Search results for: plasma surface texturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7421

Search results for: plasma surface texturing

4331 Pharmacogenetics of Uridine Diphosphate Glucuronosyltransferase (UGT1A9) Genetic Polymorphism on Sodium Valproate Pharmacokinetics in Epilepsy

Authors: Murali Munisamy, Gauthaman Karunakaran, Mubarak Al-Gahtany, Vivekanandhan Subbiah, M. Manjari Tripati

Abstract:

Background: Sodium valproate is a widely prescribed broad-spectrum anti-epileptic drug. It shows high inter-individual variability in pharmacokinetics and pharmacodynamics and has a narrow therapeutic range. We evaluated the effects of polymorphic uridine diphosphate glucuronosyltransferase (UGT1A9) metabolizing enzyme on the pharmacokinetics of sodium valproate in the patients with epilepsy who showed toxicity to therapy. Methods: Genotype analysis of the patients was made with polymerase chain–restriction fragment length polymorphism (RFLP) with sequencing. Plasma drug concentrations were measured with reversed phase high-performance liquid chromatography (HPLC) and concentration–time data were analyzed by using a non-compartmental approach. Results: The results of this study suggested a significant genotypic as well as allelic association with valproic acid toxicity for UGT1A9 polymorphic enzymes. The elimination half-life (t 1/2=40.2 h) of valproic acid was longer and the clearance rate (CL=937 ml/h) was lower in the poor metabolizers group of UGT1A9 polymorphism who showed toxicity than in the intermediate metabolizers group (t1/2=35.5 h, CL=1042 ml/h) or the extensive metabolizers group (t1/2=26. h, CL=1,302 ml/h). Conclusion: Our findings suggest that the UGT1A9 genetic polymorphism plays a significant role in the steady state concentration of sodium valproate, and it thereby has an impact on the toxicity of the sodium valproate used in the patients with epilepsy.

Keywords: UGT1A9, sodium valporate, pharmacogenetics, polymorphism

Procedia PDF Downloads 425
4330 Reduction Behavior of Medium Grade Manganese Ore from Karangnunggal during a Sintering Process in Methane Gas

Authors: H. Aripin, I. Made Joni, Edvin Priatna, Nundang Busaeri, Svilen Sabchevski

Abstract:

In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The ores were grinded using a jar mill to pass through a 150 mesh sieve. The effects of keeping it at a temperature of 1200 °C in methane gas on the structural properties have been studied. The material’s properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. It has been found that the ore contains MnO₂ as the main constituents at about 46.80 wt.%. It can be also observed that the ore particles are agglomerated forming dense grains with different texture and morphology. The irregular-shaped grains with dark contrast, the large brighter grains, and smaller grains with bright texture and smooth surfaces are associated with the presence of manganese, calcium, and quartz, respectively. From XRD patterns, MnO₂ is reduced to hausmannite (Mn₃O₄), manganosite (MnO) and manganese carbide (Mn₇C₃). At a temperature of 1200°C the keeping time does not have any effect on the formation of crystals and the crystalline phases remain almost unchanged in the time range from 15 to 90 minutes. An increase of the keeping time up to 45 minutes during the sintering process leads to an increase of the MnO concentration, while at 90 minutes, the concentration decreases. At longer keeping times the excess reaction of the methane gas and manganese oxide in the ore causes an increase of carbon deposition. As a result, it blocks the particle surface and then hinders the reduction process of manganese oxide. From FTIR spectrum allows one to explain that the appearance of C=O stretching mode arises from absorption of atmospheric methane and manganese oxide of the ore. The intensity of this band increases with increasing the keeping time, indicating an increase of carbon deposition on the surface of manganese oxide.

Keywords: manganese, medium grade manganese ore, structural properties, keeping the temperature, carbon deposition

Procedia PDF Downloads 155
4329 Urban Block Design's Impact on the Indoor Daylight Quality, Heating and Cooling Loads of Buildings in the Semi-Arid Regions: Duhok City in Kurdistan Region-Iraq as a Case Study

Authors: Kawar Salih

Abstract:

