Search results for: sodium liquid glass
622 Application of Neutron Stimulated Gamma Spectroscopy for Soil Elemental Analysis and Mapping
Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert
Abstract:
Determining soil elemental content and distribution (mapping) within a field are key features of modern agricultural practice. While traditional chemical analysis is a time consuming and labor-intensive multi-step process (e.g., sample collections, transport to laboratory, physical preparations, and chemical analysis), neutron-gamma soil analysis can be performed in-situ. This analysis is based on the registration of gamma rays issued from nuclei upon interaction with neutrons. Soil elements such as Si, C, Fe, O, Al, K, and H (moisture) can be assessed with this method. Data received from analysis can be directly used for creating soil elemental distribution maps (based on ArcGIS software) suitable for agricultural purposes. The neutron-gamma analysis system developed for field application consisted of an MP320 Neutron Generator (Thermo Fisher Scientific, Inc.), 3 sodium iodide gamma detectors (SCIONIX, Inc.) with a total volume of 7 liters, 'split electronics' (XIA, LLC), a power system, and an operational computer. Paired with GPS, this system can be used in the scanning mode to acquire gamma spectra while traversing a field. Using acquired spectra, soil elemental content can be calculated. These data can be combined with geographical coordinates in a geographical information system (i.e., ArcGIS) to produce elemental distribution maps suitable for agricultural purposes. Special software has been developed that will acquire gamma spectra, process and sort data, calculate soil elemental content, and combine these data with measured geographic coordinates to create soil elemental distribution maps. For example, 5.5 hours was needed to acquire necessary data for creating a carbon distribution map of an 8.5 ha field. This paper will briefly describe the physics behind the neutron gamma analysis method, physical construction the measurement system, and main characteristics and modes of work when conducting field surveys. Soil elemental distribution maps resulting from field surveys will be presented. and discussed. Comparison of these maps with maps created on the bases of chemical analysis and soil moisture measurements determined by soil electrical conductivity was similar. The maps created by neutron-gamma analysis were reproducible, as well. Based on these facts, it can be asserted that neutron stimulated soil gamma spectroscopy paired with GPS system is fully applicable for soil elemental agricultural field mapping.Keywords: ArcGIS mapping, neutron gamma analysis, soil elemental content, soil gamma spectroscopy
Procedia PDF Downloads 131621 Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis
Authors: Shashank Bahri, Divyanshu Arya, Rajni Jain, Sreedevi Upadhyayula
Abstract:
Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones.Keywords: mesopourus, fischer tropsch reaction, pyridine adsorrption, drift study
Procedia PDF Downloads 299620 The Effect of Filter Design and Face Velocity on Air Filter Performance
Authors: Iyad Al-Attar
Abstract:
Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides.Keywords: air filters, fractional efficiency, gas cleaning, glass fibre, HEPA filter, permeability, pressure drop
Procedia PDF Downloads 134619 A Comprehensive Study on Freshwater Aquatic Life Health Quality Assessment Using Physicochemical Parameters and Planktons as Bio Indicator in a Selected Region of Mahaweli River in Kandy District, Sri Lanka
Authors: S. M. D. Y. S. A. Wijayarathna, A. C. A. Jayasundera
Abstract:
Mahaweli River is the longest and largest river in Sri Lanka and it is the major drinking water source for a large portion of 2.5 million inhabitants in the Central Province. The aim of this study was to the determination of water quality and aquatic life health quality in a selected region of Mahaweli River. Six sampling locations (Site 1: 7° 16' 50" N, 80° 40' 00" E; Site 2: 7° 16' 34" N, 80° 40' 27" E; Site 3: 7° 16' 15" N, 80° 41' 28" E; Site 4: 7° 14' 06" N, 80° 44' 36" E; Site 5: 7° 14' 18" N, 80° 44' 39" E; Site 6: 7° 13' 32" N, 80° 46' 11" E) with various anthropogenic activities at bank of the river were selected for a period of three months from Tennekumbura Bridge to Victoria Reservoir. Temperature, pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Dissolved Oxygen (DO), 5-day Biological Oxygen Demand (BOD5), Total Suspended Solids (TSS), hardness, the concentration of anions, and metal concentration were measured according to the standard methods, as physicochemical parameters. Planktons were considered as biological parameters. Using a plankton net (20 µm mesh size), surface water samples were collected into acid washed dried vials and were stored in an ice box during transportation. Diversity and abundance of planktons were identified within 4 days of sample collection using standard manuals of plankton identification under the light microscope. Almost all the measured physicochemical parameters were within the CEA standards limits for aquatic life, Sri Lanka Standards (SLS) or World Health Organization’s Guideline for drinking water. Concentration of orthophosphate ranged between 0.232 to 0.708 mg L-1, and it has exceeded the standard limit of aquatic life according to CEA guidelines (0.400 mg L-1) at Site 1 and Site 2, where there is high disturbance by cultivations and close households. According to the Pearson correlation (significant correlation at p < 0.05), it is obvious that some physicochemical parameters (temperature, DO, TDS, TSS, phosphate, sulphate, chloride fluoride, and sodium) were significantly correlated to the distribution of some plankton species such as Aulocoseira, Navicula, Synedra, Pediastrum, Fragilaria, Selenastrum, Oscillataria, Tribonema and Microcystis. Furthermore, species that appear in blooms (Aulocoseira), organic pollutants (Navicula), and phosphate high eutrophic water (Microcystis) were found, indicating deteriorated water quality in Mahaweli River due to agricultural activities, solid waste disposal, and release of domestic effluents. Therefore, it is necessary to improve environmental monitoring and management to control the further deterioration of water quality of the river.Keywords: bio indicator, environmental variables, planktons, physicochemical parameters, water quality
