Search results for: legal training
2342 Sudden Death and Chronic Disseminated Intravascular Coagulation (DIC): Two Case Reports
Authors: Saker Lilia, Youcef Mellouki, Lakhdar Sellami, Yacine Zerairia, Abdelhaid Zetili, Fatma Guahria, Fateh Kaious, Nesrine Belkhodja, Abdelhamid Mira
Abstract:
Background: Sudden death is regarded as a suspicious demise necessitating autopsy, as stipulated by legal authorities. Chronic disseminated intravascular coagulation (DIC) is an acquired clinical and biological syndrome characterized by a severe and fatal prognosis, stemming from systemic, uncontrolled, diffuse coagulation activation. Irrespective of their origins, DIC is associated with a diverse spectrum of manifestations, encompassing minor biological coagulation alterations to profoundly severe conditions wherein hemorrhagic complications may take precedence. Simultaneously, microthrombi contribute to the development of multi-organ failures. Objective This study seeks to evaluate the role of autopsy in determining the causes of death. Materials and Methods: We present two instances of sudden death involving females who underwent autopsy at the Forensic Medicine Department of the University Hospital of Annaba, Algeria. These autopsies were performed at the request of the prosecutor, aiming to determine the causes of death and illuminate the exact circumstances surrounding it. Methods Utilized: Analysis of the initial information report; Findings from postmortem examinations; Histological assessments and toxicological analyses. Results: The presence of DIC was noted, affecting nearly all veins with distinct etiologies. Conclusion: For the establishment of a meaningful diagnosis: • Thorough understanding of the subject matter is imperative; • Precise alignment with medicolegal data is essential.Keywords: chronic disseminated intravascular coagulation, sudden death, autopsy, causes of death
Procedia PDF Downloads 812341 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 1412340 Elitism: Navigating Professional Diversity Barriers
Authors: Rachel Nir, Tina Mckee
Abstract:
In the UK, reliance has been placed on the professions to ‘heal themselves’ in improving equality and diversity. This approach has faltered, in part due to the global economic climate, and stimulus is needed to make faster equality progress. Recent empirical evidence has identified specific diversity barriers, namely: the cost of training; the use of high school grades as a primary selection criteria; the significance of prior work experience in recruitment decisions; and recruitment from elite universities. Students from majority groups and affluent backgrounds are advantaged over their counterparts. We as educators are passionate about resisting this. We believe that education can be a key agent of change. As part of this belief, the presenters have recently designed learning and teaching materials for the 2015/16 academic year. These are aimed at undergraduate law students for the purpose of 1) educating them on career barriers; 2) helping them to develop personal strategies to overcome them; and 3) encouraging them to address their own biases, both conscious and implicit, so that they, themselves, may be fairer employers and managers in the future.Keywords: career barriers, challenging professional bias, education, elitism, personal student strategies
Procedia PDF Downloads 2362339 Analysis of Land Use, Land Cover Changes in Damaturu, Nigeria: Using Satellite Images
Authors: Isa Muhammad Zumo, Musa Lawan
Abstract:
This study analyzes the land use/land cover changes in Damaturu metropolis from 1986 to 2005. LandSat TM Images of 1986, 1999, and 2005 were used. Built-up lands, agric lands, water body and other lands were created as themes within ILWIS 3.4 software. The images were displayed in False Colour Composite (FCC) for a better visualization and identification of the themes created. Training sample sets were collected based on the ground truth data during field the checks. Statistical data were then extracted from the classified sample set. Area in hectares for each theme was calculated for each year and the result for each land use/land cover types for each study year was compared. From the result, it was found out that built-up areas have a considerable increase from 37.71 hectares in 1986 to 1062.72 hectares in 2005. It has an annual increase rate of approximately 0.34%. The results also reveal that there is a decrease of 5829.66 hectares of other lands (vacant lands) from 1986 to 2005.Keywords: land use, changes, analysis, environmental pollution
Procedia PDF Downloads 3452338 Foggy Image Restoration Using Neural Network
Authors: Khader S. Al-Aidmat, Venus W. Samawi
Abstract:
Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration
Procedia PDF Downloads 3802337 There Is No Meaningful Opportunity in Meaningless Data: Why It Is Unconstitutional to Use Life Expectancy Tables in Post-Graham Sentences
Authors: Stacie Nelson Colling, Adele Cummings
Abstract:
