Search results for: open source data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30065

Search results for: open source data

26975 A Model Architecture Transformation with Approach by Modeling: From UML to Multidimensional Schemas of Data Warehouses

Authors: Ouzayr Rabhi, Ibtissam Arrassen

Abstract:

To provide a complete analysis of the organization and to help decision-making, leaders need to have relevant data; Data Warehouses (DW) are designed to meet such needs. However, designing DW is not trivial and there is no formal method to derive a multidimensional schema from heterogeneous databases. In this article, we present a Model-Driven based approach concerning the design of data warehouses. We describe a multidimensional meta-model and also specify a set of transformations starting from a Unified Modeling Language (UML) metamodel. In this approach, the UML metamodel and the multidimensional one are both considered as a platform-independent model (PIM). The first meta-model is mapped into the second one through transformation rules carried out by the Query View Transformation (QVT) language. This proposal is validated through the application of our approach to generating a multidimensional schema of a Balanced Scorecard (BSC) DW. We are interested in the BSC perspectives, which are highly linked to the vision and the strategies of an organization.

Keywords: data warehouse, meta-model, model-driven architecture, transformation, UML

Procedia PDF Downloads 160
26974 The Effects of Parent Psycho-Education Program on Problem-Solving Skills of Parents

Authors: Tuba Bagatarhan, Digdem Muge Siyez

Abstract:

The aim of this research is to examine the effects of the psycho-education program on problem-solving skills of parents of high school students in the risk group for Internet addiction. A quasi-experimental design based on the pre-test, post-test and follow up test including experimental and control groups was used in the research. The independent variable of the study was the parent psycho-education program on problem-solving skills; the dependent variable was the problem-solving skills of parents. The research was conducted with the parents of 52 tenth-grade students in the risk group for Internet addiction from two high schools and volunteer to participate research on evaluation of the effectiveness of internet addiction prevention psycho-education program within the scope of another study. In this study, as 26 students were in the experimental groups in the first-high school, the parents of these 26 students were asked if they would like to participate in the parent psycho-education program on parental problem-solving skills. The parents were volunteer to participate in parent psycho-education program assigned experimental group (n=13), the other parents assigned control group 1 (n=13) in the first high school. The parents of the 26 students were randomly assigned to the control group 2 (n=13) and control group 3 (n=13) in the second high school. The data of the research was obtained via the problem behavior scale - coping - parents form and demographic questionnaire. Four-session parent psycho-education program to cope with Internet addiction and other problem behaviors in their children was applied to the experimental group. No program was applied to the control group 1, control group 2 and control group 3. In addition, an internet addiction prevention psycho-education program was applied to the children of the parents in experimental group and control group 1 within the scope of another study. In the analysis of the obtained data, two-factor variance analysis for repeated measures on one factor was used. Bonferroni post-hoc test was used to find the source of intergroup difference. According to the findings, the psycho-education program significantly increases parents’ problem-solving abilities, and the increase has continued throughout the follow-up test.

Keywords: internet addiction, parents, prevention, psyho-education

Procedia PDF Downloads 182
26973 Surgical Outcomes of Lung Cancer Surgery in Tasmania

Authors: Ayeshmanthe Rathnayake, Ashutosh Hardikar

Abstract:

Introduction: Lung cancer is the most common cause of cancer death in Australia, with more than 13000 cases per year. Until now, there has been a major deficiency of national comprehensive thoracic surgery data. The thoracic workload for surgeons as well as caseload per unit, is highly variable, with some centres performing less than 15 cases per annum, thus raising concerns about optimal care at low-volume sites. This is an attempt to review the outcomes of lung cancer surgery in Tasmania. Method: The objective of this study is to determine the surgical outcomes of lung cancer surgery at Royal Hobart Hospital (RHH) with the primary outcome of surgical mortality. Four hundred fifty-one cases were analysed retrospectively from 2010 to May 2022. Results: A total of 451 patients underwent thoracic surgery with a primary diagnosis of lung cancer. The primary outcome of 30-day mortality was <0.5%. The mean age was 65.3 years, with male predominance and a 4.2% prevalence of Indigenous Australians. The mean LOS was 7.5 days. The surgical approach was either VATS (50.3%) or Thoracotomy (49.7%), with a trend towards the former in recent years with an increase in the proportion of VATS from 18.2% to 51% (p<0.05) in complex resections since 2019. A corresponding reduction in conversion rate to open was observed (18% vs. 5.5%), and there were no deaths within this subgroup. Lung resections were divided into lobectomy (55.4%), wedge resection (36.8%), segmentectomy (2.9%) and pneumonectomy (4.9%). The RHH demonstrates good surgical outcomes for lung cancer and provides a sustainable service for Tasmania. Conclusion: This retrospective study reports the surgical outcomes of lung cancer surgery at the Royal Hobart Hospital, thereby providing insight into the surgical management of lung cancer in the state thus far. The state has been slow to catch up on the minimally invasive program, but the overall results have been comparable to most peers.

