Search results for: cognitive radio network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6908

Search results for: cognitive radio network

3818 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education

Authors: Joseph Osodo, Motsa Thobekani Phila

Abstract:

The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.

Keywords: e-learning, performance, COVID-19, history, connectivism

Procedia PDF Downloads 76
3817 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms

Authors: Abdul Rehman, Bo Liu

Abstract:

Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.

Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization

Procedia PDF Downloads 225
3816 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 78
3815 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite

Abstract:

Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.

Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination

Procedia PDF Downloads 124
3814 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum

Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi

Abstract:

Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.

Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites

Procedia PDF Downloads 93
3813 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case

Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang

Abstract:

In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.

Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination

Procedia PDF Downloads 87
3812 Control Strategies for a Robot for Interaction with Children with Autism Spectrum Disorder

Authors: Vinicius Binotte, Guilherme Baldo, Christiane Goulart, Carlos Valadão, Eliete Caldeira, Teodiano Bastos

Abstract:

Socially assistive robotic has become increasingly active and it is present in therapies of people affected for several neurobehavioral conditions, such as Autism Spectrum Disorder (ASD). In fact, robots have played a significant role for positive interaction with children with ASD, by stimulating their social and cognitive skills. This work introduces a mobile socially-assistive robot, which was built for interaction with children with ASD, using non-linear control techniques for this interaction.

Keywords: socially assistive robotics, mobile robot, autonomous control, autism

Procedia PDF Downloads 501
3811 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel. M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)

Procedia PDF Downloads 412
3810 Understanding Tourism Innovation through Fuzzy Measures

Authors: Marcella De Filippo, Delio Colangelo, Luca Farnia

Abstract:

In recent decades, the hyper-competition of tourism scenario has implicated the maturity of many businesses, attributing a central role to innovative processes and their dissemination in the economy of company management. At the same time, it has defined the need for monitoring the application of innovations, in order to govern and improve the performance of companies and destinations. The study aims to analyze and define the innovation in the tourism sector. The research actions have concerned, on the one hand, some in-depth interviews with experts, identifying innovation in terms of process and product, digitalization, sustainability policies and, on the other hand, to evaluate the interaction between these factors, in terms of substitutability and complementarity in management scenarios, in order to identify which one is essential to be competitive in the global scenario. Fuzzy measures and Choquet integral were used to elicit Experts’ preferences. This method allows not only to evaluate the relative importance of each pillar, but also and more interestingly, the level of interaction, ranging from complementarity to substitutability, between pairs of factors. The results of the survey are the following: in terms of Shapley values, Experts assert that Innovation is the most important factor (32.32), followed by digitalization (31.86), Network (20.57) and Sustainability (15.25). In terms of Interaction indices, given the low degree of consensus among experts, the interaction between couples of criteria on average could be ignored; however, it is worth to note that the factors innovations and digitalization are those in which experts express the highest degree of interaction. However for some of them, these factors have a moderate level of complementarity (with a pick of 57.14), and others consider them moderately substitutes (with a pick of -39.58). Another example, although outlier is the interaction between network and digitalization, in which an expert consider them markedly substitutes (-77.08).

Keywords: innovation, business model, tourism, fuzzy

Procedia PDF Downloads 272
3809 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction

Authors: Tim Steinhaus, Christian Beidl

Abstract:

Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.

Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact

Procedia PDF Downloads 126
3808 Development and Evaluation of a Cognitive Behavioural Therapy Based Smartphone App for Low Moods and Anxiety

Authors: David Bakker, Nikki Rickard

Abstract:

Smartphone apps hold immense potential as mental health and wellbeing tools. Support can be made easily accessible and can be used in real-time while users are experiencing distress. Furthermore, data can be collected to enable machine learning and automated tailoring of support to users. While many apps have been developed for mental health purposes, few have adhered to evidence-based recommendations and even fewer have pursued experimental validation. This paper details the development and experimental evaluation of an app, MoodMission, that aims to provide support for low moods and anxiety, help prevent clinical depression and anxiety disorders, and serve as an adjunct to professional clinical supports. MoodMission was designed to deliver cognitive behavioural therapy for specifically reported problems in real-time, momentary interactions. Users report their low moods or anxious feelings to the app along with a subjective units of distress scale (SUDS) rating. MoodMission then provides a choice of 5-10 short, evidence-based mental health strategies called Missions. Users choose a Mission, complete it, and report their distress again. Automated tailoring, gamification, and in-built data collection for analysis of effectiveness was also included in the app’s design. The development process involved construction of an evidence-based behavioural plan, designing of the app, building and testing procedures, feedback-informed changes, and a public launch. A randomized controlled trial (RCT) was conducted comparing MoodMission to two other apps and a waitlist control condition. Participants completed measures of anxiety, depression, well-being, emotional self-awareness, coping self-efficacy and mental health literacy at the start of their app use and 30 days later. At the time of submission (November 2016) over 300 participants have participated in the RCT. Data analysis will begin in January 2017. At the time of this submission, MoodMission has over 4000 users. A repeated-measures ANOVA of 1390 completed Missions reveals that SUDS (0-10) ratings were significantly reduced between pre-Mission ratings (M=6.20, SD=2.39) and post-Mission ratings (M=4.93, SD=2.25), F(1,1389)=585.86, p < .001, np2=.30. This effect was consistent across both low moods and anxiety. Preliminary analyses of the data from the outcome measures surveys reveal improvements across mental health and wellbeing measures as a result of using the app over 30 days. This includes a significant increase in coping self-efficacy, F(1,22)=5.91, p=.024, np2=.21. Complete results from the RCT in which MoodMission was evaluated will be presented. Results will also be presented from the continuous outcome data being recorded by MoodMission. MoodMission was successfully developed and launched, and preliminary analysis suggest that it is an effective mental health and wellbeing tool. In addition to the clinical applications of MoodMission, the app holds promise as a research tool to conduct component analysis of psychological therapies and overcome restraints of laboratory based studies. The support provided by the app is discrete, tailored, evidence-based, and transcends barriers of stigma, geographic isolation, financial limitations, and low health literacy.

Keywords: anxiety, app, CBT, cognitive behavioural therapy, depression, eHealth, mission, mobile, mood, MoodMission

Procedia PDF Downloads 271
3807 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61
3806 Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment

Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun

Abstract:

To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.

Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education

Procedia PDF Downloads 373
3805 Social Networks in Business: The Complex Concept of Wasta and the Impact of Islam on the Perception of This Practice

Authors: Sa'ad Ali

Abstract:

This study explores wasta as an example of a social network and how it impacts business practice in the Arab Middle East, drawing links with social network impact in different regions of the world. In doing so, particular attention will be paid to the socio-economic and cultural influences on business practice. In exploring relationships in business, concepts such as social network analysis, social capital and group identity are used to explore the different forms of social networks and how they influence business decisions and practices in the regions and countries where they prevail. The use of social networks to achieve objectives is known as guanxi in China, wasta in the Arab Middle East and blat in ex-Soviet countries. Wasta can be defined as favouritism based on tribal and family affiliation and is a widespread practice that has a substantial impact on political, social and business interactions in the Arab Middle East. Within the business context, it is used in several ways, such as to secure a job or promotion or to cut through bureaucracy in government interactions. The little research available is fragmented, and most studies reveal a negative attitude towards its usage in business. Paradoxically, while wasta is widely practised, people from the Arab Middle East often deny its influence. Moreover, despite the regular exhibition of a negative opinion on the practice of wasta, it can also be a source of great pride. This paper addresses this paradox by conducting a positional literature review, exploring the current literature on wasta and identifying how the identified paradox can be explained. The findings highlight how wasta, to a large extent, has been treated as an umbrella concept, whilst it is a highly complex practice which has evolved from intermediary wasta to intercessory wasta and therefore from bonding social capital relationships to more bridging social capital relationships. In addition, the research found that Islam, as the predominant religion in the region and the main source of ethical guidance for the majority of people from the region, plays a substantial role in this paradox. Specifically, it is submitted that wasta can be viewed positively in Islam when it is practised to aid others without breaking Islamic ethical guidelines, whilst it can be viewed negatively when it is used in contradiction with the teachings of Islam. As such, the unique contribution to knowledge of this study is that it ties together the fragmented literature on wasta, highlighting and helping us understand its complexity. In addition, it sheds light on the role of Islam in wasta practices, aiding our understanding of the paradoxical nature of the practice.

