Search results for: digital space
3259 Investigated Optimization of Davidson Path Loss Model for Digital Terrestrial Television (DTTV) Propagation in Urban Area
Authors: Pitak Keawbunsong, Sathaporn Promwong
Abstract:
This paper presents an investigation on the efficiency of the optimized Davison path loss model in order to look for a suitable path loss model to design and planning DTTV propagation for small and medium urban areas in southern Thailand. Hadyai City in Songkla Province is chosen as the case study to collect the analytical data on the electric field strength. The optimization is conducted through the least square method while the efficiency index is through the statistical value of relative error (RE). The result of the least square method is the offset and slop of the frequency to be used in the optimized process. The statistical result shows that RE of the old Davidson model is at the least when being compared with the optimized Davison and the Hata models. Thus, the old Davison path loss model is the most accurate that further becomes the most optimized for the plan on the propagation network design.Keywords: DTTV propagation, path loss model, Davidson model, least square method
Procedia PDF Downloads 3383258 Total Controllability of the Second Order Nonlinear Differential Equation with Delay and Non-Instantaneous Impulses
Authors: Muslim Malik, Avadhesh Kumar
Abstract:
A stronger concept of exact controllability which is called Total Controllability is introduced in this manuscript. Sufficient conditions have been established for the total controllability of a control problem, governed by second order nonlinear differential equation with delay and non-instantaneous impulses in a Banach space X. The results are obtained using the strongly continuous cosine family and Banach fixed point theorem. Also, the total controllability of an integrodifferential problem is investigated. At the end, some numerical examples are provided to illustrate the analytical findings.Keywords: Banach fixed point theorem, non-instantaneous impulses, strongly continuous cosine family, total controllability
Procedia PDF Downloads 2983257 Fighting the Crisis with 4.0 Competences: Higher Education Projects in the Times of Pandemic
Authors: Jadwiga Fila, Mateusz Jezowski, Pawel Poszytek
Abstract:
The outbreak of the global COVID-19 pandemic started the times of crisis full of uncertainty, especially in the field of transnational cooperation projects based on the international mobility of their participants. This is notably the case of Erasmus+ Program for higher education, which is the flagship European initiative boosting cooperation between educational institutions, businesses, and other actors, enabling students and staff mobility, as well as strategic partnerships between different parties. The aim of this abstract is to study whether competences 4.0 are able to empower Erasmus+ project leaders in sustaining their international cooperation in times of global crisis, widespread online learning, and common project disruption or cancellation. The concept of competences 4.0 emerged from the notion of the industry 4.0, and it relates to skills that are fundamental for the current labor market. For the aim of the study presented in this abstract, four main 4.0 competences were distinguished: digital, managerial, social, and cognitive competence. The hypothesis for the study stipulated that the above-mentioned highly-developed competences may act as a protective shield against the pandemic challenges in terms of projects’ sustainability and continuation. The objective of the research was to assess to what extent individual competences are useful in managing projects in times of crisis. For this purpose, the study was conducted, involving, among others, 141 Polish higher education project leaders who were running their cooperation projects during the peak of the COVID-19 pandemic (Mar-Nov 2020). The research explored the self-perception of the above-mentioned competences among Erasmus+ project leaders and the contextual data regarding the sustainability of the projects. The quantitative character of data permitted validation of scales (Cronbach’s Alfa measure), and the use of factor analysis made it possible to create a distinctive variable for each competence and its dimensions. Finally, logistic regression was used to examine the association of competences and other factors on project status. The study shows that the project leaders’ competence profile attributed the highest score to digital competence (4.36 on the 1-5 scale). Slightly lower values were obtained for cognitive competence (3.96) and managerial competence (3.82). The lowest score was accorded to one specific dimension of social competence: adaptability and ability to manage stress (1.74), which proves that the pandemic was a real challenge which had to be faced by project coordinators. For higher education projects, 10% were suspended or prolonged because of the COVID-19 pandemic, whereas 90% were undisrupted (continued or already successfully finished). The quantitative analysis showed a positive relationship between the leaders’ levels of competences and the projects status. In the case of all competences, the scores were higher for project leaders who finished projects successfully than for leaders who suspended or prolonged their projects. The research demonstrated that, in the demanding times of the COVID-19 pandemic, competences 4.0, to a certain extent, do play a significant role in the successful management of Erasmus+ projects. The implementation and sustainability of international educational projects, despite mobility and sanitary obstacles, depended, among other factors, on the level of leaders’ competences.Keywords: Competences 4.0, COVID-19 pandemic, Erasmus+ Program, international education, project sustainability