Keywords: lung cancer, thoracic surgery, lung resection, surgical outcomes

Procedia PDF Downloads 97
26972 Secured Embedding of Patient’s Confidential Data in Electrocardiogram Using Chaotic Maps

Authors: Butta Singh

Abstract:

This paper presents a chaotic map based approach for secured embedding of patient’s confidential data in electrocardiogram (ECG) signal. The chaotic map generates predefined locations through the use of selective control parameters. The sample value difference method effectually hides the confidential data in ECG sample pairs at these predefined locations. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through various statistical and clinical performance measures. Statistical metrics comprise of Percentage Root Mean Square Difference (PRD) and Peak Signal to Noise Ratio (PSNR). Further, a comparative analysis between proposed method and existing approaches was also performed. The results clearly demonstrated the superiority of proposed method.

Keywords: chaotic maps, ECG steganography, data embedding, electrocardiogram

Procedia PDF Downloads 195
26971 Promoting Critical Thinking in a Robotics Class

Authors: Ian D. Walker

Abstract:

This paper describes the creation and teaching of an undergraduate course aimed at promoting critical thinking among the students in the course. The class, Robots in Business and Society, taught at Clemson University, is open to all undergraduate students of any discipline. It is taught as part of Clemson’s online class program and is structured to promote critical thinking via a series of interactive discussion boards and assignments. Critical thinking is measured via pre- and post-testing using a benchmark standardized test. The paper will detail the class organization, and describe and discuss the results and lessons learned with respect to improvement of student critical thinking from three offerings of the class.

Keywords: critical thinking, pedagogy, robotics, undergraduate teaching

Procedia PDF Downloads 288
26970 Solar Energy for Decontamination of Ricinus communis

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The solar energy was used as a source of heating in Ricinus communis pie with the objective of eliminating or minimizing the percentage of the poison in it, so that it can be used as animal feed. A solar cylinder and plane collector were used as heating system. In the focal area of the solar concentrator a gutter support endowed with stove effect was placed. Parameters that denote the efficiency of the systems for the proposed objective was analyzed.

Keywords: solar energy, concentrate, Ricinus communis, temperature

Procedia PDF Downloads 424
26969 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 324
26968 Factors Associated with Rural-Urban Migration and Its Associated Health Hazards on the Female Adolescents in Kumasi Metropolis

Authors: Freda Adomaa, Samuel Oppong Boampong, Charles Gyamfi Rahman

Abstract:

The living and working environment of migrants and their access to healthcare services induce good or poor health. This study was conducted to assess the factors associated with rural-urban migration and its associated health hazards among female adolescents. A sample size of two hundred (200) was chosen in which all responded to questionnaires comprising closed-ended questions, which were distributed to gather data from the respondents, after which it was analyzed using the Statistical Package for Social Sciences (SPSS) version 20. The utilized three causes of rural-urban migration thus political, economic and socio-cultural. The study revealed that political situations such as regional inequality (65.4%) and ethnic conflicts (78.2%) whereas economic factors such as lack of amenities (82.3%), lack of employment in rural communities (77.4%), lack of education (74%), and poverty (85.3%) as well as socio-cultural factors such as divorced parents (65.6%), media influence (79.1%), family conflicts (59.4%) and appealing urban informal sector (65.2%) are major causes of migration. Respondents’ encountered challenges such as poor remuneration for services (87.2%), being maltreated by a colleague or worker (69%), sleeping in open space (73.3%), and harassment by the task force (71.4%) and teenage pregnancies (58.5%). The study concluded that the three variables play a key role in adolescent migration and when they travel they end up getting involved in serious health hazardous behaviors such as rapes as well as physical and psychological harassments’. The study, therefore, recommends that vocational training of the rural people on small scale industries (non-farm) activities that could generate an income for the rural household should be introduced.