Keywords: Islamic ethics, social capital, social networks, Wasta

Procedia PDF Downloads 146
3804 Scientific Production on Lean Supply Chains Published in Journals Indexed by SCOPUS and Web of Science Databases: A Bibliometric Study

Authors: T. Botelho de Sousa, F. Raphael Cabral Furtado, O. Eduardo da Silva Ferri, A. Batista, W. Augusto Varella, C. Eduardo Pinto, J. Mimar Santa Cruz Yabarrena, S. Gibran Ruwer, F. Müller Guerrini, L. Adalberto Philippsen Júnior

Abstract:

Lean Supply Chain Management (LSCM) is an emerging research field in Operations Management (OM). As a strategic model that focuses on reduced cost and waste with fulfilling the needs of customers, LSCM attracts great interest among researchers and practitioners. The purpose of this paper is to present an overview of Lean Supply Chains literature, based on bibliometric analysis through 57 papers published in indexed journals by SCOPUS and/or Web of Science databases. The results indicate that the last three years (2015, 2016, and 2017) were the most productive on LSCM discussion, especially in Supply Chain Management and International Journal of Lean Six Sigma journals. India, USA, and UK are the most productive countries; nevertheless, cross-country studies by collaboration among researchers were detected, by social network analysis, as a research practice, appearing to play a more important role on LSCM studies. Despite existing limitation, such as limited indexed journal database, bibliometric analysis helps to enlighten ongoing efforts on LSCM researches, including most used technical procedures and collaboration network, showing important research gaps, especially, for development countries researchers.

Keywords: Lean Supply Chains, Bibliometric Study, SCOPUS, Web of Science

Procedia PDF Downloads 347
3803 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network

Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal

Abstract:

This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.

Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography

Procedia PDF Downloads 144
3802 Korean Smart Cities: Strategic Foci, Characteristics and Effects

Authors: Sang Ho Lee, Yountaik Leem

Abstract:

This paper reviews Korean cases of smart cities through the analysis framework of strategic foci, characteristics and effects. Firstly, national strategies including c(cyber), e(electronic), u(ubiquitous) and s(smart) Korea strategies were considered from strategic angles. Secondly, the characteristics of smart cities in Korea were looked through the smart cities examples such as Seoul, Busan, Songdo and Sejong cities etc. from the views on the by STIM (Service, Technology, Infrastructure and Management) analysis. Finally, the effects of smart cities on socio-economies were investigated from industrial perspective using the input-output model and structural path analysis. Korean smart city strategies revealed that there were different kinds of strategic foci. c-Korea strategy focused on information and communications network building and user IT literacy. e-Korea strategy encouraged e-government and e-business through utilizing high-speed information and communications network. u-Korea strategy made ubiquitous service as well as integrated information and communication operations center. s-Korea strategy is propelling 4th industrial platform. Smart cities in Korea showed their own features and trends such as eco-intelligence, high efficiency and low cost oriented IoT, citizen sensored city, big data city. Smart city progress made new production chains fostering ICTs (Information Communication Technologies) and knowledge intermediate inputs to industries.

Keywords: Korean smart cities, Korean smart city strategies, STIM, smart service, infrastructure, technologies, management, effect of smart city

Procedia PDF Downloads 366
3801 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 480
3800 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan

Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali

Abstract:

In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.

Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid

Procedia PDF Downloads 482
3799 A Proposal to Tackle Security Challenges of Distributed Systems in the Healthcare Sector

Authors: Ang Chia Hong, Julian Khoo Xubin, Burra Venkata Durga Kumar

Abstract:

Distributed systems offer many benefits to the healthcare industry. From big data analysis to business intelligence, the increased computational power and efficiency from distributed systems serve as an invaluable resource in the healthcare sector to utilize. However, as the usage of these distributed systems increases, many issues arise. The main focus of this paper will be on security issues. Many security issues stem from distributed systems in the healthcare industry, particularly information security. The data of people is especially sensitive in the healthcare industry. If important information gets leaked (Eg. IC, credit card number, address, etc.), a person’s identity, financial status, and safety might get compromised. This results in the responsible organization losing a lot of money in compensating these people and even more resources expended trying to fix the fault. Therefore, a framework for a blockchain-based healthcare data management system for healthcare was proposed. In this framework, the usage of a blockchain network is explored to store the encryption key of the patient’s data. As for the actual data, it is encrypted and its encrypted data, called ciphertext, is stored in a cloud storage platform. Furthermore, there are some issues that have to be emphasized and tackled for future improvements, such as a multi-user scheme that could be proposed, authentication issues that have to be tackled or migrating the backend processes into the blockchain network. Due to the nature of blockchain technology, the data will be tamper-proof, and its read-only function can only be accessed by authorized users such as doctors and nurses. This guarantees the confidentiality and immutability of the patient’s data.

Keywords: distributed, healthcare, efficiency, security, blockchain, confidentiality and immutability

Procedia PDF Downloads 184
3798 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications

Authors: Farhad Salek, Shahaboddin Resalati

Abstract:

The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.

Keywords: second life battery, electric vehicles, degradation, neural network

Procedia PDF Downloads 65
3797 Preparation and Properties of Self-Healing Polyurethanes Utilizing the Host-Guest Interaction between Cyclodextrin and Adamantane Moieties

Authors: Kaito Sugane, Mitsuhiro Shibata

Abstract:

Self-healing polymers have attracted attention because their physical damage and cracks can be effectively repaired, thereby extending the lifetime of the materials. Self-healing polymers using host-guest interaction have the advantage that they are quickly repaired under mild temperature conditions when compared with self-healing polymer using dynamic covalent bonds such as Diels-Alder (DA)/retro-DA and disulfide metathesis reactions. Especially, it is known that hydrogels utilizing the host-guest interaction between cyclodextrin and various guest molecules are repeatedly self-repaired at room temperature. However, most of the works deal with hydrogels, and little attention has been paid for thermosetting resins as polyurethane, epoxy and unsaturated polyester resins. In this study, polyetherurethane networks (PUN-CD-Ads) incorporating cyclodextrin and adamantane moieties were prepared by the crosslinking reactions of β-cyclodextrin (CD), 1-adamantanol (AdOH), glycerol ethoxylate (GCE) and hexamethylene diisocyanate (HDI), and thermal, mechanical and self-healing properties of the polymer network films were investigated. Our attention was focused on the influences of molar ratio of CD/AdOH, GCE/CD and OH/NCO on the properties. The FT-IR, and gel fraction analysis revealed that the urethanization reaction smoothly progress to form polyurethane networks. When two cut pieces of the films were contacted at the cross-section at room temperature for 30 seconds, the two pieces adhered to produce a self-healed film. Especially, the PUN-CD-Ad prepared at GCE/CD = 5/1, CD/AdOH = 1/1, and OH/NCO = 1/1 film exhibited the highest healing efficiency for tensile strength. Most of the PUN-CD-Ads were successfully self-healed at room temperature.