Procedia PDF Downloads 105618 Dietary Anion-Cation Balance of Grass and Net Acid-Base Excretion in Urine of Suckler Cows
Authors: H. Scholz, P. Kuehne, G. Heckenberger
Abstract:
Dietary Anion-Cation Balance (DCAB) in grazing systems under German conditions has a tendency to decrease from May until September and often are measured DCAB lower than 100 meq per kg dry matter. Lower DCAB in grass feeding system can change the metabolic status of suckler cows and often are results in acidotic metabolism. Measurement of acid-base excretion in dairy cows has been proved to a method to evaluate the acid-base status. The hypothesis was that metabolic imbalances could be identified by urine measurement in suckler cows. The farm study was conducted during the grazing seasons 2017 and 2018 and involved 7 suckler cow farms in Germany. Suckler cows were grazing during the whole time of the investigation and had no access to other feeding components. Cows had free access to water and salt block and free access to minerals (loose). The dry matter of the grass was determined at 60 °C and were then analysed for energy and nutrient content and for the Dietary Cation-Anion Balance (DCAB). Urine was collected in 50 ml-glasses and analysed for net acid-base excretion (NSBA) and the concentration of creatinine and urea in the laboratory. Statistical analysis took place with ANOVA with fixed effects of farms (1-7), month (May until September), and number of lactations (1, 2, and ≥ 3 lactations) using SPSS Version 25.0 for windows. An alpha of 0.05 was used for all statistical tests. During the grazing periods of years 2017 and 2018, an average DCAB was observed in the grass of 167 meq per kg DM. A very high mean variation could be determined from -42 meq/kg to +439 meq/kg. Reference values in relation to DCAB were described between 150 meq and 400 meq per kg DM. It was found the high chlorine content with reduced potassium level led to this reduction in DCAB at the end of the grazing period. Between the DCAB of the grass and the NSBA in urine of suckler cows was a correlation according to PEARSON of r = 0.478 (p ≤ 0.001) or after SPEARMAN of r = 0.601 (p ≤ 0.001) observed. For the control of urine values of grazing suckler cows, the wide spread of the values poses a challenge of the interpretation, especially since the DCAB is unknown. The influence of several feeding components such as chlorine, sulfur, potassium, and sodium (ions for the DCAB) and dry matter feed intake during the grazing period of suckler cows should be taken into account in further research. The results obtained show that up a decrease in the DCAB is related to a decrease in NSBA in urine of suckler cows. Monitoring of metabolic disturbances should include analysis of urine, blood, milk, and ruminal fluid.Keywords: dietary anion-cation balance, DCAB, net acid-base excretion, NSBA, suckler cow, grazing period
Procedia PDF Downloads 150617 Heart and Plasma LDH and CK in Response to Intensive Treadmill Running and Aqueous Extraction of Red Crataegus pentagyna in Male Rats
Authors: A. Abdi, A. Barari, A. Hojatollah Nikbakht, Khosro Ebrahim
Abstract:
Aim: The purpose of the current study was to investigate the effect of a high intensity treadmill running training (8 weeks) with or without aqueous extraction of Crataegus pentagyna on heart and plasma LDH and CK. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were used. Animals were randomly assigned into training (n = 16) and control (n = 16) groups and further divided into saline-control (SC, n = 8), saline-training (ST, n = 8), red Crataegus pentagyna extraction -control (CPEC, n = 8), and red Crataegus pentagyna extraction -training (CPET, n = 8) groups. Training groups have performed a high-intensity running program 34 m/min on 0% grade, 60 min/day, 5 days/week) on a motor-driven treadmill for 8 weeks. Animals were fed orally with Crataegus extraction and saline solution (500mg/kg body weight/or 10ml/kg body weight) for last six weeks. Seventy- two hours after the last training session, rats were sacrificed; plasma and heart were excised and immediately frozen in liquid nitrogen. LDH and CK levels were measured by colorimetric method. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: Result showed that consumption crataegus lowers LDH and CK in heart and plasma. Also the heart LDH and CK were lower in the CPET compared to the ST, while plasma LDH and CK in CPET was higher than the ST. The results of ANOVA showed that the due high-intensity exercise and consumption crataegus, there are significant differences between levels of hearth LDH (P < 0/001), plasma (P < 0/006) and hearth (P < 0/001) CK. Conclusion: It appears that high-intensity exercise led to increased tissue damage and inflammatory factors in plasma. In other hand, consumption aqueous extraction of Red Crataegus maybe inhibits these factors and prevents muscle and heart damage.Keywords: LDH, CK, crataegus, intensity