Keywords: rural, urban, migration, female health hazards

Procedia PDF Downloads 133
26967 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes

Authors: Hyun-Woo Cho

Abstract:

The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.

Keywords: process data, data mining, process operation, real-time monitoring

Procedia PDF Downloads 640
26966 Evaluation of Ficus racemosa (Moraceae) as a Potential Source for Drug Formulation Against Coccidiosis

Authors: Naveeda Akhtar Qureshi, Wajiha

Abstract:

Coccidiosis is a protozoan parasitic disease of genus Eimeria. It is an avian infection causing a great economic loss of 3 billion USD per year globally. A number of anticoccidial drugs are in use however many of them have side effects and cost effective. With increase in poultry demand throughout the world there is a need of more drugs and vaccines against coccidiosis. The present study is based upon the use of F. racemosa a medicinal plant to be a potential source of anticoccidial agents. The methanolic leaves extract was fractionated by column and thin layer chromatography and got nineteen fractions. Each fraction different concentrations was evaluated for its anticoccidial properties in an invitro experiment against E. tenella, E. necatrix and E. mitis. The anticoccidial active fractions were further characterized by spectroscopy (UV-Vis, FTIR) and GC-MS analysis. The in silico molecular docking of active fractions identified compounds were carried out. Among all fractions significantly maximum sporulation inhibition efficacy was shown by F-19 (67.11±2.18) followed by F-15 (65.21±1.34) at concentration of 30mg/ml against E. tenella. The significantly highest sporozoites viability inhibition was shown by F-19 (69.23±2.11) followed by F-15 (67.14±1.52) against E. necatrix at concentration 30mg/ml. Anticoccidial active fractions 15 and 19 showed peak spectrum at 207 and 202nm respectively by UV analysis. Their FTIR analysis confirmed the presence of carboxylic acid, amines, phenols, etc. Anticoccidial active compounds like Cyclododecane methanol, oleic acid, Octadecanoic acid, etc were identified by GC-MS analysis. Identified compounds in silico molecular docking study showed that cyclododecane methanol of F-19 and oleic acid of F-15 showed highest binding affinity with target S-Adenosylmethionine synthase. Hence for further authentication in vivo anticoccidial studies are recommended.

Keywords: ficus racemosa, cluster fig, column chromatography, anticoccidial fractions, GC-MS, molecular docking., s-adenosylmethionine synthase

Procedia PDF Downloads 85
26965 Practices of Waterwise Circular Economy in Water Protection: A Case Study on Pyhäjärvi, SW Finland

Authors: Jari Koskiaho, Teija Kirkkala, Jani Salminen, Sarianne Tikkanen, Sirkka Tattari

Abstract:

Here, phosphorus (P) loading to the lake Pyhäjärvi (SW Finland) was reviewed, load reduction targets were determined, and different measures of waterwise circular economy to reach the targets were evaluated. In addition to the P loading from the lake’s catchment, there is a significant amount of internal P loading occurring in the lake. There are no point source emissions into the lake. Thus, the most important source of external nutrient loading is agriculture. According to the simulations made with LLR-model, the chemical state of the lake is at the border of the classes ‘Satisfactory’ and ‘Good’. The LLR simulations suggest that a reduction of some hundreds of kilograms in annual P loading would be needed to reach an unquestionably ‘Good’ state. Evaluation of the measures of the waterwise circular economy suggested that they possess great potential in reaching the target P load reduction. If they were applied extensively and in a versatile, targeted manner in the catchment, their combined effect would reach the target reduction. In terms of cost-effectiveness, the waterwise measures were ranked as follows: The best: Fishing, 2nd best: Recycling of vegetation of reed beds, wetlands and buffer zones, 3rd best: Recycling field drainage waters stored in wetlands and ponds for irrigation, 4th best: Controlled drainage and irrigation, and 5th best: Recycling of the sediments of wetlands and ponds for soil enrichment. We also identified various waterwise nutrient recycling measures to decrease the P content of arable land. The cost-effectiveness of such measures may be very good. Solutions are needed to Finnish water protection in general, and particularly for regions like lake Pyhäjärvi catchment with intensive domestic animal production, of which the ‘P-hotspots’ are a crucial issue.