Keywords: host-guest interaction, network polymer, polyurethane, self-healing

Procedia PDF Downloads 186
3796 Work-Life Balance: A Landscape Mapping of Two Decades of Scholarly Research

Authors: Gertrude I Hewapathirana, Mohamed M. Moustafa, Michel G. Zaitouni

Abstract:

The purposes of this research are: (a) to provide an epistemological and ontological understanding of the WLB theory, practice, and research to illuminate how the WLB evolved between 2000 to 2020 and (b) to analyze peer-reviewed research to identify the gaps, hotspots, underlying dynamics, theoretical and thematic trends, influential authors, research collaborations, geographic networks, and the multidisciplinary nature of the WLB theory to guide future researchers. The research used four-step bibliometric network analysis to explore five research questions. Using keywords such as WLB and associated variants, 1190 peer-reviewed articles were extracted from the Scopus database and transformed to a plain text format for filtering. The analysis was conducted using the R version 4.1 software (R Development Core Team, 2021) and several libraries such as bibliometrics, word cloud, and ggplot2. We used the VOSviewer software (van Eck & Waltman, 2019) for network visualization. The WLB theory has grown into a multifaceted, multidisciplinary field of research. There is a paucity of research between 2000 to 2005 and an exponential growth from 2006 to 2015. The rapid increase of WLB research in the USA, UK, and Australia reflects the increasing workplace stresses due to hyper competitive workplaces, inflexible work systems, and increasing diversity and the emergence of WLB support mechanisms, legal and constitutional mandates to enhance employee and family wellbeing at multilevel social systems. A severe knowledge gap exists due to inadequate publications disseminating the "core" WLB research. "Locally-centralized-globally-discrete" collaboration among researchers indicates a "North-South" divide between developed and developing nations. A shortage in WLB research in developing nations and a lack of research collaboration hinder a global understanding of the WLB as a universal phenomenon. Policymakers and practitioners can use the findings to initiate supporting policies, and innovative work systems. The boundary expansion of the WLB concepts, categories, relations, and properties would facilitate researchers/theoreticians to test a variety of new dimensions. This is the most comprehensive WLB landscape analysis that reveals emerging trends, concepts, networks, underlying dynamics, gaps, and growing theoretical and disciplinary boundaries. It portrays the WLB as a universal theory.

Keywords: work-life balance, co-citation networks; keyword co-occurrence network, bibliometric analysis

Procedia PDF Downloads 196
3795 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism

Authors: Lizhi Ma, Dan Liu

Abstract:

Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.

Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning

Procedia PDF Downloads 18
3794 Knowledge, Attitudes, and Practices regarding Anthrax among Community Members, Health and Veterinary Workers in Maragua, Kenya

Authors: Isaiah Chacha, Samuel Arimi, Andrew Thaiya

Abstract:

Background: This study was conducted to assess knowledge, attitudes and practices regarding anthrax in Maragua, Kenya to provide baseline information to design interventions. Methods: A cross sectional survey was conducted among head of households, health and veterinary workers in Maragua Sub-county in August and September 2014. Administered questionnaires were used to collect data from household members and a key informant interview held with health and veterinary workers. Multi stage sampling was used to obtain participants’ knowledge, attitudes and practices. Questions were scored and descriptively analyzed using Excel spreadsheet then exported to GenStat Discovery Edition 4. Results: A total of 293 community members were recruited in this study. The overall level of knowledge was 77.9% of all community members regarding cause, transmission, symptoms and prevention of the disease in both humans and animals. Majority of the participants (96.3%) had heard about anthrax. A total of 99 (33.8%) correspondents had seen a person with anthrax and 75.1% think that anthrax is a very serious disease in the area. Of the interviewed correspondents, 14.3% of them have had their animals (mostly cattle) suffer from anthrax while 15.7% had either suffered from anthrax or have had their family member who suffered from anthrax. Conclusion: The study findings indicate above average knowledge on cause, symptoms, transmission and prevention of anthrax among community members in humans and animals. Practices in this study were still risk among community members. Veterinary and Medical health planners should design anthrax awareness interventions as a team targeting to reach these communities and the public through barazas, radio, CHW and other communication channel on a regular basis.