It has been proven that designing sustainable buildings starts from early stages of urban design. The design of urban blocks specifically, is considered as one of the pragmatic strategies of sustainable urbanism. There have been previous studies that focused on the impact of urban block design and regulation on the outdoor thermal comfort in the semi-arid regions. However, no studies have been found that concentrated on that impact on the internal behavior of buildings of those regions specifically the daylight quality and energy performance. Further, most studies on semi-arid regions are focusing only on the cooling load reduction, neglecting the heating load. The study has focused on two parameters of urban block distribution which are the block orientation and the surface-to-volume ratio with the consideration of both heating and cooling loads of buildings. In Duhok (a semi-arid city in Kurdistan region of Iraq), energy consumption and daylight quality of different types of residential blocks have been examined using dynamic simulation. The findings suggest that there is a considerable higher energy load for heating than cooling, contradicting many previous studies about these regions. The results also highlight that the orientation of urban blocks can vary the energy consumption to 8%. Regarding the surface-to-volume ratio (S/V), it was observed that after the twice enlargement of the S/V, the energy consumption increased 15%. Though, the study demonstrates as well that there are opportunities for reducing energy consumption with the increase of the S/V which contradicts many previous research on S/V impacts on energy consumption. These results can help to design urban blocks with the bigger S/V than existing blocks in the city which it can provide better indoor daylight and relatively similar energy consumption.

Keywords: blocke orienation, building energy consumption, urban block design, semi-arid regions, surfacet-to-volume ratio

Procedia PDF Downloads 361
4328 Adsorbed Probe Molecules on Surface for Analyzing the Properties of Cu/SnO2 Supported Catalysts

Authors: Neha Thakur, Pravin S. More

Abstract:

The interaction of CO, H2 and LPG with Cu-dosed SnO2 catalysts was studied by means of Fourier transform infrared spectroscopy (FTIR). With increasing Cu loading, pronounced and progressive red shifts of the C–O stretching frequency associated with molecular CO adsorbed on the Cu/SnO2 component were observed. This decrease in n(CO) correlates with enhancement of CO dissociation at higher temperatures on Cu promoted SnO2 catalysts under conditions, where clean Cu is almost ineffective. In the conclusion, the capability of our technique is discussed, and a technique for enhancing the sensitivity in our technique is proposed.

Keywords: FTIR, spectroscopic, dissociation, n(CO)

Procedia PDF Downloads 305
4327 Various Shaped ZnO and ZnO/Graphene Oxide Nanocomposites and Their Use in Water Splitting Reaction

Authors: Sundaram Chandrasekaran, Seung Hyun Hur

Abstract:

Exploring strategies for oxygen vacancy engineering under mild conditions and understanding the relationship between dislocations and photoelectrochemical (PEC) cell performance are challenging issues for designing high performance PEC devices. Therefore, it is very important to understand that how the oxygen vacancies (VO) or other defect states affect the performance of the photocatalyst in photoelectric transfer. So far, it has been found that defects in nano or micro crystals can have two possible significances on the PEC performance. Firstly, an electron-hole pair produced at the interface of photoelectrode and electrolyte can recombine at the defect centers under illumination of light, thereby reducing the PEC performances. On the other hand, the defects could lead to a higher light absorption in the longer wavelength region and may act as energy centers for the water splitting reaction that can improve the PEC performances. Even if the dislocation growth of ZnO has been verified by the full density functional theory (DFT) calculations and local density approximation calculations (LDA), it requires further studies to correlate the structures of ZnO and PEC performances. Exploring the hybrid structures composed of graphene oxide (GO) and ZnO nanostructures offer not only the vision of how the complex structure form from a simple starting materials but also the tools to improve PEC performances by understanding the underlying mechanisms of mutual interactions. As there are few studies for the ZnO growth with other materials and the growth mechanism in those cases has not been clearly explored yet, it is very important to understand the fundamental growth process of nanomaterials with the specific materials, so that rational and controllable syntheses of efficient ZnO-based hybrid materials can be designed to prepare nanostructures that can exhibit significant PEC performances. Herein, we fabricated various ZnO nanostructures such as hollow sphere, bucky bowl, nanorod and triangle, investigated their pH dependent growth mechanism, and correlated the PEC performances with them. Especially, the origin of well-controlled dislocation-driven growth and its transformation mechanism of ZnO nanorods to triangles on the GO surface were discussed in detail. Surprisingly, the addition of GO during the synthesis process not only tunes the morphology of ZnO nanocrystals and also creates more oxygen vacancies (oxygen defects) in the lattice of ZnO, which obviously suggest that the oxygen vacancies be created by the redox reaction between GO and ZnO in which the surface oxygen is extracted from the surface of ZnO by the functional groups of GO. On the basis of our experimental and theoretical analysis, the detailed mechanism for the formation of specific structural shapes and oxygen vacancies via dislocation, and its impact in PEC performances are explored. In water splitting performance, the maximum photocurrent density of GO-ZnO triangles was 1.517mA/cm-2 (under UV light ~ 360 nm) vs. RHE with high incident photon to current conversion Efficiency (IPCE) of 10.41%, which is the highest among all samples fabricated in this study and also one of the highest IPCE reported so far obtained from GO-ZnO triangular shaped photocatalyst.