Keywords: circular economy, lake protection, mitigation measures, phosphorus

Procedia PDF Downloads 106
26964 Assessing the Experiences of South African and Indian Legal Profession from the Perspective of Women Representation in Higher Judiciary: The Square Peg in a Round Hole Story

Authors: Sricheta Chowdhury

Abstract:

To require a woman to choose between her work and her personal life is the most acute form of discrimination that can be meted out against her. No woman should be given a choice to choose between her motherhood and her career at Bar, yet that is the most detrimental discrimination that has been happening in Indian Bar, which no one has questioned so far. The falling number of women in practice is a reality that isn’t garnering much attention given the sharp rise in women studying law but is not being able to continue in the profession. Moving from a colonial misogynist whim to a post-colonial “new-age construct of Indian woman” façade, the policymakers of the Indian Judiciary have done nothing so far to decolonize itself from its rudimentary understanding of ‘equality of gender’ when it comes to the legal profession. Therefore, when Indian jurisprudence was (and is) swooning to the sweeping effect of transformative constitutionalism in the understanding of equality as enshrined under the Indian Constitution, one cannot help but question why the legal profession remained out of brushing effect of achieving substantive equality. The Airline industry’s discriminatory policies were not spared from criticism, nor were the policies where women’s involvement in any establishment serving liquor (Anuj Garg case), but the judicial practice did not question the stereotypical bias of gender and unequal structural practices until recently. That necessitates the need to examine the existing Bar policies and the steps taken by the regulatory bodies in assessing the situations that are in favor or against the purpose of furthering women’s issues in present-day India. From a comparative feminist point of concern, South Africa’s pro-women Bar policies are attractive to assess their applicability and extent in terms of promoting inclusivity at the Bar. This article intends to tap on these two countries’ potential in carving a niche in giving women an equal platform to play a substantive role in designing governance policies through the Judiciary. The article analyses the current gender composition of the legal profession while endorsing the concept of substantive equality as a requisite in designing an appropriate appointment process of the judges. It studies the theoretical framework on gender equality, examines the international and regional instruments and analyses the scope of welfare policies that Indian legal and regulatory bodies can undertake towards a transformative initiative in re-modeling the Judiciary to a more diverse and inclusive institution. The methodology employs a comparative and analytical understanding of doctrinal resources. It makes quantitative use of secondary data and qualitative use of primary data collected for determining the present status of Indian women legal practitioners and judges. With respect to quantitative data, statistics on the representation of women as judges and chief justices and senior advocates from their official websites from 2018 till present have been utilized. In respect of qualitative data, results of the structured interviews conducted through open and close-ended questions with retired lady judges of the higher judiciary and senior advocates of the Supreme Court of India, contacted through snowball sampling, are utilized.

Keywords: gender, higher judiciary, legal profession, representation, substantive equality

Procedia PDF Downloads 83
26963 Improving the Utility of Social Media in Pharmacovigilance: A Mixed Methods Study

Authors: Amber Dhoot, Tarush Gupta, Andrea Gurr, William Jenkins, Sandro Pietrunti, Alexis Tang

Abstract:

Background: The COVID-19 pandemic has driven pharmacovigilance towards a new paradigm. Nowadays, more people than ever before are recognising and reporting adverse reactions from medications, treatments, and vaccines. In the modern era, with over 3.8 billion users, social media has become the most accessible medium for people to voice their opinions and so provides an opportunity to engage with more patient-centric and accessible pharmacovigilance. However, the pharmaceutical industry has been slow to incorporate social media into its modern pharmacovigilance strategy. This project aims to make social media a more effective tool in pharmacovigilance, and so reduce drug costs, improve drug safety and improve patient outcomes. This will be achieved by firstly uncovering and categorising the barriers facing the widespread adoption of social media in pharmacovigilance. Following this, the potential opportunities of social media will be explored. We will then propose realistic, practical recommendations to make social media a more effective tool for pharmacovigilance. Methodology: A comprehensive systematic literature review was conducted to produce a categorised summary of these barriers. This was followed by conducting 11 semi-structured interviews with pharmacovigilance experts to confirm the literature review findings whilst also exploring the unpublished and real-life challenges faced by those in the pharmaceutical industry. Finally, a survey of the general public (n = 112) ascertained public knowledge, perception, and opinion regarding the use of their social media data for pharmacovigilance purposes. This project stands out by offering perspectives from the public and pharmaceutical industry that fill the research gaps identified in the literature review. Results: Our results gave rise to several key analysis points. Firstly, inadequacies of current Natural Language Processing algorithms hinder effective pharmacovigilance data extraction from social media, and where data extraction is possible, there are significant questions over its quality. Social media also contains a variety of biases towards common drugs, mild adverse drug reactions, and the younger generation. Additionally, outdated regulations for social media pharmacovigilance do not align with new, modern General Data Protection Regulations (GDPR), creating ethical ambiguity about data privacy and level of access. This leads to an underlying mindset of avoidance within the pharmaceutical industry, as firms are disincentivised by the legal, financial, and reputational risks associated with breaking ambiguous regulations. Conclusion: Our project uncovered several barriers that prevent effective pharmacovigilance on social media. As such, social media should be used to complement traditional sources of pharmacovigilance rather than as a sole source of pharmacovigilance data. However, this project adds further value by proposing five practical recommendations that improve the effectiveness of social media pharmacovigilance. These include: prioritising health-orientated social media; improving technical capabilities through investment and strategic partnerships; setting clear regulatory guidelines using multi-stakeholder processes; creating an adverse drug reaction reporting interface inbuilt into social media platforms; and, finally, developing educational campaigns to raise awareness of the use of social media in pharmacovigilance. Implementation of these recommendations would speed up the efficient, ethical, and systematic adoption of social media in pharmacovigilance.

Keywords: adverse drug reaction, drug safety, pharmacovigilance, social media

Procedia PDF Downloads 82
26962 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 26
26961 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 213
26960 Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water

Authors: Sudarshan Kalsulkar, Sunil S. Bhagwat

Abstract:

Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material.

Keywords: activated carbon, Barley husk, biosorption, decontamination, heavy metal removal, water treatment

Procedia PDF Downloads 415
26959 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 193
26958 Study of Radiation Response in Lactobacillus Species

Authors: Kanika Arora, Madhu Bala

Abstract:

The small intestine epithelium is highly sensitive and major targets of ionizing radiation. Radiation causes gastrointestinal toxicity either by direct deposition of energy or indirectly (inflammation or bystander effects) generating free radicals and reactive oxygen species. Oxidative stress generated as a result of radiation causes active inflammation within the intestinal mucosa leading to structural and functional impairment of gut epithelial barrier. As a result, there is a loss of tolerance to normal dietary antigens and commensal flora together with exaggerated response to pathogens. Dysbiosis may therefore thought to play a role in radiation enteropathy and can contribute towards radiation induced bowel toxicity. Lactobacilli residing in the gut shares a long conjoined evolutionary history with their hosts and by doing so these organisms have developed an intimate and complex symbiotic relationships. The objective behind this study was to look for the strains with varying resistance to ionizing radiation and to see whether the niche of the bacteria is playing any role in radiation resistance property of bacteria. In this study, we have isolated the Lactobacillus spp. from probiotic preparation and murine gastrointestinal tract, both of which were supposed to be the important source for its isolation. Biochemical characterization did not show a significant difference in the properties, while a significant preference was observed in carbohydrate utilization capacity by the isolates. Effect of ionizing radiations induced by Co60 gamma radiation (10 Gy) on lactobacilli cells was investigated. A cellular survival curve versus absorbed doses was determined. Radiation resistance studies showed that the response of isolates towards cobalt-60 gamma radiation differs from each other and significant decrease in survival was observed in a dose-dependent manner. Thus the present study revealed that the property of radioresistance in Lactobacillus depends upon the source from where they have been isolated.