The United States Supreme Court recently announced that it is unconstitutional to sentence a child to life without parole for non-homicide offenses, and that each child so situated must be afforded a meaningful opportunity for release from prison in his lifetime. The Court also declared that it is unconstitutional to impose a mandatory sentence of life without parole on a child for homicide offenses. Across the United States, attorneys and advocates continue to litigate issues surrounding the implementation of these legal principles. Some states have held that any sentence to a finite term of years, no matter how long, is not the same as ‘life’ and therefore does not violate the constitution. Other states have held that a sentence to a term of years that is less than the expected life of that particular child is not unconstitutional. In Colorado, the courts have routinely looked to life expectancy estimates from governmental organizations to determine how long a particular child is expected to live. They then compare that the date that the child is expected to be eligible for parole, and if the child is expected to still be living when he is eligible for parole, the sentence is deemed constitutional. This paper argues that it is inappropriate, reckless, unconstitutional and not scientifically sound to use such estimates in determining whether a child will have a meaningful opportunity for release from prison and life outside of prison before he dies. This paper argues that the opportunity for release must mean more than a probability that a child will be released before his death, and that it must include an opportunity for a meaningful life outside of prison (not just the opportunity to be released and then die on the outside). The paper further argues that life expectancy estimates cannot guide a court or a legislature in determining whether a sentence is or is not constitutional.Keywords: life without parole, life expectancy, juvenile sentencing, meaningful opportunity for release from prison
Procedia PDF Downloads 3922336 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 3822335 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders
Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob
Abstract:
Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.Keywords: ASD, social skills, cognitive training, mobile app
Procedia PDF Downloads 2122334 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 3712333 Science of Social Work: Recognizing Its Existence as a Scientific Discipline by a Method Triangulation
Authors: Sandra Mendes
Abstract:
Social Work has encountered over time with multivariate requests in the field of its action, provisioning frameworks of knowledge and praxis. Over the years, we have observed a transformation of society and, consequently, of the public who deals with the social work practitioners. Both, training and profession have had need to adapt and readapt the ways of doing, bailing up theories to action, while action unfolds emancipation of new theories. The theoretical questioning of this subject lies on classical authors from social sciences, and contemporary authors of Social Work. In fact, both enhance, in the design of social work, an integration and social cohesion function, creating a culture of action and theory, attributing to its method a relevant function, which shall be promoter of social changes in various dimensions of both individual and collective life, as well as scientific knowledge. On the other hand, it is assumed that Social Work, through its professionalism and through the academy, is now closer to distinguish itself from other Social Sciences as an autonomous scientific field, being, however, in the center of power struggles. This paper seeks to fill the gap in social work literature about the study of the scientific field of this area of knowledge.Keywords: field theory, knowledge, science, social work
Procedia PDF Downloads 3542332 Factors Affecting and Impeding Teachers’ Use of Learning Management System in Kingdom of Saudi Arabia Universities
Authors: Omran Alharbi, Victor Lally
Abstract:
The advantages of the adoption of new technology such as learning management systems (LMSs) in education and teaching methods have been widely recognised. This has led a large number of universities to integrate this type of technology into their daily learning and teaching activities in order to facilitate the education process for both learners and teachers. On the other hand, in some developing countries such as Saudi Arabia, educators have seldom used this technology. As a result, this study was conducted in order to investigate the factors that impede teachers’ use of technology (LMSs) in their teaching in Saudi Arabian institutions. This study used a qualitative approach. Eight participants were invited to take part in this study, and they were asked to give their opinions about the most significant factors that prevented them from integrating technology into their daily activities. The results revealed that a lack of LMS skills, interest in and knowledge about the LMS among teachers were the most significant factors impeding them from using technology in their lessons. The participants suggested that incentive training should be provided to reduce these challenges.Keywords: LMS, factors, KSA, teachers
Procedia PDF Downloads 1282331 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 1602330 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 1592329 An Investigation into Libyan Teachers’ Views of Children’s Emotional and Behavioral Difficulties
Authors: Abdelbasit Gadour
Abstract:
A great number of children in mainstream schools across Libya are currently living with emotional, behavioral difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioral difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Libya find classroom behavior problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with emotional and behavioral difficulties (EBD). The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.Keywords: children, emotional and behavior difficulties, learning, teachers'