Keywords: dislocation driven growth, zinc oxide, graphene oxide, water splitting

Procedia PDF Downloads 294
4326 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine

Procedia PDF Downloads 203
4325 Zinc Nanoparticles Modified Electrode as an Insulin Sensor

Authors: Radka Gorejova, Ivana Sisolakova, Jana Shepa, Frederika Chovancova, Renata Orinakova

Abstract:

Diabetes mellitus (DM) is a serious metabolic disease characterized by chronic hyperglycemia. Often, the symptoms are not sufficiently observable at early stages, and so hyperglycemia causes pathological and functional changes before the diagnosis of the DM. Therefore, the development of an electrochemical sensor that will be fast, accurate, and instrumentally undemanding is currently needful. Screen-printed carbon electrodes (SPCEs) can be considered as the most suitable matrix material for insulin sensors because of the small size of the working electrode. It leads to the analyst's volume reduction to only 50 µl for each measurement. The surface of bare SPCE was modified by a combination of chitosan, multi-walled carbon nanotubes (MWCNTs), and zinc nanoparticles (ZnNPs) to obtain better electrocatalytic activity towards insulin oxidation. ZnNPs were electrochemically deposited on the chitosan-MWCNTs/SPCE surface using the pulse deposition method. Thereafter, insulin was determined on the prepared electrode using chronoamperometry and electrochemical impedance spectroscopy (EIS). The chronoamperometric measurement was performed by adding a constant amount of insulin in 0.1 M NaOH and PBS (2 μl) with the concentration of 2 μM, and the current response of the system was monitored after a gradual increase in concentration. Subsequently, the limit of detection (LOD) of the prepared electrode was determined via the Randles-Ševčík equation. The LOD was 0.47 µM. Prepared electrodes were studied also as the impedimetric sensors for insulin determination. Therefore, various insulin concentrations were determined via EIS. Based on the performed measurements, the ZnNPs/chitosan-MWCNTs/SPCE can be considered as a potential candidate for novel electrochemical sensor for insulin determination. Acknowledgments: This work has been supported by the projects Visegradfund project number 22020140, VEGA 1/0095/21 of the Slovak Scientific Grant Agency, and APVV-PP-COVID-20-0036 of the Slovak Research and Development Agency.

Keywords: zinc nanoparticles, insulin, chronoamperometry, electrochemical impedance spectroscopy

Procedia PDF Downloads 122
4324 Dimensional-Controlled Functional Gold Nanoparticles and Zinc Oxide Nanorods for Solar Water Splitting

Authors: Kok Hong Tan, Hing Wah Lee, Jhih-Wei Chen, Chang Fu Dee, Chung-Lin Wu, Siang-Piao Chai, Wei Sea Chang

Abstract:

Semiconductor photocatalyst is known as one of the key roles in developing clean and sustainable energy. However, most of the semiconductor only possesses photoactivity within the UV light region, and hence, decreases the overall photocatalyst efficiency. Generally, the overall effectiveness of the photocatalyst activity is determined by three critical steps: (i) light absorption efficiency and photoexcitation electron-hole pair generation, (ii) separation and migration of charge carriers to the surface of the photocatalyst, and (iii) surface reaction of the carriers with its environment. Much effort has been invested on optimizing hierarchical nanostructures of semiconductors for efficient photoactivity due to the fact that the visible light absorption capability and occurrence of the chemical reactions mostly depend on the dimension of photocatalysts. In this work, we incorporated zero-dimensional (0D) gold nanoparticles (AuNPs) and one dimensional (1D) Zinc Oxide (ZnO) nanorods (NRs) onto strontium titanate (STO) for efficient visible light absorption, charge transfer, and separation. We demonstrate that the electrical and optical properties of the photocatalyst can be tuned by controlling the dimensional structures of AuNPs and ZnO NRs. We found that smaller AuNPs sizes exhibited higher photoactivity because of Fermi level shifting toward the conductive band of STO, STO band gap narrowing and broadening of absorption spectrum to the visible light region. For ZnO NRs, it was found that the average ZnO NRs c-axis length must achieve of certain length to induce multiphoton absorption as a result of light reflection and trapping behavior in the free space between adjacent ZnO NRs hence broadening the absorption spectrum of ZnO from UV to visible light region. This work opens up a new way of broadening the absorption spectrum by incorporating controllable nanostructures of semiconductors, which is important in optimizing the solar water splitting process.

