a vehicle to authenticate another vehicle would increase together with the security of the system. Another issue to be addressed is the continuous mobility of vehicles which requires at least some information on the node’s own position to be revealed to the neighboring vehicles. This may facilitate the attacker to congregate information on a node’s position or its mobility patterns. In order to tackle these issues, this paper introduces a RSU aggregated message deliverance scheme called RAMeD. With RAMeD, roadside units (RSUs) are responsible for verifying the identity of the vehicles entering in its range, collect messages from genuine vehicles and to aggregate similar messages into groups before sending them to all the vehicles in its communication range. This aggregation will tremendously improve the rate of message delivery and reduce the message lose ratio by avoiding similar messages being sent to the vehicles redundantly. The proposed protocol is analyzed extensively to evaluate its merits and efficiency for vehicular communication.Keywords: vehicular ad-hoc networks, V2V, V2I, VANET communication, scalability, message aggregation
Procedia PDF Downloads 4098608 The Effect of Mandatory International Financial Reporting Standards Reporting on Investors' Herding Practice: Evidence from Eu Equity Markets
Authors: Mohammed Lawal Danrimi, Ervina Alfan, Mazni Abdullah
Abstract:
The purpose of this study is to investigate whether the adoption of International Financial Reporting Standards (IFRS) encourages information-based trading and mitigates investors’ herding practice in emerging EU equity markets. Utilizing a modified non-linear model of cross-sectional absolute deviation (CSAD), we find that the hypothesis that mandatory IFRS adoption improves the information set of investors and reduces irrational investment behavior may in some cases be incorrect, and the reverse may be true. For instance, with regard to herding concerns, the new reporting benchmark has rather aggravated investors’ herding practice. However, we also find that mandatory IFRS adoption does not appear to be the only instigator of the observed herding practice; national institutional factors, particularly regulatory quality, political stability and control of corruption, also significantly contribute to investors’ herd formation around the new reporting regime. The findings would be of interest to academics, regulators and policymakers in performing a cost-benefit analysis of the so-called better reporting regime, as well as financial statement users who make decisions based on firms’ fundamental variables, treating them as significant indicators of future market movement.Keywords: equity markets, herding, IFRS, CSAD
Procedia PDF Downloads 1798607 A Review Study on the Importance and Correlation of Crisis Literacy and Media Communications for Vulnerable Marginalized People During Crisis
Authors: Maryam Jabeen
Abstract:
In recent times, there has been a notable surge in attention towards diverse literacy concepts such as media literacy, information literacy, and digital literacy. These concepts have garnered escalating interest, spurring the emergence of novel approaches, particularly in the aftermath of the Covid-19 crisis. However, amidst discussions of crises, the domain of crisis literacy remains largely uncharted within academic exploration. Crisis literacy, also referred to as disaster literacy, denotes an individual's aptitude to not only comprehend but also effectively apply information, enabling well-informed decision-making and adherence to instructions about disaster mitigation, preparedness, response, and recovery. This theoretical and descriptive study seeks to transcend foundational literacy concepts, underscoring the urgency for an in-depth exploration of crisis literacy and its interplay with the realm of media communication. Given the profound impact of the pandemic experience and the looming uncertainty of potential future crises, there arises a pressing need to elevate crisis literacy, or disaster literacy, towards heightened autonomy and active involvement within the spheres of critical disaster preparedness, recovery initiatives, and media communication domains. This research paper is part of my ongoing Ph.D. research study, which explores on a broader level the Encoding and decoding of media communications in relation to crisis literacy. The primary objective of this research paper is to expound upon a descriptive, theoretical research endeavor delving into this domain. The emphasis lies in highlighting the paramount significance of media communications in literacy of crisis, coupled with an accentuated focus on its role in providing information to marginalized populations amidst crises. In conclusion, this research bridges the gap in crisis literacy correlation to media communications exploration, advocating for a comprehensive understanding of its dynamics and its symbiotic relationship with media communications. It intends to foster a heightened sense of crisis literacy, particularly within marginalized communities, catalyzing proactive participation in disaster preparedness, recovery processes, and adept media interactions.Keywords: covid-19, crisis literacy, crisis, marginalized, media and communications, pandemic, vulnerable people
Procedia PDF Downloads 648606 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning
Authors: Newton Muhury, Armando A. Apan, Tek Maraseni
Abstract:
This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater
Procedia PDF Downloads 1208605 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1268604 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images
Authors: Tian Zhang
Abstract:
Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment
Procedia PDF Downloads 1128603 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game
Authors: Hossam Ali-Hassan, Michael Bliemel
Abstract:
This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game
Procedia PDF Downloads 3308602 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags
Authors: Elias Akoury
Abstract:
Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.Keywords: lanthanide tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics
Procedia PDF Downloads 1928601 The Study of Cost Accounting in S Company Based on TDABC
Authors: Heng Ma
Abstract:
Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost. Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost. The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.Keywords: third-party logistics enterprises, TDABC, cost management, S company