Procedia PDF Downloads 943256 Housing Harmony: Social Integration in Singapore Public Housing
Authors: Yingjie Feng, Lei Xu, Zhenyu Cao
Abstract:
In the process of urbanization, public housing is often a powerful means to deal with large floating population. In the developed countries like the U.S, France, Singapore, and Japan, the experience on how to make use of public housing to realize social integration in aspects of race, class, religion, income is gained through years of practice. Take the example of Singapore, the article first introduces the ethnic composition background and public housing development in Singapore, and then gives a detailed explanation and analysis on social integration in public housing from the views of Ethnic quotas policy, community organization construction and design of public space. Finally, combined with the Chinese situation, the article points out that the solution for social integration in China is the organic mix of different income groups in public housing.Keywords: floating population, public housing, Singapore, social integration, urbanization
Procedia PDF Downloads 2803255 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 1573254 Enhancement in the Absorption Efficiency of Gaas/Inas Nanowire Solar Cells through a Decrease in Light Reflection
Authors: Latef M. Ali, Farah A. Abed
Abstract:
In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV.Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, fdtd simulation
Procedia PDF Downloads 723253 The Power of Earned Media: Exploring the Key Success of Love Destiny, Thai Smash Hit Television Drama
Authors: Wilaiwan Jongwilaikasaem, Phatteera Sarakornborrirak
Abstract:
While Thai television producers feel anxious about digital disruption, Love Destiny, Thai television period drama became smash hit in Thailand in 2018. Audience throughout the country not only watched the drama both offline and online but also spread the content of the drama on social media and followed cultural trends from the protagonist. Thus, the main purpose of this article is to examine the secret behind the success of Love Destiny. Data were collected from content analysis and in-depth interview. The result shows that the key success of the drama is from earned media phenomenon from the audience and marketers’ engagement. As Love Destiny has full-flavored content with traditional challenged plot, delicate production, and presentation of Thainess in a positive and tangible way; audience and marketers are enthusiastic about building up the popular trend of Love Destiny on social media and also coming back home to watch televisions when the drama was on the air.Keywords: Thai drama, earned media, Love Destiny, television
Procedia PDF Downloads 1773252 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement
Procedia PDF Downloads 1233251 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 573250 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V.K.Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier
Procedia PDF Downloads 4913249 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD
Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi
Abstract:
Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition
Procedia PDF Downloads 3983248 Examining Media Literacy Strategies through Questionnaires and Analyzing the Behavioral Patterns of Middle-Aged and Elderly Persons
Authors: Chia Yen Li, Wen Huei Chou, Mieko Ohsuga, Tsuyoshi Inoue
Abstract:
The evolution of the digital age has led to people’s lives being pervaded by both facts and misinformation, challenging media literacy (ML). Middle-aged and elderly persons (MEPs) are prone to disseminating large amounts of misinformation, which often endangers their lives due to erroneously believing such information. At present, several countries have actively established fact-checking platforms to combat misinformation, but they are unable to keep pace with the rapid proliferation of such information on social media. In this study, the questionnaire survey method was used to collect data on MEPs’ behavior, cognition, attitudes, and concepts of social media when using a mobile instant messaging app called LINE; analyze their behavioral patterns and reasons for sharing misinformation; and summarize design strategies for improving their ML. The findings can serve as a reference in future related research.Keywords: media literacy, middle-aged and elderly persons, social media, misinformation
Procedia PDF Downloads 1123247 The Effects of an Online Career Intervention on University Students’ Levels of Career Adaptability
Authors: Anna Veres
Abstract:
