Search results for: bass model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16809

Search results for: bass model

13719 Parasitic Capacitance Modeling in Pulse Transformer Using FEA

Authors: D. Habibinia, M. R. Feyzi

Abstract:

Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.

Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency

Procedia PDF Downloads 515
13718 A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity and Parameter Uncertainties: A Linear Matrix Inequality Approach

Authors: Sofiane Bououden, Ilyes Boulkaibet

Abstract:

In this paper, a robust model predictive controller (RMPC) for uncertain nonlinear system under actuator saturation is designed to control a DC-DC buck converter in PV pumping application, where this system is subject to actuator saturation and parameter uncertainties. The considered nonlinear system contains a linear constant part perturbed by an additive state-dependent nonlinear term. Based on the saturating actuator property, an appropriate linear feedback control law is constructed and used to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The proposed approach has successfully provided a solution to the optimization problem that can stabilize the nonlinear plants. Furthermore, sufficient conditions for the existence of the proposed controller guarantee the robust stability of the system in the presence of polytypic uncertainties. In addition, the simulation results have demonstrated the efficiency of the proposed control scheme.

Keywords: PV pumping system, DC-DC buck converter, robust model predictive controller, nonlinear system, actuator saturation, linear matrix inequality

Procedia PDF Downloads 181
13717 Importance of Human Capital Development and Management in Industries

Authors: Birce Boga Bakirli

Abstract:

In this paper, we investigate ideas on human capital development and management in industries. We structured a model to be able to gather the data from the interviews conducted with worker, specialists and owners of companies. Different aspects of the situation are found in these interviews, and we used the information to model the benefit of the business owners and workers perspectives. These are modelled as a bi-level programming problem. Several instances of the generic cases are solved. The results show the importance of education within and out of the company for workers, and it returns for the company.

Keywords: bi-level programming, corporate strategy, cost tradeoffs, human capital, mixed integer programming, Stackelberg game, supplier relations, strategic planning

Procedia PDF Downloads 354
13716 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast

Authors: Helene Thieblemont, Fariborz Haghighat

Abstract:

Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.

Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage

Procedia PDF Downloads 271
13715 Determining the Factors Affecting Social Media Addiction (Virtual Tolerance, Virtual Communication), Phubbing, and Perception of Addiction in Nurses

Authors: Fatima Zehra Allahverdi, Nukhet Bayer

Abstract:

Objective: Three questions were formulated to examine stressful working units (intensive care units, emergency unit nurses) utilizing the self-perception theory and social support theory. This study provides a distinctive input by inspecting the combination of variables regarding stressful working environments. Method: The descriptive research was conducted with the participation of 400 nurses working at Ankara City Hospital. The study used Multivariate Analysis of Variance (MANOVA), regression analysis, and a mediation model. Hypothesis one used MANOVA followed by a Scheffe post hoc test. Hypothesis two utilized regression analysis using a hierarchical linear regression model. Hypothesis three used a mediation model. Result: The study utilized mediation analyses. Findings supported the hypotheses that intensive care units have significantly high scores in virtual communication and virtual tolerance. The number of years on the job, virtual communication, virtual tolerance, and phubbing significantly predicted 51% of the variance of perception of addiction. Interestingly, the number of years on the job, while significant, was negatively related to perception of addiction. Conclusion: The reasoning behind these findings and the lack of significance in the emergency unit is discussed. Around 7% of the variance of phubbing was accounted for through working in intensive care units. The model accounted for 26.80 % of the differences in the perception of addiction.

Keywords: phubbing, social media, working units, years on the job, stress

Procedia PDF Downloads 53
13714 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 341
13713 An Assembly Line Designing Study for a Refrigeration Industry

Authors: Emin Gundogar, Burak Erkayman, Aysegul Yilmaz, Nusret Sazak

Abstract:

When considering current competition conditions on the world, satisfying customer demands on time has become an important factor that enables the firms take a step further. Therefore, production process must be completed faster to take the competitive advantage. A balanced assembly line is the one of most important factors affecting the speed of production lines. The aim of this study is to build an assembly line to balance the assembly line and to simulate it for different scenarios through a refrigerator factory. The times of the operations is analyzed and grouped by the priorities. First, a Kilbridge & Wester heuristics is put to the model then a simulation approach is implemented to the model and the differences are observed.