Keywords: dysbiosis, lactobacillus, mitigation, radiation

Procedia PDF Downloads 137
26957 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
26956 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia

Authors: Samira Melki, Moncef Gueddari

Abstract:

In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.

Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia

Procedia PDF Downloads 202
26955 Potentials for Learning History through Role-Playing in Virtual Reality: An Exploratory Study on Role-Playing on a Virtual Heritage Site

Authors: Danzhao Cheng, Eugene Ch'ng

Abstract:

Virtual Reality technologies can reconstruct cultural heritage objects and sites to a level of realism. Concentrating mostly on documenting authentic data and accurate representations of tangible contents, current virtual heritage is limited to accumulating visually presented objects. Such constructions, however, are fragmentary and may not convey the inherent significance of heritage in a meaningful way. In order to contextualise fragmentary historical contents where history can be told, a strategy is to create a guided narrative via role-playing. Such an approach can strengthen the logical connections of cultural elements and facilitate creative synthesis within the virtual world. This project successfully reconstructed the Ningbo Sanjiangkou VR site in Yuan Dynasty combining VR technology and role-play game approach. The results with 80 pairs of participants suggest that VR role-playing can be beneficial in a number of ways. Firstly, it creates thematic interactivity which encourages users to explore the virtual heritage in a more entertaining way with task-oriented goals. Secondly, the experience becomes highly engaging since users can interpret a historical context through the perspective of specific roles that exist in past societies. Thirdly, personalisation allows open-ended sequences of the expedition, reinforcing user’s acquisition of procedural knowledge relative to the cultural domain. To sum up, role-playing in VR poses great potential for experiential learning as it allows users to interpret a historical context in a more entertaining way.

Keywords: experiential learning, maritime silk road, role-playing, virtual heritage, virtual reality

Procedia PDF Downloads 164
26954 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: concrete bridges, deterioration, Markov chains, probability matrix

Procedia PDF Downloads 336
26953 Locating Potential Site for Biomass Power Plant Development in Central Luzon Philippines Using GIS-Based Suitability Analysis

Authors: Bryan M. Baltazar, Marjorie V. Remolador, Klathea H. Sevilla, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Biomass energy is a traditional source of sustainable energy, which has been widely used in developing countries. The Philippines, specifically Central Luzon, has an abundant source of biomass. Hence, it could supply abundant agricultural residues (rice husks), as feedstock in a biomass power plant. However, locating a potential site for biomass development is a complex process which involves different factors, such as physical, environmental, socio-economic, and risks that are usually diverse and conflicting. Moreover, biomass distribution is highly dispersed geographically. Thus, this study develops an integrated method combining Geographical Information Systems (GIS) and methods for energy planning; Multi-Criteria Decision Analysis (MCDA) and Analytical Hierarchy Process (AHP), for locating suitable site for biomass power plant development in Central Luzon, Philippines by considering different constraints and factors. Using MCDA, a three level hierarchy of factors and constraints was produced, with corresponding weights determined by experts by using AHP. Applying the results, a suitability map for Biomass power plant development in Central Luzon was generated. It showed that the central part of the region has the highest potential for biomass power plant development. It is because of the characteristics of the area such as the abundance of rice fields, with generally flat land surfaces, accessible roads and grid networks, and low risks to flooding and landslide. This study recommends the use of higher accuracy resource maps, and further analysis in selecting the optimum site for biomass power plant development that would account for the cost and transportation of biomass residues.

Keywords: analytic hierarchy process, biomass energy, GIS, multi-criteria decision analysis, site suitability analysis

Procedia PDF Downloads 425
26952 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio

Authors: Fan Ye

Abstract:

Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.

Keywords: RWIS, visibility distance, low visibility, adverse weather

Procedia PDF Downloads 250
26951 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 555
26950 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 66
26949 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 176
26948 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar

Authors: Yasir E. Mohieldeen

Abstract:

Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.

Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination

Procedia PDF Downloads 107
26947 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India

Authors: Ashok Tejankar, Rohan K. Pathrikar

Abstract:

Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.

Keywords: hard rock, artificial recharge, remote sensing, GIS

Procedia PDF Downloads 292
26946 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 221