Keywords: gold nanoparticles, photoelectrochemical, PEC, semiconductor photocatalyst, zinc oxide nanorods

Procedia PDF Downloads 161
4323 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes

Authors: Husham Bayazed

Abstract:

Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.

Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry

Procedia PDF Downloads 86
4322 Evaluation of Insulin Sensitizing Effects of Different Fractions from Total Alcoholic Extract of Moringa oleifera Lam. Bark in Dexamethasone-Induced Insulin Resistant Rats

Authors: Hasanpasha N. Sholapur, Basanagouda M.Patil

Abstract:

Alcoholic extract of the bark of Moringa oleifera Lam. (MO), (Moringaceae), has been evaluated experimentally in the past for its insulin sensitizing potentials. In order to explore the possibility of the class of phytochemical(s) responsible for this experimental claim, the alcoholic extract was fractionated into non-polar [petroleum ether (PEF)], moderately non-polar [ethyl acetate (EAF)] and polar [aqueous (AQF)] fractions. All the fractions and pioglitazone (PIO) as standard (10mg/kg were p.o., once daily for 11 d) were investigated for their chronic effect on fasting plasma glucose, triglycerides, total cholesterol, insulin, oral glucose tolerance and acute effect on oral glucose tolerance in dexamethasone-induced (1 mg/kg s.c., once daily for 11 d) chronic model and acute model (1 mg/kg i.p., for 4 h) respectively for insulin resistance (IR) in rats. Among all the fractions tested, chronic treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced IR, indicated by prevention of hypertriglyceridemia, hyperinsulinemia and oral glucose intolerance, whereas treatment with AQF (95 mg/kg) prevented hepatic IR but not peripheral IR. In acute study single dose treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced oral glucose intolerance, fraction PEF did not show any effect on these parameters in both the models. The present study indicates that the triterpenoidal and the phenolic class of phytochemicals detected in EAF of alcoholic extract of MO bark may be responsible for the prevention of dexamethasone-induced insulin resistance in rats.

Keywords: Moringa oleifera, insulin resistance, dexamethasone, serum triglyceride, insulin, oral glucose tolerance test

Procedia PDF Downloads 372
4321 Sensory and Microbiological Sustainability of Smoked Meat Products–Smoked Ham in Order to Determine the Shelf-Life under the Changed Conditions at +15°C

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

The meat is in the group of perishable food which can be spoiled very rapidly if stored at room temperature. Salting in combination with smoke is intended to extend shelf life, and also to form the specific taste, odor and color. The smoke do not affect only on taste and flavor of the product, it has a bactericidal and oxidative effect and that is the reason because smoked products are less susceptible to oxidation and decay processes. According to mentioned the goal of this study was to evaluate shelf life of smoked ham, which is stored in conditions of high temperature (+15 °C). For the purposes of this study analyzes were conducted on eight samples of smoked ham every 7th day from the day of reception until 21st day. During this period, smoked ham is subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp. and yeasts and molds) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579 and yeasts and molds ISO 21527-2. Results of sensory analysis of smoked ham indicating that the samples after the first seven days of storage showed visual changes at the surface in the form of allocations of salt, most likely due to the process of drying out the internal parts of the product. The sample, after fifteen days of storage had intensive exterior changes, but the taste was still acceptable. Between the fifteenth and twenty-first day of storage, there is an unacceptable change on the surface and inside of the product and the occurrence of molds and yeasts but neither one analyzed pathogen was found. Based on the obtained results it can be concluded that this type of product cannot be stored for more than seven days at an elevated temperature of +15°C because there are a visual changes that would certainly have influence on decision of customers when purchase of this product is concerned.