Procedia PDF Downloads 3608600 The Use of Political Savviness in Dealing with Workplace Ostracism: A Social Information Processing Perspective
Authors: Amy Y. Wang, Eko L. Yi
Abstract:
Can vicarious experiences of workplace ostracism affect employees’ willingness to voice? Given the increasingly interdependent nature of the modern workplace in which employees rely on social interactions to fulfill organizational goals, workplace ostracism –the extent to which an individual perceives that he or she is ignored or excluded by others in the workplace– has garnered significant interest from scholars and practitioners alike. Extending beyond conventional studies that largely focus on the perspectives and outcomes of ostracized targets, we address the indirect effects of workplace ostracism on third-party employees embedded in the same social context. Using a social information processing approach, we propose that the ostracism of coworkers acts as political information that influences third-party employees in their decisions to engage in risky and discretionary behaviors such as employee voice. To make sense of and to navigate through experiences of workplace ostracism, we posit that both political understanding and political skill allow third party employees to minimize the risks and uncertainty of voicing. This conceptual model was tested by a study involving 154 supervisor-subordinate dyads of a publicly listed bio-technology firm located in Mainland China. Each supervisor and their direct subordinates composed of a work team; each team had a minimum of two subordinates and a maximum of four subordinates. Human resources used the master list to distribute the ID coded questionnaires to the matching names. All studied constructs were measured using existing scales proved effective in previous literature. Hypotheses were tested using Confirmatory Factor Analysis and Hierarchal Multiple Regression. All three hypotheses were supported which showed that employees were less likely to engage in voice behaviors when their coworkers reported having experienced ostracism in the workplace. Results also showed a significant three-way interaction between political understanding and political skill on the relationship between coworkers’ ostracism and employee voice, indicating that political savviness is a valuable resource in mitigating ostracism’s negative and indirect effects. Our results illustrated that an employee’s coworkers being ostracized indeed adversely impacted his or her own voice behavior. However, not all individuals reacted passively to the social context; rather, we found that politically savvy individuals – possessing both political understanding and political skill – and their voice behaviors were less impacted by ostracism in their work environment. At the same time, we found that having only political understanding or only political skill was significantly less effective in mitigating ostracism’s negative effects, suggesting a necessary duality of political knowledge and political skill in combatting ostracism. Organizational implications, recommendations, and future research ideas are also discussed.Keywords: employee voice, organizational politics, social information processing, workplace ostracism
Procedia PDF Downloads 1428599 Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain
Authors: Bastian Vollrath, Hartwig Hubel
Abstract:
In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis.Keywords: cyclic loading, direct method, elastic shakedown, multi-parameter loading, STPZ
Procedia PDF Downloads 1638598 A Novel PWM/PFM Controller for PSR Fly-Back Converter Using a New Peak Sensing Technique
Authors: Sanguk Nam, Van Ha Nguyen, Hanjung Song
Abstract:
For low-power applications such as adapters for portable devices and USB chargers, the primary side regulation (PSR) fly-back converter is widely used in lieu of the conventional fly-back converter using opto-coupler because of its simpler structure and lower cost. In the literature, there has been studies focusing on the design of PSR circuit; however, the conventional sensing method in PSR circuit using RC delay has a lower accuracy as compared to the conventional fly-back converter using opto-coupler. In this paper, we propose a novel PWM/PFM controller using new sensing technique for the PSR fly-back converter which can control an accurate output voltage. The conventional PSR circuit can sense the output voltage information from the auxiliary winding to regulate the duty cycle of the clock that control the output voltage. In the sensing signal waveform, there has two transient points at time the voltage equals to Vout+VD and Vout, respectively. In other to sense the output voltage, the PSR circuit must detect the time at which the current of the diode at the output equals to zero. In the conventional PSR flyback-converter, the sensing signal at this time has a non-sharp-negative slope that might cause a difficulty in detecting the output voltage information since a delay of sensing signal or switching clock may exist which brings out an unstable operation of PSR fly-back converter. In this paper instead of detecting output voltage at a non-sharp-negative slope, a sharp-positive slope is used to sense the proper information of the output voltage. The proposed PRS circuit consists of a saw-tooth generator, a summing circuit, a sample and hold circuit and a peak detector. Besides, there is also the start-up circuit which protects the chip from high surge current when the converter is turned on. Additionally, to reduce the standby power loss, a second mode which operates in a low frequency is designed beside the main mode at high frequency. In general, the operation of the proposed PSR circuit can be summarized as following: At the time the output information is sensed from the auxiliary winding, a saw-tooth signal from the saw-tooth generator is generated. Then, both of these signals are summed using a summing circuit. After this process, the slope of the peak of the sensing signal at the time diode current is zero becomes positive and sharp that make the peak easy to detect. The output of the summing circuit then is fed into a peak detector and the sample and hold circuit; hence, the output voltage can be properly sensed. By this way, we can sense more accurate output voltage information and extend margin even circuit is delayed or even there is the existence of noise by using only a simple circuit structure as compared with conventional circuits while the performance can be sufficiently enhanced. Circuit verification was carried out using 0.35μm 700V Magnachip process. The simulation result of sensing signal shows a maximum error of 5mV under various load and line conditions which means the operation of the converter is stable. As compared to the conventional circuit, we achieved very small error only used analog circuits compare with conventional circuits. In this paper, a PWM/PFM controller using a simple and effective sensing method for PSR fly-back converter has been presented in this paper. The circuit structure is simple as compared with the conventional designs. The gained results from simulation confirmed the idea of the designKeywords: primary side regulation, PSR, sensing technique, peak detector, PWM/PFM control, fly-back converter