Procedia PDF Downloads 435616 Dairy Wastewater Treatment by Electrochemical and Catalytic Method
Authors: Basanti Ekka, Talis Juhna
Abstract:
Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide
Procedia PDF Downloads 142615 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions
Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn
Abstract:
We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions
Procedia PDF Downloads 154614 Virtual Metrology for Copper Clad Laminate Manufacturing
Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho
Abstract:
In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology
Procedia PDF Downloads 349613 Scrutinizing the Effective Parameters on Cuttings Movement in Deviated Wells: Experimental Study
Authors: Siyamak Sarafraz, Reza Esmaeil Pour, Saeed Jamshidi, Asghar Molaei Dehkordi
Abstract:
Cutting transport is one of the major problems in directional and extended reach oil and gas wells. Lack of sufficient attention to this issue may bring some troubles such as casing running, stuck pipe, excessive torque and drag, hole pack off, bit wear, decreased the rate of penetration (ROP), increased equivalent circulation density (ECD) and logging. Since it is practically impossible to directly observe the behavior of deep wells, a test setup was designed to investigate cutting transport phenomena. This experimental work carried out to scrutiny behavior of the effective variables in cutting transport. The test setup contained a test section with 17 feet long that made of a 3.28 feet long transparent glass pipe with 3 inch diameter, a storage tank with 100 liters capacity, drill pipe rotation which made of stainless steel with 1.25 inches diameter, pump to circulate drilling fluid, valve to adjust flow rate, bit and a camera to record all events which then converted to RGB images via the Image Processing Toolbox. After preparation of test process, each test performed separately, and weights of the output particles were measured and compared with each other. Observation charts were plotted to assess the behavior of viscosity, flow rate and RPM in inclinations of 0°, 30°, 60° and 90°. RPM was explored with other variables such as flow rate and viscosity in different angles. Also, effect of different flow rate was investigated in directional conditions. To access the precise results, captured image were analyzed to find out bed thickening and particles behave in the annulus. The results of this experimental study demonstrate that drill string rotation helps particles to be suspension and reduce the particle deposition cutting movement increased significantly. By raising fluid velocity, laminar flow converted to turbulence flow in the annulus. Increases in flow rate in horizontal section by considering a lower range of viscosity is more effective and improved cuttings transport performance.Keywords: cutting transport, directional drilling, flow rate, hole cleaning, pipe rotation
Procedia PDF Downloads 284612 Tritium Activities in Romania, Potential Support for Development of ITER Project
Authors: Gheorghe Ionita, Sebastian Brad, Ioan Stefanescu
Abstract:
In any fusion device, tritium plays a key role both as a fuel component and, due to its radioactivity and easy incorporation, as tritiated water (HTO). As for the ITER project, to reduce the constant potential of tritium emission, there will be implemented a Water Detritiation System (WDS) and an Isotopic Separation System (ISS). In the same time, during operation of fission CANDU reactors, the tritium content increases in the heavy water used as moderator and cooling agent (due to neutron activation) and it has to be reduced, too. In Romania, at the National Institute for Cryogenics and Isotopic Technologies (ICIT Rm-Valcea), there is an Experimental Pilot Plant for Tritium Removal (Exp. TRF), with the aim of providing technical data on the design and operation of an industrial plant for heavy water depreciation of CANDU reactors from Cernavoda NPP. The selected technology is based on the catalyzed isotopic exchange process between deuterium and liquid water (LPCE) combined with the cryogenic distillation process (CD). This paper presents an updated review of activities in the field carried out in Romania after the year 2000 and in particular those related to the development and operation of Tritium Removal Experimental Pilot Plant. It is also presented a comparison between the experimental pilot plant and industrial plant to be implemented at Cernavoda NPP. The similarities between the experimental pilot plant from ICIT Rm-Valcea and water depreciation and isotopic separation systems from ITER are also presented and discussed. Many aspects or 'opened issues' relating to WDS and ISS could be checked and clarified by a special research program, developed within ExpTRF. By these achievements and results, ICIT Rm - Valcea has proved its expertise and capability concerning tritium management therefore its competence may be used within ITER project.Keywords: ITER project, heavy water detritiation, tritium removal, isotopic exchange
Procedia PDF Downloads 410611 Apoptosis Inducing Potential of Onosma Bracteata Wall. in Mg-63 Human Osteosarcoma Cells via cdk2/Cyclin E Pathway
Authors: Ajay Kumar, Satwinderjeet Kaur
Abstract:
Onosma bracteata Wall. (Boraginaceae), is known to be a medicinal plant, useful in the treatment of body swellings, abdominal pain and urinary calculi, etc. The present study focused on the radical scavenging and cancer growth inhibitory properties of isolates from O. bracteata. Obea fraction demonstrated noticeable free radical scavenging ability along with antiproliferative activity in human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay with GI50 values of 88.56, 101.61 and 112.7 μg/ml, respectively. The scanning electron and confocal microscopy studies showed morphological alterations including nuclear condensation and formation of apoptotic bodies in osteosarcoma MG-63 cells. Obea fraction in osteosarcoma MG-63 cells augmented the reactive oxygen species (ROS) level and decreased the mitochondrial membrane potential. Flow cytometry analysis revealed the Obea treated cells to be arrested in the G0/G1 phase in a dose dependent manner supported by the observed increase in the early apoptotic cell population. Western blotting analysis showed that the expression of p-NF-kB, COX-2, p-Akt, and Bcl-xL decreased whereas, the expression of GSK-3β, p53, caspase-3 and caspase-9 proteins increased. The downregulation of Bcl-2, Cyclin E, CDK2 and mortalin gene expression and upregulation of p53 genes was unfolded in RT-qPCR studies. The presence of catechin, kaempferol, Onosmin A and epicatechin, as revealed in high-performance liquid chromatography (HPLC) studies, contributes towards the chemopreventive potential of O. bracteata which can be tapped for chemotherapeutic use.Keywords: apoptosis, confocal microscopy, HPLC, mitochondria membrane potential, reactive oxygen species
Procedia PDF Downloads 134610 Nanostructured Fluorine Doped Zinc Oxide Thin Films Deposited by Ultrasonic Spray Pyrolisys Technique: Effect of Starting Solution Composition and Substrate Temperature on the Physical Characteristics
Authors: Esmeralda Chávez Vargas, M. de la L. Olvera, A. Maldonado
Abstract:
The doping it is believed as follows, at high concentration fluorine in ZnO: F films is incorporated to the lattice by substitution of O-2 ions by F-1 ions; at middle fluorine concentrations, F ions may form interstitials, whereas for low concentrations it is increased the carriers and mobility could be explained by the surface passivation effect of fluorine. ZnO:F thin films were deposited on sodocalcic glass substratesat 425 °C , 450°C, 475 during 8, 12, 15 min from a 0.2 M solution. Doping concentration in the starting solutions was varied, namely, [F]/[F+Zn] = 0, 5, 15, 30, 45, 60, and 90 at. %; solvent composition was varied as well, 100:100; 50:50; 100:50(acetic acid: water: methanol ratios, in volume). In this work it is reported the characterization results of fluorine doped zinc oxide (ZnO:F) thin films deposited by the ultrasonic spray pyrolysis technique, using zinc acetate and ammonium fluorine as Zn an F precursors, respectively. The effect of varying the fluorine concentration in the starting solutions, the solvent composition, and the ageing time of the starting solutions, on the electrical resistivity, optical transmittance, structure and surface morphology was analyzed. In order to have a quantitative evaluation of the ZnO:F thin films for its application as transparent electrodes, the Figure of Merit was estimated from the Haacke´s formula. After a thoroughly study, it can be found that optimal conditions for the deposition of transparent and conductive ZnO:F thin films on sodocalcic substrates, were as follows; substrate temperature: solution molar concentration 0.2, doping concentration in the starting solution of [F]/[Zn]= 60 at. %, (water content)/(acetic acid) in starting solution: [H2O/ CH3OH]= 50:50, substrate temperature: 450 °C. The effects of aging of the starting solution has also been analyzed thoroughly and it has been found a dramatic effect on the electric resistivity of the material, aged by 40 days, show an electrical resitivity as low as 120 Ω/□, with a transmittance around 80% in the visible range. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane). Therefore, F introduction in lattice is by the substitution of O-2 ions by F-1 ions. The results show that ZnO:F thin films are potentially adequate for application as transparent conductive oxide in thin film solar cells.Keywords: TCOs, transparent electrodes, ultrasonic spray pyrolysis, zinc oxide, ZnO:F
Procedia PDF Downloads 500609 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades
Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac
Abstract:
With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.Keywords: assessment, closed cavity façade, life cycle, sustainability
Procedia PDF Downloads 191608 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay
Authors: Zhen Cao, Yu Zhu, Junxue Fu
Abstract:
Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration
Procedia PDF Downloads 102607 Derivational Morphology Training Improves Spelling in School-Aged Children
Authors: Estelle Ardanouy, Helene Delage, Pascal Zesiger
Abstract:
Morphological awareness contributes to the acquisition of reading and spelling in typical learners as well as in children with learning disorders. Indeed, the acquisition of phoneme-grapheme correspondences is not sufficient to master spelling, especially in inconsistent orthographic systems such as English or French. Several meta-analyses show the benefit of explicit training in derivational morphology on reading and spelling in old children (who have already learned the main grapheme-phoneme correspondences), but highlight the lack of studies with younger children, particularly in French. In this study, we chose to focus on the efficiency of an intensive training in derivational morphology on spelling skills in French-speaking four-graders (9-10 years of age). The training consisted of 1) learning how to divide words into morphemes (ex: para/pente in French, paraglider in English), as well as 2) working on the meaning of affixes in relation to existing words (ex: para/pente: to protect against – para - the slope -pente). One group of pupils (N = 37, M age = 9.5) received this