Keywords: sustainability, smoked meat products, food engineering, agricultural process engineering

Procedia PDF Downloads 360
4320 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach

Authors: Md. Asif Ullah, M. A. R. Sarkar

Abstract:

This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.

Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer

Procedia PDF Downloads 360
4319 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats

Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.

Keywords: MDA, TBA, ciprofloxacin, HPLC-UV

Procedia PDF Downloads 325
4318 Uncovering Geometrical Ideas in Weaving: An Ethnomathematical Approaches to School Pedagogy

Authors: Jaya Bishnu Pradhan

Abstract:

Weaving mat is one of the common activities performed in different community generally in the rural part of Nepal. Mat weavers’ practice mathematical ideas and concepts implicitly in order to perform their job. This study is intended to uncover the mathematical ideas embedded in mat weaving that can help teachers and students for the teaching and learning of school geometry. The ethnographic methodology was used to uncover and describe the beliefs, values, understanding, perceptions, and attitudes of the mat weavers towards mathematical ideas and concepts in the process of mat weaving. A total of 4 mat weavers, two mathematics teachers and 12 students from grade level 6-8, who are used to participate in weaving, were selected for the study. The whole process of the mat weaving was observed in a natural setting. The classroom observation and in-depth interview were taken with the participants with the help of interview guidelines and observation checklist. The data obtained from the field were categorized according to the themes regarding mathematical ideas embedded in the weaving activities, and its possibilities in teaching learning of school geometry. In this study, the mathematical activities in different sectors of their lives, their ways of understanding the natural phenomena, and their ethnomathematical knowledge were analyzed with the notions of pluralism. From the field data, it was found that the mat weaver exhibited sophisticated geometrical ideas in the process of construction of frame of mat. They used x-test method for confirming if the mat is rectangular. Mat also provides a good opportunity to understand the space geometry. A rectangular form of mat may be rolled up when it is not in use and can be converted to a cylindrical form, which usually can be used as larder so as to reserve food grains. From the observation of the situations, this cultural experience enables students to calculate volume, curved surface area and total surface area of the cylinder. The possibilities of incorporation of these cultural activities and its pedagogical use were observed in mathematics classroom. It is argued that it is possible to use mat weaving activities in the teaching and learning of school geometry.

Keywords: ethnography, ethnomathematics, geometry, mat weaving, school pedagogy

Procedia PDF Downloads 157
4317 Quantity, Quality and Water Productivity of Mulberry Leaf Influenced by Different Methods, Levels of Irrigation and Mulching in Eastern Dry Zone of Karnataka, India

Authors: Chengalappa Seenappa, Narayanappa Devkumar, Narayanappa Nagaraja

Abstract:

Mulberry leaf is the major economic component in sericulture and quality of leaf produced per unit area has a direct effect on quality of cocoon. Among all the agronomical inputs, irrigation water has highest impact on mulberry leaf quantity and quality. The water productivity in sericulture in the country is inadequate and inefficient though India has the largest irrigated area. There is a need of proper irrigation methods and conservation practices to ensure efficiency and economy in water use. Hence, this field experiment was conducted at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India during 2013 and 2014 to know the quantity, quality and water productivity of mulberry influenced by different methods, levels of irrigation and mulching in Eastern Dry Zone (EDZ) of Karnataka, India. The results revealed that the mulberry leaf quantity, quality and water productivity were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield, chlorophyll, relative water, protein content and water productivity (42857 kg ha-1 yr-1, 8.54, 65.80%, 22.27% and 364.41 kg hacm-1, respectively) than surface drip at 1.0 CPE (38809 kg ha-1 yr-1, 7.34, 62.76%, 17.75% and 264 10 kg hacm-1, respectively) and micro spray jet at 1.0 CPE (39931 kg ha-1 yr-1, 7.96, 63.50%, 19.00%, 35617 kg ha-1 yr-1 and 271.83 kg hacm-1, respectively). Mulching treatment recorded maximum leaf yield, chlorophyll, relative water, protein content and water productivity (38035 kg ha-1 yr-1, 7.12, 62.11%, 16.14% and 330 kg hacm-1, respectively) compared to without mulching. These results clearly indicated that subsurface drip irrigation at lower level of irrigation (0.8 CPE) and mulching increased the quantity, quality and water productivity of mulberry leaf than surface drip and micro spray jet irrigation at higher level of irrigation (1.0 CPE) by saving 20 per cent of water. Therefore, in the coming days subsurface drip irrigation in mulberry cultivation may be more appropriate to realise higher yield, quality and water productivity in EDZ of Karnataka, India.