People’s ability to adapt to a constantly changing environment is essential. Career adaptability is central to Career Construction Theory, where proper adaptation to new situations, changing environments, and jobs require adequate career development. Based on current career theories and the possibilities offered by digital technology, the primary goal of this study is to develop career adaptability through an online tool. Its secondary goal is to apply for an online career intervention program and explore its developmental possibilities. A total of 132 university students from the bachelor program took part in the study, from which 65 students received a four-week online career intervention, while 67 participants formed the control group. Based on the results, it can state that career adaptability can be developed, and there is a great demand and interest from university students to use career-related programs on online platforms. Career interventions should be performed online as well if there is suitable software and a well-constructed program. Limitations and further implications are discussed.Keywords: career adaptability, career development, online career intervention, university students
Procedia PDF Downloads 1403246 Development of a Catalogs System for Augmented Reality Applications
Authors: J. Ierache, N. A. Mangiarua, S. A. Bevacqua, N. N. Verdicchio, M. E. Becerra, D. R. Sanz, M. E. Sena, F. M. Ortiz, N. D. Duarte, S. Igarza
Abstract:
Augmented Reality is a technology that involves the overlay of virtual content, which is context or environment sensitive, on images of the physical world in real time. This paper presents the development of a catalog system that facilitates and allows the creation, publishing, management and exploitation of augmented multimedia contents and Augmented Reality applications, creating an own space for anyone that wants to provide information to real objects in order to edit and share it then online with others. These spaces would be built for different domains without the initial need of expert users. Its operation focuses on the context of Web 2.0 or Social Web, with its various applications, developing contents to enrich the real context in which human beings act permitting the evolution of catalog’s contents in an emerging way.Keywords: augmented reality, catalog system, computer graphics, mobile application
Procedia PDF Downloads 3523245 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition
Procedia PDF Downloads 4553244 The Study on the Overall Protection of the Ancient Villages
Abstract:
The discussion about elements of cultural heritage and their relevance among the ancient villages is comparably insufficient. The protection work is strongly influenced by touristic development and cultural gimmick, resulting in low protection efficiency and many omissions. Historical villages as the cultural settlement patterns bear a large number of heritage relics. They were regionally scattered with a clear characteristic of gathering. First of all, this study proposes the association and similarities of the forming mechanism between four historic cultural villages in Mian Mountain. Secondly, the study reveals that these villages own the strategic pass, underground passage, and the mountain barrier. Thirdly, based on the differentiated characteristics of villages’ space, the study discusses about the integrated conservation from three levels: the regional heritage conservation, the cultural line shaping, and the featured brand building.Keywords: conservation, fortress, historical villages, Mian Moutain
Procedia PDF Downloads 1803243 Isogeometric Topology Optimization in Cracked Structures Design
Authors: Dongkyu Lee, Thanh Banh Thien, Soomi Shin
Abstract:
In the present study, the isogeometric topology optimization is proposed for cracked structures through using Solid Isotropic Material with Penalization (SIMP) as a design model. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B-spline basis functions. The mathematical formulation of topology optimization problem solving minimum structural compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to strain energy of cracked structure are proposed in terms of design density variables. Numerical examples demonstrate interactions of topology optimization to structures design with cracks.Keywords: topology optimization, isogeometric, NURBS, design
Procedia PDF Downloads 4923242 Students' Willingness to Accept Virtual Lecturing Systems: An Empirical Study by Extending the UTAUT Model
Authors: Ahmed Shuhaiber
Abstract:
The explosion of the World Wide Web and the electronic trend of university teaching have transformed the learning style to become more learner-centred, Which has popularized the digital delivery of mediated lectures as an alternative or an adjunct to traditional lectures. Despite its potential and popularity, virtual lectures have not been adopted yet in Jordanian universities. This research aimed to fill this gap by studying the factors that influence student’s willingness to accept virtual lectures in one Jordanian University. A quantitative approach was followed by obtaining 216 survey responses and statistically applying the UTAUT model with some modifications. Results revealed that performance expectancy, effort expectancy, social influences and self-efficacy could significantly influence student’s attitudes towards virtual lectures. Additionally, facilitating conditions and attitudes towards virtual lectures were found with significant influence on student’s intention to take virtual lectures. Research implications and future work were specified afterwards.Keywords: E-learning, student willingness, UTAUT, virtual Lectures, web-based learning systems