experimental group training in morphology while an alternative training group (N = 34, M age = 9.6) received a visuo-semantic training based on visual cues to memorize the spelling difficulties of complex words (such as the doubling of “r” in “verre” in French -or "glass" in English-which are represented by the drawing of two glasses). Both trainings lasted a total of 15 hours at a rate of four 45 minutes sessions per week, resulting in five weeks of training in the school setting. Our preliminary results show a significant improvement in the experimental group in the spelling of affixes on the trained (p < 0.001) and untrained word lists (p <0.001), but also in the root of words on the trained (p <0.001) and untrained word lists group (p <0.001). The training effect is also present on both trained and untrained morphologically composed words. By contrast, the alternative training group shows no progress on these previous measures (p >0.15). Further analyses testing the effects of both trainings on other measures such as morphological awareness and reading of morphologically compose words are in progress. These first results support the effectiveness of explicitly teaching derivational morphology to improve spelling in school-aged children. The study is currently extended to a group of children with developmental dyslexia because these children are known for their severe and persistent spelling difficulties.Keywords: developmental dyslexia, derivational morphology, reading, school-aged children, spelling, training
Procedia PDF Downloads 175606 The Impact of Lipids on Lung Fibrosis
Authors: G. Wojcik, J. Gindlhuber, A. Syarif, K. Hoetzenecker, P. Bohm, P. Vesely, V. Biasin, G. Kwapiszewska
Abstract:
Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship.Keywords: collagen, fibroblasts, lipidomics, lung, pulmonary fibrosis
Procedia PDF Downloads 82605 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman
Abstract:
Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma
Procedia PDF Downloads 335604 Grey Relational Analysis Coupled with Taguchi Method for Process Parameter Optimization of Friction Stir Welding on 6061 AA
Authors: Eyob Messele Sefene, Atinkut Atinafu Yilma
Abstract:
The highest strength-to-weight ratio criterion has fascinated increasing curiosity in virtually all areas where weight reduction is indispensable. One of the recent advances in manufacturing to achieve this intention endears friction stir welding (FSW). The process is widely used for joining similar and dissimilar non-ferrous materials. In FSW, the mechanical properties of the weld joints are impelled by property-selected process parameters. This paper presents verdicts of optimum process parameters in attempting to attain enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. A butt joint configuration was employed. Process parameters, rotational speed, traverse speed or feed rate, axial force, dwell time, tool material and tool profiles were utilized. Process parameters were also optimized, making use of a mixed L18 orthogonal array and the Grey relation analysis method with larger is better quality characteristics. The mechanical properties of the weld joint are examined through the tensile test, hardness test and liquid penetrant test at ambient temperature. ANOVA was conducted in order to investigate the significant process parameters. This research shows that dwell time, rotational speed, tool shape, and traverse speed have become significant, with a joint efficiency of about 82.58%. Nine confirmatory tests are conducted, and the results indicate that the average values of the grey relational grade fall within the 99% confidence interval. Hence the experiment is proven reliable.Keywords: friction stir welding, optimization, 6061 AA, Taguchi
Procedia PDF Downloads 99603 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors
Procedia PDF Downloads 272602 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant
Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal
Abstract:
Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration
Procedia PDF Downloads 286601 Combustion Characteristic of Propane/Acetylene Fuel Blends Pool Fire
Authors: Yubo Bi, Xiao Chen, Shouxiang Lu
Abstract:
A kind of gas-fueled burner, named Burning Rate Emulator, was proposed for the purpose of the emulation of condensed fuel recently. The gaseous fuel can be pure combustible fuel gas or blends of gaseous fuel or inert gas. However, this concept was recently proposed without detailed study on the combustion characteristic of fuel blends. In this study, two kinds of common gaseous fuels were selected, propane and acetylene, to provide the combustion heat as well as a large amount of smoke, which widely exists in liquid and solid fuel burning process. A set of experiments were carried out using a gas-fueled burner with a diameter of 8 cm. The total volume flow rate of propane and acetylene was kept at 3 liters per minute. The volume fraction of propane varied from 0% to 100% at interval of 10%. It is found that the flame height increases with propane volume fraction, which may be caused by the increase of heat release rate, as the energy density of propane is larger than that of acetylene. The dimensionless flame height is correlated against dimensionless heat release rate, which shows a power function relationship. The radiation fraction of the flame does not show a monotonic relationship with propane volume fraction. With the increase of propane volume fraction from 0% to 100%, the value of radiation fraction increases first and reach a maximum value around 0.46 at a propane volume fraction of 10%, and then decreases continuously to a value of 0.25 at the propane volume fraction of 100%. The flame radiation is related to the soot in the flame. The trend of the radiation fraction reflects that there may be a synergistic effect of soot formation between propane and acetylene which can be guessed from the significantly high radiation fraction at a propane volume fraction of 10%. This work provides data for combustion of gaseous fuel blends pool fire and also give reference on the design of Burning Rate Emulator.Keywords: Burning Rate Emulator, fuel blends pool fire, flame height, radiation fraction