Keywords: subsurface drip irrigation, mulching, water productivity, mulberry

Procedia PDF Downloads 269
4316 Phytoextraction of Copper and Zinc by Willow Varieties in a Pot Experiment

Authors: Muhammad Mohsin, Mir Md Abdus Salam, Pertti Pulkkinen, Ari Pappinen

Abstract:

Soil and water contamination by heavy metals is a major challenging issue for the environment. Phytoextraction is an emerging, environmentally friendly and cost-efficient technology in which plants are used to eliminate pollutants from the soil and water. We aimed to assess the copper (Cu) and zinc (Zn) removal efficiency by two willow varieties such as Klara (S. viminalis x S. schwerinii x S. dasyclados) and Karin ((S.schwerinii x S. viminalis) x (S. viminalis x S.burjatica)) under different soil treatments (control/unpolluted, polluted, lime with polluted, wood ash with polluted). In 180 days of pot experiment, these willow varieties were grown in a highly polluted soil collected from Pyhasalmi mining area in Finland. The lime and wood ash were added to the polluted soil to improve the soil pH and observe their effects on metals accumulation in plant biomass. The Inductively Coupled Plasma Optical Emission Spectrometer (ELAN 6000 ICP-EOS, Perkin-Elmer Corporation) was used in this study to assess the heavy metals concentration in the plant biomass. The result shows that both varieties of willow have the capability to accumulate the considerable amount of Cu and Zn varying from 36.95 to 314.80 mg kg⁻¹ and 260.66 to 858.70 mg kg⁻¹, respectively. The application of lime and wood ash substantially affected the stimulation of the plant height, dry biomass and deposition of Cu and Zn into total plant biomass. Besides, the lime application appeared to upsurge Cu and Zn concentrations in the shoots and leaves in both willow varieties when planted in polluted soil. However, wood ash application was found more efficient to mobilize the metals in the roots of both varieties. The study recommends willow plantations to rehabilitate the Cu and Zn polluted soils.

Keywords: heavy metals, lime, phytoextraction, wood ash, willow

Procedia PDF Downloads 237
4315 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness

Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra

Abstract:

Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.

Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy

Procedia PDF Downloads 463
4314 Ergosterol Biosynthesis: Non-Conventional Method for Improving Process

Authors: Madalina Postaru, Alexandra Tucaliuc, Dan Cascaval, Anca Irina Galaction

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol) is the precursor of vitamin D2 (ergocalciferol), known as provitamin D2 as it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). As ergosterol is mainly accumulated in yeast cell membranes, especially in free form in the plasma-membrane, and the chemical synthesis of ergosterol does not represent an efficient method for its production, this study aimed to analyze the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. Our previous studies on ergosterol production by S. cerevisiae in batch and fed-batch fermentation systems indicated that the addition of n-dodecane led to the increase of almost 50% of this sterol concentration, the highest productivity being reached for the fed-batch process. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. In batch fermentation system, the study indicated that the oxygen mass transfer coefficient, kLa, is amplified for about 3 times by increasing the volumetric concentration of n-dodecane from 0 to 15%. Moreover, the increase of dissolved oxygen concentration by adding n-dodecane leads to the diminution for 3.5 times of the produced alcohol amount. In fed-batch fermentation process, the positive influence of hydrocarbon on oxygen transfer rate is amplified mainly at its higher concentration level, as the result of the increased yeasts cells amount. Thus, by varying n-dodecane concentration from 0 to 15% vol., the kLa value increase becomes more important than for the batch fermentation, being of 4 times

Keywords: ergosterol, yeast fermentation, n-dodecane, oxygen-vector

Procedia PDF Downloads 119
4313 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors

Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber

Abstract:

The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.

Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode

Procedia PDF Downloads 467
4312 A Comparative Study of European Terrazzo and Tibetan Arga Floor Making Techniques

Authors: Hubert Feiglstorfer

Abstract:

The technique of making terrazzo has been known since ancient times. During the Roman Empire, known as opus signinum, at the time of the Renaissance, known as composto terrazzo marmorino or at the turn of the 19th and 20th centuries, the use of terrazzo experienced a common use in Europe. In Asia, especially in the Himalayas and the Tibetan highlands, a particular floor and roof manufacturing technique is commonly used for about 1500 years, known as arga. The research question in this contribution asks for technical and cultural-historical synergies of these floor-making techniques. The making process of an arga floor shows constructive parallels to the European terrazzo. Surface processing by grinding, burnishing and sealing, in particular, reveals technological similarities. The floor structure itself, on the other hand, shows differences, for example in the use of hydraulic aggregate in the terrazzo, while the arga floor is used without hydraulic material, but the result of both techniques is a tight, water-repellent and shiny surface. As part of this comparative study, the materials, processing techniques and quality features of the two techniques are compared and parallels and differences are analysed. In addition to text and archive research, the methods used are results of material analyses and ethnographic research such as participant observation. Major findings of the study are the investigation of the mineralogical composition of arga floors and its comparison with terrazzo floors. The study of the cultural-historical context in which both techniques are embedded will give insight into technical developments in Europe and Asia, parallels and differences. Synergies from this comparison let possible technological developments in the production, conservation and renovation of European terrazzo floors appear in a new light. By making arga floors without cement-based aggregates, the renovation of historical floors from purely natural products and without using energy by means of a burning process can be considered.

Keywords: European and Asian crafts, material culture, floor making technology, terrazzo, arga, Tibetan building traditions

Procedia PDF Downloads 248
4311 An Investigation of Tetraspanin Proteins’ Role in UPEC Infection

Authors: Fawzyah Albaldi

Abstract:

Urinary tract infections (UTIs) are the most prevalent of infectious diseases and > 80% are caused by uropathogenic E. coli (UPEC). Infection occurs following adhesion to urothelial plaques on bladder epithelial cells, whose major protein constituent are the uroplakins (UPs). Two of the four uroplakins (UPIa and UPIb) are members of the tetraspanin superfamily. The UPEC adhesin FimH is known to interact directly with UPIa. Tetraspanins are a diverse family of transmembrane proteins that generally act as “molecular organizers” by binding different proteins and lipids to form tetraspanin enriched microdomains (TEMs). Previous work by our group has shown that TEMs are involved in the adhesion of many pathogenic bacteria to human cells. Adhesion can be blocked by tetraspanin-derived synthetic peptides, suggesting that tetraspanins may be valuable drug targets. In this study, we investigate the role of tetraspanins in UPEC adherence to bladder epithelial cells. Human bladder cancer cell lines (T24, 5637, RT4), commonly used as in-vitro models to investigate UPEC infection, along with primary human bladder cells, were used in this project. The aim was to establish a model for UPEC adhesion/infection with the objective of evaluating the impact of tetraspanin-derived reagents on this process. Such reagents could reduce the progression of UTI, particularly in patients with indwelling catheters. Tetraspanin expression on the bladder cells was investigated by q-PCR and flow cytometry, with CD9 and CD81 generally highly expressed. Interestingly, despite these cell lines being used by other groups to investigate FimH antagonists, uroplakin proteins (UPIa, UPIb and UPIII) were poorly expressed at the cell surface, although some were present intracellularly. Attempts were made to differentiate the cell lines, to induce cell surface expression of these UPs, but these were largely unsuccessful. Pre-treatment of bladder epithelial cells with anti-CD9 monoclonal antibody significantly decreased UPEC infection, whilst anti-CD81 had no effects. A short (15aa) synthetic peptide corresponding to the large extracellular region (EC2) of CD9 also significantly reduced UPEC adherence. Furthermore, we demonstrated specific binding of that fluorescently tagged peptide to the cells. CD9 is known to associate with a number of heparan sulphate proteoglycans (HSPGs) that have also been implicated in bacterial adhesion. Here, we demonstrated that unfractionated heparin (UFH)and heparin analogs significantly inhibited UPEC adhesion to RT4 cells, as did pre-treatment of the cells with heparinases. Pre-treatment with chondroitin sulphate (CS) and chondroitinase also significantly decreased UPEC adherence to RT4 cells. This study may shed light on a common pathogenicity mechanism involving the organisation of HSPGs by tetraspanins. In summary, although we determined that the bladder cell lines were not suitable to investigate the role of uroplakins in UPEC adhesion, we demonstrated roles for CD9 and cell surface proteoglycans in this interaction. Agents that target these may be useful in treating/preventing UTIs.

Keywords: UTIs, tspan, uroplakins, CD9

Procedia PDF Downloads 103
4310 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water

Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh

Abstract:

Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.