Procedia PDF Downloads 1422328 An Assessment of Experiential Learning Outcomes of Study Abroad Programs in Hospitality: A Learning Style Perspective
Authors: Radesh Palakurthi
Abstract:
The purpose of this study was to determine the impact of experiential learning on learning outcomes in hospitality education. This paper presents the results of an online survey of students from the U.S. studying abroad and their self-reported change in learning outcomes as assessed using the Core Competencies Model for the Hospitality Industry developed by Employment and Training Development Office of the U.S. Department of Labor. The impact of student learning styles on learning outcomes is also evaluated in this study. Kolb’s Learning Styles Inventory Model was used to assess students’ learning style. The results show that students reported significant improvements in their learning outcomes because of engaging in study abroad experiential learning programs. The learning styles of the students had significant effect on one of core learning outcomes- personal effectiveness.Keywords: hospitality competencies, hospitality education, Kolb’s learning style inventory, learning outcomes, study abroad
Procedia PDF Downloads 2192327 The Test of Memory Malingering and Offence Severity
Authors: Kenji Gwee
Abstract:
In Singapore, the death penalty remains in active use for murder and drug trafficking of controlled drugs such as heroin. As such, the psychological assessment of defendants can often be of high stakes. The Test of Memory Malingering (TOMM) is employed by government psychologists to determine the degree of effort invested by defendants, which in turn inform on the veracity of overall psychological findings that can invariably determine the life and death of defendants. The purpose of this study was to find out if defendants facing the death penalty were more likely to invest less effort during psychological assessment (to fake bad in hopes of escaping the death sentence) compared to defendants facing lesser penalties. An archival search of all forensic cases assessed in 2012-2013 by Singapore’s designated forensic psychiatric facility yielded 186 defendants’ TOMM scores. Offence severity, coded into 6 rank-ordered categories, was analyzed in a one-way ANOVA with TOMM score as the dependent variable. There was a statistically significant difference (F(5,87) = 2.473, p = 0.038). A Tukey post-hoc test with Bonferroni correction revealed that defendants facing lower charges (Theft, shoplifting, criminal breach of trust) invested less test-taking effort (TOMM = 37.4±12.3, p = 0.033) compared to those facing the death penalty (TOMM = 46.2±8.1). The surprising finding that those facing death penalties actually invested more test taking effort than those facing relatively minor charges could be due to higher levels of cooperation when faced with death. Alternatively, other legal avenues to escape the death sentence may have been preferred over the mitigatory chance of a psychiatric defence.Keywords: capital sentencing, offence severity, Singapore, Test of Memory Malingering
Procedia PDF Downloads 4322326 A Comparison of Performance Indicators Between University-Level Rugby Union and Rugby Union Sevens Matches
Authors: Pieter van den Berg, Retief Broodryk, Bert Moolman
Abstract:
Firstly, this study aimed to identify which performance indicators (PIs) discriminate between winning and losing university-level Rugby Union (RU) teams and, secondly, to compare the significant PIs in RU and Rugby Union Sevens (RS) at university level. Understanding the importance of PIs and their effect on match outcomes could assist coaching staff to prioritise specific game aspects during training to increase performance. Twenty randomly selected round-robin matches of the 2018 Varsity Cup (n=20), and Varsity Sports sevens (n=20) tournaments were analysed. A linear mixed model was used to determine statistical significant differences set at p≤0.05 while effect size was reported according to Cohen's d value. Results revealed that various PIs discriminated between winning and losing RU teams and that specific PIs could be observed as significant in both RU and RS. Therefore, specific identified tactical aspects of RU and RS should be prioritised to optimise performanceKeywords: match success, notational analysis, performance analysis, rugby, video analysis
Procedia PDF Downloads 692325 Beneath the Leisurely Surface: An Analysis of the Piano Lesson Frenzy among Chinese Middle-Class Parents
Authors: Yijie Wang, Tianyue Wang
Abstract:
In the past two decades, there has been a great ‘piano lesson frenzy’ among Chinese middle-class families, with a large number of parents adding piano training to children’s extra-curriculum lists. Superficially, the frenzy reflects a rather ‘leisurely’ attitude: parents typically claim that pianos lessons are ‘just for fun’ and will hopefully render children’s life more exciting. However, a closer scrutiny reveals that there is great social-status anxiety hidden beneath this ‘leisurely’ surface. Based on pre-interviews of six Chinese middle-class parents who have enthusiastically signed their children up for piano lessons, several tentative analysis are made: 1. Owing to a series of historical and social factors, the Chinese middle-class have yet to establish their cultural norms in the past few decades, resulting in great confusion concerning how to cultivate cultural tastes in their offspring. And partly due to the fact that the middle-class status of the past Chinese generation is mostly self-acquired rather than inherited, parents are much less confident about their cultural resources—which require long-time accumulation—than material ones. Both factors combine to lead to a sort of blind, overcompensating enthusiasm in culture-related education, and the piano frenzy is but a demonstration. 2. The piano has been chosen to be the object of the frenzy partly because of its inherent characteristics as well as socially-constructed ones. Costly, large in size, imported from another culture and so forth, the piano has acquired the meaning of being exclusive, high-end and exotic, which renders it a token of top-tier status among Chinese people, and piano lessons for offspring have therefore become parents’ paths towards a kind of ‘symbolic elevation’. A child playing piano is an exhibition as well as psychological assurance of the families’ middle-class status. 3. A closer look at children’s piano training process reveals that there is much more anxiety than leisurely elements involved. Despite parents’ claim that ‘piano is mainly for kids to have fun,’ the whole process is evidently of a rather ‘ascetic’ nature, with the demands of diligence and senses of time urgency throughout, and techniques rather than flair or styles are emphasized. This either means that the apparent ‘piano-for-fun’ stance is unauthentic and is only other motives in disguise, or that the Chinese middle-class parents are not yet capable of shaking off the sense of anxiety even if they sincerely intend to. 4. When viewed in relation to Chinese formal school system as well as the job market at large, it can be said that by signing children up for piano lessons, parents are consciously or unconsciously seeking to prepare for, or reduce the risks of, their children’s future social mobility. In face of possible failures in the highly-crucial, highly-competitive formal school system, piano-playing as an extra-curriculum activity may be conveniently transferred into an alternative career path. Besides, in contemporary China, as the occupational structure goes through change, and the school-related certificates decline in value, aspects such as a person’s overall deportment, which can be gained or proved by piano-learning, have been gaining in significance.Keywords: extra-curriculum activities, middle class, piano lesson frenzy, status anxiety
Procedia PDF Downloads 2432324 Immigrant Workers’ Perspectives of Occupational Health and Safety and Work Conditions that Challenge Work Safety
Authors: Janki Shankar, Shu-Ping Chen
Abstract:
This Canadian study explored the perspectives of recent immigrant workers regarding occupational health and safety (OHS) and workplace conditions that increase workers’ vulnerability to sustaining injury or illness. Using an interpretive research approach and semi structured qualitative interviews, 42 recent immigrant workers from a range of industries operating in two cities in a province in Canada were interviewed. A constant comparative approach was used to identify key themes across the workers’ experiences. The findings revealed that these workers have an incomplete understanding of OHS. In many workplaces, poor job training, little worker support, lack of power in the workplace, and a poor workplace safety culture make it difficult for recent immigrant workers to acquire OHS information and implement safe work practices. This study proposes workplace policies and practices that will improve worker OHS awareness and make workplaces safer for immigrant workers.Keywords: new immigrant workers, occupational health and safety, workplace challenges, policy, practice
Procedia PDF Downloads 1112323 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 882322 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza
Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue
Abstract:
Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.Keywords: COVID-19, Fastai, influenza, transfer network
Procedia PDF Downloads 1422321 Urban Sexual Geographies, Queer Citizenship and the Socio-Economic Status of LGBTIQs in Vienna
Authors: Karin Schoenpflug, Christine M. Klapeer
Abstract:
In a large study for the Vienna City Council’s Antidiscrimination unit (WASt) an interdisciplinary team (in the fields of economics, sociology and political science) working with urban economics, critical citizenship studies, the sociology of work & inequality and urban political/human geography conducted an online survey asking LGBTIs (lesbians, gays, bisexuals, transgender and intersex people) in Vienna detailed questions on their quality-of-life, happiness and well-being. 3.161 persons responded and provided us with a rich data set concerning: 1) Labor market structures, discrimination, working conditions and employment practices (economic citizenship); 2) access to health care, welfare, education and safety in public spaces (social citizenship); 3) political participation as well as access to legal institutions (political citizenship). All those fields are important dimensions in regards to “full” citizenship and the well-being of the LGBTI population, but are also constitutive for the inclusion of sexual and gender minorities into the city population(s) of Vienna. Our data also allows us to map the sexual geography of Vienna as LGBTI communities are more likely to live in certain districts; some places are considered safe(r) and “friendlier”. In this way our work helps to fill a research gap connecting (urban) spaces and sexuality, and it produces new data and insights on the quality-of-life of this subpopulation. Our findings allow for urban (policy) planning and limiting violence and discrimination and improving the collective wellbeing and social cohesion.Keywords: urban sexual geographies, LGBTI, socio-economic status, Vienna, sitizenship status