Keywords: anthrax, attitudes, Kenya, knowledge, Maragua, practices

Procedia PDF Downloads 317
3793 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks

Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari

Abstract:

With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.

Keywords: water pipe networks, maintenance management, reliability analysis, optimum maintenance plan

Procedia PDF Downloads 155
3792 Proposal of Blue and Green Infrastructure for the Jaguaré Stream Watershed, São Paulo, Brazil

Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto

Abstract:

The blue-green infrastructure in recent years has been pointed out as a possibility to increase the environmental quality of watersheds. The regulation ecosystem services brought by these areas are many, such as the improvement of the air quality of the air, water, soil, microclimate, besides helping to control the peak flows and to promote the quality of life of the population. This study proposes a blue-green infrastructure scenario for the Jaguaré watershed, located in the western zone of the São Paulo city in Brazil. Based on the proposed scenario, it was verified the impact of the adoption of the blue and green infrastructure in the control of the peak flow of the basin, the benefits for the avifauna that are also reflected in the flora and finally, the quantification of the regulation ecosystem services brought by the adoption of the scenario proposed. A survey of existing green areas and potential areas for expansion and connection of these areas to form a network in the watershed was carried out. Based on this proposed new network of green areas, the peak flow for the proposed scenario was calculated with the help of software, ABC6. Finally, a survey of the ecosystem services contemplated in the proposed scenario was made. It was possible to conclude that the blue and green infrastructure would provide several regulation ecosystem services for the watershed, such as the control of the peak flow, the connection frame between the forest fragments that promoted the environmental enrichment of these fragments, improvement of the microclimate and the provision of leisure areas for the population.

Keywords: green and blue infrastructure, sustainable drainage, urban waters, ecosystem services

Procedia PDF Downloads 117
3791 Systematic Literature Review and Bibliometric Analysis of Interorganizational Employee Mobility Determinants

Authors: Iva Zdrilić, Petra Došenović Bonča, Darija Aleksić

Abstract:

Since the boundaryless career, with its emphasis on cross-employer movements, was introduced as a new paradigm of career development, inter-organizational employee mobility has been increasing. Although this phenomenon may have positive implications for individual careers and destination organizations, the consequences for the source organizations losing workers are less clear. The aim of this paper is thus to develop a comprehensive typology of possible inter-organizational employee mobility determinants. Since the most common classification differentiates between mobility determinants at different levels (i.e., economic, organizational, and individual), this paper focuses on building a comprehensive multi-level typology of inter-organizational mobility determinants across diverse sectors and industries. By using a structured literature review approach and bibliometric analysis, the paper reveals both intricate relationships between different mobility determinants and the complexity of inter-organizational networks and social ties. The latter appears as both a mobility determinant (at the organizational and individual level) and a mobility effect. Indeed, inter-organizational employee mobility leads to the formation of networks between source and destination organizations. These networks are practically based on the social ties between mobile employees and their colleagues and, in this way, they close the "inter-organizational employee mobility - inter-organizational network/ties" circle. The paper contributes to the career development literature by uncovering hitherto underexplored diverse determinants of intra- and inter-sectoral mobility as well as the conflicting results of the existing studies on some factors (e.g., inter-organizational networks and/or social ties) that appear both as a mobility determinant and a mobility effect.

Keywords: inter-organizational mobility, social ties, inter-organizational network, knowledge transfer

Procedia PDF Downloads 116
3790 Assessment of Environmental Risk Factors of Railway Using Integrated ANP-DEMATEL Approach in Fuzzy Conditions

Authors: Mehrdad Abkenari, Mehmet Kunt, Mahdi Nourollahi

Abstract:

Evaluating the environmental risk factors is a combination of analysis of transportation effects. Various definitions for risk can be found in different scientific sources. Each definition depends on a specific and particular perspective or dimension. The effects of potential risks present along the new proposed routes and existing infrastructures of large transportation projects like railways should be studied under comprehensive engineering frameworks. Despite various definitions provided for ‘risk’, all include a uniform concept. Two obvious aspects, loss and unreliability, have always been pointed in all definitions of this term. But, selection as the third aspect is usually implied and means how one notices it. Currently, conducting engineering studies on the environmental effects of railway projects have become obligatory according to the Environmental Assessment Act in developing countries. Considering the longitudinal nature of these projects and probable passage of railways through various ecosystems, scientific research on the environmental risk of these projects have become of great interest. Although many areas of expertise such as road construction in developing countries have not seriously committed to these studies yet, attention to these subjects in establishment or implementation of different systems have become an inseparable part of this wave of research. The present study used environmental risks identified and existing in previous studies and stations to use in next step. The second step proposes a new hybrid approach of analytical network process (ANP) and DEMATEL in fuzzy conditions for assessment of determined risks. Since evaluation of identified risks was not an easy touch, mesh structure was an appropriate approach for analyzing complex systems which were accordingly employed for problem description and modeling. Researchers faced the shortage of real space data and also due to the ambiguity of experts’ opinions and judgments, they were declared in language variables instead of numerical ones. Since fuzzy logic is appropriate for ambiguity and uncertainty, formulation of experts’ opinions in the form of fuzzy numbers seemed an appropriate approach. Fuzzy DEMATEL method was used to extract the relations between major and minor risk factors. Considering the internal relations of risk major factors and its sub-factors in the analysis of fuzzy network, the weight of risk’s main factors and sub-factors were determined. In general, findings of the present study, in which effective railway environmental risk indicators were theoretically identified and rated through the first usage of combined model of DEMATEL and fuzzy network analysis, indicate that environmental risks can be evaluated more accurately and also employed in railway projects.

Keywords: DEMATEL, ANP, fuzzy, risk

Procedia PDF Downloads 413
3789 The Neuroscience Dimension of Juvenile Law Effectuates a Comprehensive Treatment of Youth in the Criminal System

Authors: Khushboo Shah

Abstract:

Categorical bans on the death penalty and life-without-parole sentences for juvenile offenders in a growing number of countries have established a new era in juvenile jurisprudence. This has been brought about by integration of the growing knowledge in cognitive neuroscience and appreciation of the inherent differences between adults and adolescents over the last ten years. This evolving understanding of being a child in the criminal system can be aptly reflected through policies that incorporate the mitigating traits of youth. First, the presentation will delineate the structures in cognitive neuroscience and in particular, focus on the prefrontal cortex, the amygdala, and the basal ganglia. These key anatomical structures in the brain are linked to three mitigating adolescent traits—an underdeveloped sense of responsibility, an increased vulnerability to negative influences, and transitory personality traits—that establish why juveniles have a lessened culpability. The discussion will delve into the details depicting how an underdeveloped prefrontal cortex results in the heightened emotional angst, high-energy and risky behavior characteristic of the adolescent time period or how the amygdala, the emotional center of the brain, governs different emotional expression resulting in why teens are susceptible to negative influences. Based on this greater understanding, it is incumbent that policies adequately reflect the adolescent physiology and psychology in the criminal system. However, it is important to ensure that these views are appropriately weighted while considering the jurisprudence for the treatment of children in the law. To ensure this balance is appropriately stricken, policies must incorporate the distinctive traits of youth in sentencing and legal considerations and yet refrain from the potential fallacies of absolving a juvenile offender of guilt and culpability. Accordingly, three policies will demonstrate how these results can be achieved: (1) eliminate housing of juvenile offenders in the adult prison system, (2) mandate fitness hearings for all transfers of juveniles to adult criminal court, and (3) use the post-disposition review as a type of rehabilitation method for juvenile offenders. Ultimately, this interdisciplinary approach of science and law allows for a better understanding of adolescent psychological and social functioning and can effectuate better legal outcomes for juveniles tried as adults.

Keywords: criminal law, Juvenile Justice, interdisciplinary, neuroscience

Procedia PDF Downloads 327