Procedia PDF Downloads 3388597 Digital and Technological Transformation of Trekking Routes of Cappadocia Valleys
Authors: Şenay Güngör, Emre Elbaşi, Beyda Sadikoğlu, Utku Eren Bağci, Ömer Uzunel
Abstract:
One of the first places that comes to mind when it comes to tourism in Turkey is the Cappadocia Region. Due to its rich geological and geomorphological heritage, Cappadocia is one of the most visited destinations in the world. In fact, in the first half of 2023, the number of international tourists visiting Cappadocia exceeded 2 million. Considering that the economy of the Cappadocia region is largely based on tourism, it is understood that the quality and technology integration levels of the touristic services offered in the region are of great importance. In this context; as a result of the observations made in Kızılçukur, Meskendir, Güllüdere 1 and Güllüdere 2 valleys, where the important hiking routes of the Cappadocia Region are located, it has been observed that the digital level of the routes is insufficient. It has been observed that the telephone networks in the area are very low or have completely lost their signal strength. In addition, it was determined that the materials such as maps and brochures used by tourism agencies to introduce the valleys are simple and incomplete. It is thought that this situation negatively affects the tourists' orientation and touristic experience in the field. Eliminating these deficiencies identified in the field, improving the digital level of the above-mentioned hiking routes and increasing the added value in destinations are among the main objectives of our study. Within the scope of the study, a mobile application that can work both online and offline on hiking routes has been prepared. 3D modeling of Kızılçukur, Meskendir, Güllüdere 1 and Güllüdere 2 valleys were made using Geographical Information Systems (GIS). In addition, a website has been created to enable tourists to easily access all the above-mentioned information, visuals and technological applications related to the routes. As it is known, the effective use of information and communication technologies in touristic regions not only increases the satisfaction levels of tourists, but also positively affects the attraction of qualified tourists to the region. When the tangible and intangible outputs of this study are evaluated, it is thought that it will serve the social and economic development of the region and set an example for the digital transformation of other routes in the region.Keywords: nevşehir, cappadocia, cappadocia valleys, trekking route
Procedia PDF Downloads 648596 The Application of Insects in Forensic Investigations
Authors: Shirin Jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani
Abstract:
Forensic entomology is the science of study and analysis of insects evidences to aid in criminal investigation. Being aware of the distribution, biology, ecology and behavior of insects, which are founded at crime scene can provide information about when, where and how the crime has been committed. It has many application in criminal investigations. Its main use is estimation of the minimum time after death in suspicious death. The close association between insects and corpses and the use of insects in criminal investigations is the subject of forensic entomology. Because insects attack to the decomposing corpse and spawning on it from the initial stages. Forensic scientists can estimate the postmortem index by studying the insects population and the developing larval stages.In addition, toxicological and molecular studies of these insects can reveal the cause of death or even the identity of a victim. It also be used to detect drugs and poisons, and determination of incident location. Gathering robust entomological evidences is made possible for experts by recent Techniques. They can provide vital information about death, corpse movement or burial, submersion interval, time of decapitation, identification of specific sites of trauma, post-mortem artefacts on the body, use of drugs, linking a suspect to the scene of a crime, sexual molestations and the identification of suspects.Keywords: Forensic entomology, post mortem interval, insects, larvae
Procedia PDF Downloads 5038595 Electronic Data Interchange (EDI) in the Supply Chain: Impact on Customer Satisfaction
Authors: Hicham Amine, Abdelouahab Mesnaoui
Abstract:
Electronic data interchange EDI is the computer-to-computer exchange of structured business information. This information typically takes the form of standardized electronic business documents, such as invoices, purchase orders, bills of lading, and so on. The purpose of this study is to identify the impact EDI might have on supply chain and typically on customer satisfaction keeping in mind the constraints the organization might face. This study included 139 subject matter experts (SMEs) who participated by responding to a survey that was distributed. 85% responded that they are extremely for the implementation while 10% were neutral and 5% were against the implementation. From the quality assurance department, we have got 75% from the clients agreed to move on with the change whereas 10% stayed neutral and finally 15% were against the change. From the legal department where 80% of the answers were for the implementation and 10% of the participants stayed neutral whereas the last 10% were against it. The survey consisted of 40% male and 60% female (sex-ratio (F/M=1,5), who had chosen to participate. Our survey also contained 3 categories in terms of technical background where 80% are from technical background and 15% were from nontechnical background and 5% had some average technical background. This study examines the impact of EDI on customer satisfaction which is the primary hypothesis and justifies the importance of the implementation which enhances the customer satisfaction.Keywords: electronic data interchange, supply chain, subject matter experts, customer satisfaction
Procedia PDF Downloads 342