Keywords: assembly line design, assembly line balancing, simulation modelling, refrigeration industry

Procedia PDF Downloads 447
13712 Approach to Formulate Intuitionistic Fuzzy Regression Models

Authors: Liang-Hsuan Chen, Sheng-Shing Nien

Abstract:

This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.

Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method

Procedia PDF Downloads 138
13711 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 382
13710 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: hidden markov model, natural language processing, POS tagging, viterbi algorithm

Procedia PDF Downloads 329
13709 Green Supply Chain Design: A Mathematical Modeling Approach

Authors: Nusrat T. Chowdhury

Abstract:

Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.

Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade

Procedia PDF Downloads 239
13708 Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method

Authors: Karina C. Azzolin, Luis E. Kosteski, Alisson S. Milani, Raquel C. Zydeck

Abstract:

This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements.

Keywords: structural masonry, wall chases, small scale, numerical model, lattice discrete element method

Procedia PDF Downloads 177
13707 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya

Authors: Aimen Saleh

Abstract:

The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area.

Keywords: Acacus, Ghadames , Libya, Silurian

Procedia PDF Downloads 143
13706 Factors Predicting Individual Health among Pilgrims of Kurdistan County: An Application of Health Belief Model

Authors: Arsalan Ghaderi, Behzad Karami Matin, Abdolrahim Afkhamzadeh, Abouzar Keshavarzi, Parvin Nokhasi

Abstract:

Background: Lack of individual health as one of the major health problems among the pilgrims can be followed by several complications. The main aim of this study was to determine factors predicting individual health among pilgrims of Kurdistan County; in the west of Iran and health belief model (HBM) was applied as theoretical framework. Methods: A cross-sectional study was conducted among 100 pilgrims who referred in the red crescent of Kurdistan County, the west of Iran which was randomly selected for participation in this study. A structured questionnaire was applied for collecting data and data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean age of respondents was 59.45 years [SD: 11.56], ranged from 50 to 73 years. The HBM predictor variables accounted for 47% of the variation in the outcome measure of the individual health. The best predictors for individual health were perceived severity and cause to action. Conclusion: Based on our result, it seems that designing and implementation of educational programs to increase seriousness about complications of lack of individual health and increasing cause to action among the pilgrims may be useful in order to promote individual health among pilgrims.

Keywords: individual health, pilgrims, Iran, health belief model

Procedia PDF Downloads 529
13705 3D Reconstruction of Human Body Based on Gender Classification

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo

Abstract:

SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.

Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction

Procedia PDF Downloads 70
13704 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback

Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim

Abstract:

A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.

Keywords: model mismatch, repetitive control, singular values, state feedback

Procedia PDF Downloads 155
13703 Reworking of the Anomalies in the Discounted Utility Model as a Combination of Cognitive Bias and Decrease in Impatience: Decision Making in Relation to Bounded Rationality and Emotional Factors in Intertemporal Choices

Authors: Roberta Martino, Viviana Ventre

Abstract:

Every day we face choices whose consequences are deferred in time. These types of choices are the intertemporal choices and play an important role in the social, economic, and financial world. The Discounted Utility Model is the mathematical model of reference to calculate the utility of intertemporal prospects. The discount rate is the main element of the model as it describes how the individual perceives the indeterminacy of subsequent periods. Empirical evidence has shown a discrepancy between the behavior expected from the predictions of the model and the effective choices made from the decision makers. In particular, the term temporal inconsistency indicates those choices that do not remain optimal with the passage of time. This phenomenon has been described with hyperbolic models of the discount rate which, unlike the linear or exponential nature assumed by the discounted utility model, is not constant over time. This paper explores the problem of inconsistency by tracing the decision-making process through the concept of impatience. The degree of impatience and the degree of decrease of impatience are two parameters that allow to quantify the weight of emotional factors and cognitive limitations during the evaluation and selection of alternatives. In fact, although the theory assumes perfectly rational decision makers, behavioral finance and cognitive psychology have made it possible to understand that distortions in the decision-making process and emotional influence have an inevitable impact on the decision-making process. The degree to which impatience is diminished is the focus of the first part of the study. By comparing consistent and inconsistent preferences over time, it was possible to verify that some anomalies in the discounted utility model are a result of the combination of cognitive bias and emotional factors. In particular: the delay effect and the interval effect are compared through the concept of misperception of time; starting from psychological considerations, a criterion is proposed to identify the causes of the magnitude effect that considers the differences in outcomes rather than their ratio; the sign effect is analyzed by integrating in the evaluation of prospects with negative outcomes the psychological aspects of loss aversion provided by Prospect Theory. An experiment implemented confirms three findings: the greatest variation in the degree of decrease in impatience corresponds to shorter intervals close to the present; the greatest variation in the degree of impatience occurs for outcomes of lower magnitude; the variation in the degree of impatience is greatest for negative outcomes. The experimental phase was implemented with the construction of the hyperbolic factor through the administration of questionnaires constructed for each anomaly. This work formalizes the underlying causes of the discrepancy between the discounted utility model and the empirical evidence of preference reversal.