Procedia PDF Downloads 227600 Transition from Linear to Circular Economy in Gypsum in India
Authors: Shanti Swaroop Gupta, Bibekananda Mohapatra, S. K. Chaturvedi, Anand Bohra
Abstract:
For sustainable development in India, there is an urgent need to follow the principles of industrial symbiosis in the industrial processes, under which the scraps, wastes, or by‐products of one industry can become the raw materials for another. This will not only help in reducing the dependence on natural resources but also help in gaining economic advantage to the industry. Gypsum is one such area in India, where the linear economy model of by-product gypsum utilization has resulted in unutilized legacy phosphogypsum stock of 64.65 million tonnes (mt) at phosphoric acid plants in 2020-21. In the future, this unutilized gypsum stock will increase further due to the expected generation of Flue Gas Desulphurization (FGD) gypsum in huge quantities from thermal power plants. Therefore, it is essential to transit from the linear to circular economy in Gypsum in India, which will result in huge environmental as well as ecological benefits. Gypsum is required in many sectors like Construction (Cement industry, gypsum boards, glass fiber reinforced gypsum panels, gypsum plaster, fly ash lime bricks, floor screeds, road construction), agriculture, in the manufacture of Plaster of Paris, pottery, ceramic industry, water treatment processes, manufacture of ammonium sulphate, paints, textiles, etc. The challenges faced in areas of quality, policy, logistics, lack of infrastructure, promotion, etc., for complete utilization of by-product gypsum have been discussed. The untapped potential of by-product gypsum utilization in various sectors like the use of gypsum in agriculture for sodic soil reclamation, utilization of legacy stock in cement industry on mission mode, improvement in quality of by-product gypsum by standardization and usage in building materials industry has been identified. Based on the measures required to tackle the various challenges and utilization of the untapped potential of gypsum, a comprehensive action plan for the transition from linear to the circular economy in gypsum in India has been formulated. The strategies and policy measures required to implement the action plan to achieve a circular economy in Gypsum have been recommended for various government departments. It is estimated that the focused implementation of the proposed action plan would result in a significant decrease in unutilized gypsum legacy stock in the next five years and it would cease to exist by 2027-28 if the proposed action plan is effectively implemented.Keywords: circular economy, FGD gypsum, India, phosphogypsum
Procedia PDF Downloads 267599 Estimation of Microbial-N Supply to Small Intestine in Angora Goats Fed by Different Roughage Sources
Authors: Nurcan Cetinkaya
Abstract:
The aim of the study was to estimate the microbial-N flow to small intestine based on daily urinary purine derivatives(PD) mainly xanthine, hypoxanthine, uric acid and allantoin excretion in Angora goats fed by grass hay and concentrate (Period I); barley straw and concentrate (Period II). Daily urine samples were collected during last 3 days of each period from 10 individually penned Angora bucks( LW 30-35 Kg, 2-3 years old) receiving ad libitum grass hay or barley straw and 300 g/d concentrate. Fresh water was always available. 4N H2SO4 was added to collected daily urine .samples to keep pH under 3 to avoid of uric acid precipitation. Diluted urine samples were stored at -20°C until analysis. Urine samples were analyzed for xanthine, hypoxanthine, uric acid, allantoin and creatinine by High-Performance Liquid Chromatographic Method (HPLC). Urine was diluted 1:15 in ratio with water and duplicate samples were prepared for HPLC analysis. Calculated mean levels (n=60) for urinary xanthine, hypoxanthine, uric acid, allantoin, total PD and creatinine excretion were 0.39±0.02 , 0.26±0.03, 0.59±0.06, 5.91±0.50, 7.15±0.57 and 3.75±0.40 mmol/L for Period I respectively; 0.35±0.03, 0.21±0.02, 0.55±0.05, 5.60±0.47, 6.71±0.46 and 3.73±0.41 mmol/L for Period II respectively.Mean values of Period I and II were significantly different (P< 0.05) except creatinine excretion. Estimated mean microbial-N supply to the small intestine for Period I and II in Angora goats were 5.72±0.46 and 5.41±0.61 g N/d respectively. The effects of grass hay and barley straw feeding on microbial-N supply to small intestine were found significantly different (P< 0.05). In conclusion, grass hay showed a better effect on the ruminal microbial protein synthesis compared to barley straw, therefore; grass hay is suggested as roughage source in Angora goat feeding.Keywords: angora goat, HPLC method, microbial-N supply to small intestine, urinary purine derivatives
Procedia PDF Downloads 221598 Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution
Authors: Abbasali Abouei Mehrizi, Hao Wang
Abstract:
The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation.Keywords: advancing, condensation, microscopic contact angle, partial wetting