Procedia PDF Downloads 3492320 A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students
Authors: Magdalena Chrabąszcz, Teresa Wolniewicz, Cezary Maciejewski, Joanna Czuwara
Abstract:
BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to: cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality.Keywords: dermatoscopy, early detection of melanoma, medical education, skin cancer
Procedia PDF Downloads 1132319 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 1682318 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1432317 Construction and Evaluation of Soybean Thresher
Authors: Oladimeji Adetona Adeyeye, Emmanuel Rotimi Sadiku, Oluwaseun Olayinka Adeyeye
Abstract:
In order to resuscitate soybean production and post-harvest processing especially, in term of threshing, there is need to develop an affordable threshing machine which will reduce drudgery associated with manual soybean threshing. Soybean thresher was fabricated and evaluated at Institute of Agricultural Research and Training IAR&T Apata Ibadan. The machine component includes; hopper, threshing unit, shaker, cleaning unit and the seed outlet, all working together to achieve the main objective of threshing and cleaning. TGX1835 - 10E variety was used for evaluation because of its high resistance to pests, rust and pustules. The final moisture content of the used sample was about 15%. The sample was weighed and introduced into the machine. The parameters evaluated includes moisture content, threshing efficiency, cleaning efficiency, machine capacity and speed. The threshing efficiency and capacity are 74% and 65.9kg/hr respectively. All materials used were sourced locally which makes the cost of production of the machine extremely cheaper than the imported soybean thresher.Keywords: efficiency, machine capacity, speed, soybean, threshing
Procedia PDF Downloads 4832316 Meaningful Habit for EFL Learners
Authors: Ana Maghfiroh
Abstract:
Learning a foreign language needs a big effort from the learner itself to make their language ability grows better day by day. Among those, they also need a support from all around them including teacher, friends, as well as activities which support them to speak the language. When those activities developed well as a habit which are done regularly, it will help improving the students’ language competence. It was a qualitative research which aimed to find out and describe some activities implemented in Pesantren Al Mawaddah, Ponorogo, in order to teach the students a foreign language. In collecting the data, the researcher used interview, questionnaire, and documentation. From the study, it was found that Pesantren Al Mawaddah had successfully built the language habit on the students to speak the target language. More than 15 hours a day students were compelled to speak foreign language, Arabic or English, in turn. It aimed to habituate the students to keep in touch with the target language. The habit was developed through daily language activities, such as dawn vocabs giving, dictionary handling, daily language use, speech training and language intensive course, daily language input, and night vocabs memorizing. That habit then developed the students awareness towards the language learned as well as promoted their language mastery.Keywords: habit, communicative competence, daily language activities, Pesantren
Procedia PDF Downloads 5372315 Comparing Nonverbal Deception Detection of Police Officers and Human Resources Students in the Czech Republic
Authors: Lenka Mynaříková, Hedvika Boukalová
Abstract:
The study looks at the ability to detect nonverbal deception among police officers and management students in the Czech Republic. Respondents from police departments (n=197) and university students of human resources (n=161) completed a deception detection task and evaluated veracity of the statements of suspects in 21 video clips from real crime investigations. Their evaluations were based on nonverbal behavior. Voices in the video clips were modified so that words were not recognizable, yet paraverbal voice characteristics were preserved. Results suggest that respondents have a tendency to lie bias based on their profession. In the evaluation of video clips, stereotypes also played a significant role. The statements of suspects of a different ethnicity, younger age or specific visual features were considered deceitful more often. Research might be beneficial for training in professions that are in need of deception detection techniques.Keywords: deception detection, police officers, human resources, forensic psychology, forensic studies, organizational psychology
Procedia PDF Downloads 4302314 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2082313 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 252