Keywords: graphite to graphene, oleophilic, produced water, separation

Procedia PDF Downloads 122
4309 Blister Formation Mechanisms in Hot Rolling

Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe

Abstract:

Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.

Keywords: FEG-SEM, nucleation, oxide morphology, surface defect

Procedia PDF Downloads 144
4308 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 145
4307 Comparison of Cu Nanoparticle Formation and Properties with and without Surrounding Dielectric

Authors: P. Dubcek, B. Pivac, J. Dasovic, V. Janicki, S. Bernstorff

Abstract:

When grown only to nanometric sizes, metallic particles (e.g. Ag, Au and Cu) exhibit specific optical properties caused by the presence of plasmon band. The plasmon band represents collective oscillation of the conduction electrons, and causes a narrow band absorption of light in the visible range. When the nanoparticles are embedded in a dielectric, they also cause modifications of dielectrics optical properties. This can be fine-tuned by tuning the particle size. We investigated Cu nanoparticle growth with and without surrounding dielectric (SiO2 capping layer). The morphology and crystallinity were investigated by GISAXS and GIWAXS, respectively. Samples were produced by high vacuum thermal evaporation of Cu onto monocrystalline silicon substrate held at room temperature, 100°C or 180°C. One series was in situ capped by 10nm SiO2 layer. Additionally, samples were annealed at different temperatures up to 550°C, also in high vacuum. The room temperature deposited samples annealed at lower temperatures exhibit continuous film structure: strong oscillations in the GISAXS intensity are present especially in the capped samples. At higher temperatures enhanced surface dewetting and Cu nanoparticles (nanoislands) formation partially destroy the flatness of the interface. Therefore the particle type of scattering is enhanced, while the film fringes are depleted. However, capping layer hinders particle formation, and continuous film structure is preserved up to higher annealing temperatures (visible as strong and persistent fringes in GISAXS), compared to the non- capped samples. According to GISAXS, lateral particle sizes are reduced at higher temperatures, while particle height is increasing. This is ascribed to close packing of the formed particles at lower temperatures, and GISAXS deduced sizes are partially the result of the particle agglomerate dimensions. Lateral maxima in GISAXS are an indication of good positional correlation, and the particle to particle distance is increased as the particles grow with temperature elevation. This coordination is much stronger in the capped and lower temperature deposited samples. The dewetting is much more vigorous in the non-capped sample, and since nanoparticles are formed in a range of sizes, correlation is receding both with deposition and annealing temperature. Surface topology was checked by atomic force microscopy (AFM). Capped sample's surfaces were smoother and lateral size of the surface features were larger compared to the non-capped samples. Altogether, AFM results suggest somewhat larger particles and wider size distribution, and this can be attributed to the difference in probe size. Finally, the plasmonic effect was monitored by UV-Vis reflectance spectroscopy, and relative weak plasmonic effect could be explained by uncomplete dewetting or partial interconnection of the formed particles.

Keywords: coper, GISAXS, nanoparticles, plasmonics

Procedia PDF Downloads 123
4306 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 348
4305 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells

Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski

Abstract:

The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).

Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC

Procedia PDF Downloads 87
4304 Optimized Passive Heating for Multifamily Dwellings

Authors: Joseph Bostick

Abstract:

A method of decreasing the heating load of HVAC systems in a single-dwelling model of a multifamily building, by controlling movable insulation through the optimization of flux, time, surface incident solar radiation, and temperature thresholds. Simulations are completed using a co-simulation between EnergyPlus and MATLAB as an optimization tool to find optimal control thresholds. Optimization of the control thresholds leads to a significant decrease in total heating energy expenditure.

Keywords: energy plus, MATLAB, simulation, energy efficiency

Procedia PDF Downloads 174
4303 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition

Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi

Abstract:

Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.

Keywords: porous medium, power law fluids, surface heat flux, vertical wedge

Procedia PDF Downloads 312
4302 Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process

Authors: Aliya Kurbanova, Nurlan Akhmetov, Abilmansur Yeshmuratov, Yerzhigit Sugurbekov, Ramiz Zulkharnay, Gulzat Demeuova, Murat Baisariyev, Gulnar Sugurbekova

Abstract:

Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V.

Keywords: demetallization, deasphalting, electrochemical removal, heavy metals, petroleum engineering, solvent extraction

Procedia PDF Downloads 326