Procedia PDF Downloads 294597 An Investigation on the Need to Provide Environmental Sanitation Facilities to Informal Settlement in Shagari Low-Cost Katsina State for Sustainable Built Environment
Authors: Abdullahi Mannir Rawayau
Abstract:
This paper identifies the problems that have aided the decoy to adequate basic infrastructural amenities, sub-standard housing, over-crowding, poor ventilation in homes and work places, sanitation, and non-compliance with building bye-laws and regulation. The paper also asserts the efficient disposal of solid and liquid waste is one of the challenges in the informal areas due to threats on the environment and public health. Sanitation services in the informal settlements have been found to be much lower compared to the average for unban. Bearing in mind a factor which prevents sustainable sanitation in informal areas which include low incomes, insecure tenure, low education levels, difficulty topography and transitory populations, and this study aim to identify effective strategies for achieving sustainable sanitation with specific reference to the informal settlement. Using the Shanghai Low-Cost as a case study. The primary data collected was through observation and interview method. Similarly, the secondary data used for the study was collected through literature reviews from extent studies with specific reference to informal settlement. A number of strategies towards achieving sustainable sanitation in the study were identified here in classified into three (3):- Advocacy and capacity building, infrastructural provision and institutionalization of systems and processes. The paper concludes with the premise on the need to build alliances between the government and stakeholders concerned with sanitation provision through the creation of sanitation and employ adaptable technology. Provision of sanitation facilities in public areas and to establish a statutory body for timely response to sanitation waste management in Katsina. It is imperative to check and prevent further decay for harmonious living and sustainable development.Keywords: built environment, sanitation, facilities, settlement
Procedia PDF Downloads 224596 Assessment of Heart Rate, Blood Pressure and Percentage Oxygen Saturation in Young Habitual Shisha Smokers in Kano, Nigeria
Authors: B. I. Waziri, M. A. Yahaya
Abstract:
Background: Practice of shisha smoking involves the use of a multi-stemmed instrument to smoke tobacco or non-tobacco herbal mixture where the smoke is designed to pass through water or other liquid before reaching the smoker. The presence of tobacco content and the use of charcoal when burning the ingredients in this popular practice necessitate for investigation of many physiological parameters of habitual shisha smokers in our environment. Methods: 103 young shisha smokers, regular in the practice for more than three years living in Nasarawa, Kano state, Nigeria, were recruited for the study. The controls were 100 university students (nonsmokers) match for age (18 - 30 years), sex and BMI (20 - 24) with the smokers. Participants with known history of cigarette smoking, cardiovascular or respiratory diseases were excluded. Ethical approval was obtained from the Ministry of Health, Kano Nigeria. Hear rate, blood pressure and percentage oxygen saturation (SPO₂) were measured using stethoscope, sphygmomanometer and pulse oximeter respectively. Data were analyzed using IBM SPSS version 20 and mean values of the measured parameters were compared between the smokers and controls using independent sample t-test. P-values < 0.05 were considered significant. Results: The mean Heart rate was found to be significantly higher (p = 0.01) in the shisha smokers (91.32 ± 0.84) compared to controls (79.19 ± 1.18). Systolic and diastolic blood pressure was also higher (p = 0.00) in the shisha smokers (128.75 ± 1.11 and 85.85 ± 0.78 respectively) compared to controls with the systolic and diastolic pressure of 116.64 ± 0.82 and 80.39 ± 0.83 respectively. SPO₂ was significantly lower (p = 0.00) in the shisha smokers (91.98% ± 0.42%) compared to the controls (97.98 ± 0.18). Conclusion: Habitual Shisha Smoking caused a significant increase in Heart rate, both systolic and diastolic blood pressure and a significant decrease in SPO2 among youth in Kano State, Nigeria.Keywords: blood pressure, heart rate, shisha, youth
Procedia PDF Downloads 146595 FWGE Production From Wheat Germ Using Co-culture of Saccharomyces cerevisiae and Lactobacillus plantarum
Authors: Valiollah Babaeipour, Mahdi Rahaie
Abstract:
food supplements are rich in specific nutrients and bioactive compounds that eliminate free radicals and improve cellular metabolism. The major bioactive compounds are found in bran and cereal sprouts. Secondary metabolites of these microorganisms have antioxidant properties that can be used alone or in combination with chemotherapy and radiation therapy to treat cancer. Biologically active compounds such as benzoquinone derivatives extracted from fermented wheat germ extract (FWGE) have several positive effects on the overall state of human health and strengthen the immune system. The present work describes the discontinuous fermentation of raw wheat germ for FWGE production through the simultaneous culture process using the probiotic strains of Saccharomyces cerevisiae, Lactobacillus plantarum, and the possibility of using solid waste. To increase production efficiency, first to select important factors in the optimization of each fermentation process, using a factorial statistical scheme of stirring fraction (120 to 200 rpm), dilution of solids to solvent (1 to 8-12), fermentation time (16 to 24 hours) and strain to wheat germ ratio (20% to 50%) were studied and then simultaneous culture was performed to increase the yields of 2 and 6 dimethoxybenzoquinone (2,6-DMBQ). Since 2 and 6 dimethoxy benzoquinone were fermented as the main biologically active compound in wheat germ extract, UV-Vis analysis was performed to confirm the presence of 2 and 6 dimethoxy benzoquinone in the final product. In addition, 2,6-DMBQ of some products was isolated in a non-polar C-18 column and quantified using high performance liquid chromatography (HPLC). Based on our findings, it can be concluded that the increase of 2 and 6 dimethoxybenzoquinone in the simultaneous culture of Saccharomyces cerevisiae - Lactobacillus plantarum compared to pure culture of Saccharomyces cerevisiae (from 1.89 mg / g) to 28.9% (2.66 mg / g) Increased.Keywords: wheat germ, FWGE, saccharomyces cerevisiae, lactobacillus plantarum, co-culture, 2, 6-DMBQ