Keywords: decreasing impatience, discount utility model, hyperbolic discount, hyperbolic factor, impatience

Procedia PDF Downloads 103
13702 Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator

Authors: T. Jayanthi, K. Velusamy, H. Seetha, S. A. V. Satya Murty

Abstract:

Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities.

Keywords: Verification and Validation (V&V), Prototype Fast Breeder Reactor (PFBR), Kalpakkam Breeder Reactor Simulator (KALBR-SIM), steady state, transient state

Procedia PDF Downloads 266
13701 Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability

Authors: Warda L. Panondi, Norihiro Izumi

Abstract:

Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed.

Keywords: Pulangi watershed, sediment yield, streamflow, SWAT model

Procedia PDF Downloads 209
13700 Towards a Sustainable Energy Future: Method Used in Existing Buildings to Implement Sustainable Energy Technologies

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Souza Melegari, N. Samuel

Abstract:

This article describes the development of a model that uses a method where openings are represented by single glass and double glass. The model is based on a healthy balance equations purely theoretical and empirical data. Simplified equations are derived through a synthesis of the measured data obtained from meteorological stations. The implementation of the model in a design tool integrated buildings is discussed in this article, to better punctuate the requirements of comfort and energy efficiency in architecture and engineering. Sustainability, energy efficiency, and the integration of alternative energy systems and concepts are beginning to be incorporated into designs for new buildings and renovations to existing buildings. Few means have existed to effectively validate the potential performance benefits of the design concepts. It was used a method of degree-days for an assessment of the energy performance of a building showed that the design of the architectural design should always be considered the materials used and the size of the openings. The energy performance was obtained through the model, considering the location of the building Central Park Shopping Mall, in the city of Cascavel - PR. Obtained climatic data of these locations and in a second step, it was obtained the coefficient of total heat loss in the building pre-established so evaluating the thermal comfort and energy performance. This means that the more openings in buildings in Cascavel – PR, installed to the east side, they may be higher because the glass added to the geometry of architectural spaces will cause the environment conserve energy.

Keywords: sustainable design, energy modeling, design validation, degree-days methods

Procedia PDF Downloads 419
13699 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)

Procedia PDF Downloads 209
13698 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models

Authors: Morten Brøgger, Kim Wittchen

Abstract:

Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.

Keywords: building stock energy modelling, energy-savings, archetype

Procedia PDF Downloads 154
13697 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load

Authors: Ahmad Saadiq, Neeraj Sahu

Abstract:

Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.

Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve

Procedia PDF Downloads 325
13696 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2

Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle

Abstract:

With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.

Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis

Procedia PDF Downloads 72
13695 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning

Authors: R. Abdulrahman, A. Eardley, A. Soliman

Abstract:

The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.

Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)

Procedia PDF Downloads 188
13694 Production of Plum (Prunus Cerasifera) Concentrate as Edible Color and Evaluation of Color Change Kinetics

Authors: Azade Ghorbani-HasanSaraei, Seyed-Ahmad Shahidi, Sakineh Alizadeh, Adeleh Maghsoudlou

Abstract:

Improvement of color, as a quality attribute of Plum Concentrate, has been made possible by the increase in knowledge of kinetic of color change. Three different heating/evaporation processes were employed for the production of pPlum juice concentrate. The Plum juice was concentrated to a final 55 °Bx from an initial °Bx of 15 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final Plum juice concentration of 55 °Bx was achieved in 17, 24 and 57 min by using the microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. Results indicated that variation in TCD followed both first-order and combined kinetics models, and parameters L, a and b followed only combined model. This model implied that the colour formation and pigment destruction occurred during concentration processes of plum juice.