Procedia PDF Downloads 128594 Response of Planktonic and Aggregated Bacterial Cells to Water Disinfection with Photodynamic Inactivation
Authors: Thayse Marques Passos, Brid Quilty, Mary Pryce
Abstract:
The interest in developing alternative techniques to obtain safe water, free from pathogens and hazardous substances, is growing in recent times. The photodynamic inactivation of microorganisms (PDI) is a promising ecologically-friendly and multi-target approach for water disinfection. It uses visible light as an energy source combined with a photosensitiser (PS) to transfer energy/electrons to a substrate or molecular oxygen generating reactive oxygen species, which cause cidal effects towards cells. PDI has mainly been used in clinical studies and investigations on its application to disinfect water is relatively recent. The majority of studies use planktonic cells. However, in their natural environments, bacteria quite often do not occur as freely suspended cells (planktonic) but in cell aggregates that are either freely floating or attached to surfaces as biofilms. Microbes can form aggregates and biofilms as a strategy to protect them from environmental stress. As aggregates, bacteria have a better metabolic function, they communicate more efficiently, and they are more resistant to biocide compounds than their planktonic forms. Among the bacteria that are able to form aggregates are members of the genus Pseudomonas, they are a very diverse group widely distributed in the environment. Pseudomonas species can form aggregates/biofilms in water and can cause particular problems in water distribution systems. The aim of this study was to evaluate the effectiveness of photodynamic inactivation in killing a range of planktonic cells including Escherichia coli DSM 1103, Staphylococcus aureus DSM 799, Shigella sonnei DSM 5570, Salmonella enterica and Pseudomonas putida DSM 6125, and aggregating cells of Pseudomonas fluorescens DSM 50090, Pseudomonas aeruginosa PAO1. The experiments were performed in glass Petri dishes, containing the bacterial suspension and the photosensitiser, irradiated with a multi-LED (wavelengths 430nm and 660nm) for different time intervals. The responses of the cells were monitored using the pour plate technique and confocal microscopy. The study showed that bacteria belonging to Pseudomonads group tend to be more tolerant to PDI. While E. coli, S. aureus, S. sonnei and S. enterica required a dosage ranging from 39.47 J/cm2 to 59.21 J/cm2 for a 5 log reduction, Pseudomonads needed a dosage ranging from 78.94 to 118.42 J/cm2, a higher dose being required when the cells aggregated.Keywords: bacterial aggregation, photoinactivation, Pseudomonads, water disinfection
Procedia PDF Downloads 294593 Study of the Physicochemical Characteristics of Liquid Effluents from the El Jadida Wastewater Treatment Plant
Authors: Aicha Assal, El Mostapha Lotfi
Abstract:
Rapid industrialization and population growth are currently the main causes of energy and environmental problems associated with wastewater treatment. Wastewater treatment plants (WWTPs) aim to treat wastewater before discharging it into the environment, but they are not yet capable of treating non-biodegradable contaminants such as heavy metals. Toxic heavy metals can disrupt biological processes in WWTPs. Consequently, it is crucial to combine additional physico-chemical treatments with WWTPs to ensure effective wastewater treatment. In this study, the authors examined the pretreatment process for urban wastewater generated by the El Jadida WWTP in order to assess its treatment efficiency. Various physicochemical and spatiotemporal parameters of the WWTP's raw and treated water were studied, including temperature, pH, conductivity, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen, and total phosphorus. The results showed an improvement in treatment yields, with measured performance values of 77% for BOD5, 63% for COD, and 66% for TSS. However, spectroscopic analyses revealed persistent coloration in wastewater samples leaving the WWTP, as well as the presence of heavy metals such as Zn, cadmium, chromium, and cobalt, detected by inductively coupled plasma optical emission spectroscopy (ICP-OES). To remedy these staining problems and reduce the presence of heavy metals, a new low-cost, environmentally-friendly eggshell-based solution was proposed. This method eliminated most heavy metals such as cobalt, beryllium, silver, and copper and significantly reduced the amount of cadmium, lead, chromium, manganese, aluminium, and Zn. In addition, the bioadsorbent was able to decolorize wastewater by up to 84%. This adsorption process is, therefore, of great interest for ensuring the quality of wastewater and promoting its reuse in irrigation.Keywords: WWTP, wastewater, heavy metals, decoloration, depollution, COD, BOD5
Procedia PDF Downloads 62