Keywords: colour, kinetics, concentration, plum juice

Procedia PDF Downloads 521
13693 Water-Energy-Food Nexus Model for India: A Way Forward for Achieving Sustainable Development Goals

Authors: Rajendra Singh, Krishna Mondal, Chandranath Chatterjee

Abstract:

The water, energy, and food (WEF) nexus describes the interconnectedness of these three essential elements of human life. Each of these three sectors depends on the others. India's expanding population, urbanization, and industrialization make WEF nexus management difficult. Coupling and coordination degrees can be used as indicators of a complex system's level of sustainable development. Thus, coupling and coordination of WEF sectors in India are essential for achieving Sustainable Development Goals (SDGs) 2 (zero hunger), 6 (clean water and sanitation), and 7 (affordable and clean energy). This study used a newly developed WEF nexus model and the concept of coupling coordination degree model to examine the coupling and coordination degrees of the WEF nexus at India's sub-national scale (States/Union Territories (UTs)) for the years 2011 and 2021. Results indicate that the WEF nexus coupling degree was reasonably stable among the Indian States/UTs in both years, with all having a coupling degree above 0.90, indicating high-quality coupling. However, the degree of coordination varied spatially and temporally from ‘primary development’ to ‘quality development’ for the Indian States/UTs. In 2021, it went from 53% to 14% intermediate development and 44% to 83% good development compared to 2011. Most Indian States/UTs developed SDG2 more than SDG6 and SDG7. This study also suggests that most States/UTs must implement WEF-related policies and programmes effectively to achieve quality coordinated WEF nexus development. This study may help administrators and policymakers identify States/UTs that need more attention to implement existing or new policies for achieving SDGs 2, 6, and 7.

Keywords: WEF nexus model, Pardee-RAND WEF nexus, sustainable development, policy

Procedia PDF Downloads 63
13692 Parental Negative Emotional States, Parenting Style and Child Emotional and Behavioural Problems: Australia-Indonesia Cross-Cultural Study

Authors: Yulina E. Riany, Divna Haslam, Matthew Sanders

Abstract:

This cross-cultural study aims to compare the level of parental depression and stress, parenting style use, and child emotional and behavioural problems between parents in Australia as an example of a Western country and parents in Indonesia as an example of Asian culture. A series of hierarchical regressions were undertaken to determine two models examining the factors that predict child problems residing in Australia (Model 1) and in Indonesia (Model 2). The online survey was completed by 179 parents in Australia and 448 parents in Indonesia. Results indicated that Australian parents reported higher levels of depression, authoritative parenting and higher levels of child misbehaviours compared to Indonesian parents. In comparison, Indonesian parents reported higher authoritarian parenting. Analyses performed to examine Model 1 and 2 revealed that parental negative emotional states and parenting style predicted child emotional and behavioural problems in both countries.

Keywords: cross-cutural study, parental stress, parenting, child misbehaviour

Procedia PDF Downloads 118
13691 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 330
13690 The Acceptance of E-Assessment Considering Security Perspective: Work in Progress

Authors: Kavitha Thamadharan, Nurazean Maarop

Abstract:

The implementation of e-assessment as tool to support the process of teaching and learning in university has become a popular technological means in universities. E-Assessment provides many advantages to the users especially the flexibility in teaching and learning. The e-assessment system has the capability to improve its quality of delivering education. However, there still exists a drawback in terms of security which limits the user acceptance of the online learning system. Even though there are studies providing solutions for identified security threats in e-learning usage, there is no particular model which addresses the factors that influences the acceptance of e-assessment system by lecturers from security perspective. The aim of this study is to explore security aspects of e-assessment in regard to the acceptance of the technology. As a result a conceptual model of secure acceptance of e-assessment is proposed. Both human and security factors are considered in formulation of this conceptual model. In order to increase understanding of critical issues related to the subject of this study, interpretive approach involving convergent mixed method research method is proposed to be used to execute the research. This study will be useful in providing more insightful understanding regarding the factors that influence the user acceptance of e-assessment system from security perspective.

Keywords: secure technology acceptance, e-assessment security, e-assessment, education technology

Procedia PDF Downloads 459