Procedia PDF Downloads 2913241 Spatial Deictics in Face-to-Face Communication: Findings in Baltic Languages
Authors: Gintare Judzentyte
Abstract:
The present research is aimed to discuss semantics and pragmatics of spatial deictics (deictic adverbs of place and demonstrative pronouns) in the Baltic languages: in spoken Lithuanian and in spoken Latvian. The following objectives have been identified to achieve the aim: 1) to determine the usage of adverbs of place in spoken Lithuanian and Latvian and to verify their meanings in face-to-face communication; 2) to determine the usage of demonstrative pronouns in spoken Lithuanian and Latvian and to verify their meanings in face-to-face communication; 3) to compare the systems between the two spoken languages and to identify the main tendencies. As meanings of demonstratives (adverbs of place and demonstrative pronouns) are context-bound, it is necessary to verify their usage in spontaneous interaction. Besides, deictic gestures play a very important role in face-to-face communication. Therefore, an experimental method is necessary to collect the data. Video material representing spoken Lithuanian and spoken Latvian was recorded by means of the method of a qualitative interview (a semi-structured interview: an empirical research is all about asking right questions). The collected material was transcribed and evaluated taking into account several approaches: 1) physical distance (location of the referent, visual accessibility of the referent); 2) deictic gestures (the combination of language and gesture is especially characteristic of the exophoric use); 3) representation of mental spaces in physical space (a speaker sometimes wishes to mark something that is psychically close as psychologically distant and vice versa). The research of the collected data revealed that in face-to-face communication the participants choose deictic adverbs of place instead of demonstrative pronouns to locate/identify entities in situations where the demonstrative pronouns would be expected in spoken Lithuanian and in spoken Latvian. The analysis showed that visual accessibility of the referent is very important in face-to-face communication, but the main criterion while localizing objects and entities is the need for contrast: lith. čia ‘here’, šis ‘this’, latv. šeit ‘here’, šis ‘this’ usually identify distant entities and are used instead of distal demonstratives (lith. ten ‘there’, tas ‘that’, latv. tur ‘there’, tas ‘that’), because the referred objects/subjects contrast to further entities. Furthermore, the interlocutors in examples from a spontaneously situated interaction usually extend their space and can refer to a ‘distal’ object/subject with a ‘proximal’ demonstrative based on the psychological choice. As the research of the spoken Baltic languages confirmed, the choice of spatial deictics in face-to-face communication is strongly effected by a complex of criteria. Although there are some main tendencies, the exact meaning of spatial deictics in the spoken Baltic languages is revealed and is relevant only in a certain context.Keywords: Baltic languages, face-to-face communication, pragmatics, semantics, spatial deictics
Procedia PDF Downloads 2893240 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator
Authors: Wedad Albalawi
Abstract:
The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator
Procedia PDF Downloads 953239 A Model for Analyzing the Startup Dynamics of a Belt Transmission Driven by a DC Motor
Authors: Giovanni Incerti
Abstract:
In this paper the dynamic behavior of a synchronous belt drive during start-up is analyzed and discussed. Besides considering the belt elasticity, the mathematical model here proposed also takes into consideration the electrical behaviour of the DC motor. The solution of the motion equations is obtained by means of the modal analysis in state space, which allows to obtain the decoupling of all equations of the mathematical model without introducing the hypothesis of proportional damping. The mathematical model of the transmission and the solution algorithms have been implemented within a computing software that allows the user to simulate the dynamics of the system and to evaluate the effects due to the elasticity of the belt branches and to the electromagnetic behavior of the DC motor. In order to show the details of the calculation procedure, the paper presents a case study developed with the aid of the abovementioned software.Keywords: belt drive, vibrations, startup, DC motor
Procedia PDF Downloads 5783238 Approximate Spring Balancing for the Arm of a Humanoid Robot to Reduce Actuator Torque
Authors: Apurva Patil, Ashay Aswale, Akshay Kulkarni, Shubham Bharadiya
Abstract:
The potential benefit of gravity compensation of linkages in mechanisms using springs to reduce actuator requirements is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs with child–parent connections and no auxiliary links. Application of this method to the developed arm of a humanoid robot is presented here. Spring balancing is particularly important in this case because the serial chain of linkages has to work against gravity.This work involves approximate spring balancing of the open-loop chain of linkages using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Reduced actuator torque facilitates the use of lower end actuators which are generally smaller in weight and volume thereby lowering the space requirements and the total weight of the arm. This is particularly important for humanoid robots where the parent actuator has to handle the weight of the subsequent actuators as well. Actuators with lower actuation requirements are more energy efficient, thereby reduce the energy consumption of the mechanism. Lower end actuators are lower in cost and facilitate the development of low-cost devices. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free-length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached to the preceding parent link, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant arm of the humanoid robot is compact. The cost benefits and reduced complexity can be significant advantages in the development of this arm of the humanoid robot.Keywords: actuator torque, child-parent connections, spring balancing, the arm of a humanoid robot
Procedia PDF Downloads 2443237 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography
Authors: Y. Laib Dit Leksir, S. Bouhouche
Abstract:
Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment
Procedia PDF Downloads 4763236 Optical and Near-UV Spectroscopic Properties of Low-Redshift Jetted Quasars in the Main Sequence in the Main Sequence Context
Authors: Shimeles Terefe Mengistue, Ascensión Del Olmo, Paola Marziani, Mirjana Pović, María Angeles Martínez-Carballo, Jaime Perea, Isabel M. Árquez
Abstract:
Quasars have historically been classified into two distinct classes, radio-loud (RL) and radio-quiet (RQ), taking into account the presence and absence of relativistic radio jets, respectively. The absence of spectra with a high S/N ratio led to the impression that all quasars (QSOs) are spectroscopically similar. Although different attempts were made to unify these two classes, there is a long-standing open debate involving the possibility of a real physical dichotomy between RL and RQ quasars. In this work, we present new high S/N spectra of 11 extremely powerful jetted quasars with radio-to-optical flux density ratio > 1000 that concomitantly cover the low-ionization emission of Mgii𝜆2800 and Hbeta𝛽 as well as the Feii blends in the redshift range 0.35 < z < 1, observed at Calar Alto Observatory (Spain). This work aims to quantify broad emission line differences between RL and RQ quasars by using the four-dimensional eigenvector 1 (4DE1) parameter space and its main sequence (MS) and to check the effect of powerful radio ejection on the low ionization broad emission lines. Emission lines are analysed by making two complementary approaches, a multicomponent non-linear fitting to account for the individual components of the broad emission lines and by analysing the full profile of the lines through parameters such as total widths, centroid velocities at different fractional intensities, asymmetry, and kurtosis indices. It is found that broad emission lines show large reward asymmetry both in Hbeta𝛽 and Mgii2800A. The location of our RL sources in a UV plane looks similar to the optical one, with weak Feii UV emission and broad Mgii2800A. We supplement the 11 sources with large samples from previous work to gain some general inferences. The result shows, compared to RQ, our extreme RL quasars show larger median Hbeta full width at half maximum (FWHM), weaker Feii emission, larger 𝑀BH, lower 𝐿bol/𝐿Edd, and a restricted space occupation in the optical and UV MS planes. The differences are more elusive when the comparison is carried out by restricting the RQ population to the region of the MS occupied by RL quasars, albeit an unbiased comparison matching 𝑀BH and 𝐿bol/𝐿Edd suggests that the most powerful RL quasars show the highest redward asymmetries in Hbeta.Keywords: galaxies, active, line, profiles, quasars, emission lines, supermassive black holes
Procedia PDF Downloads 593235 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States
Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh
Abstract:
Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.Keywords: bistability, diabetes, feedback and crosstalk, obesity
Procedia PDF Downloads 2753234 A Variable Structural Control for a Flexible Lamina
Authors: Xuezhang Hou
Abstract:
A control problem of a flexible Lamina formulated by partial differential equations with viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear infinite dimensional system in an appropriate energy Hilbert space. The semigroup approach of linear operators is adopted in investigating wellposedness of the closed loop system. A variable structural control for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system. A significant result on control theory that the thin plate can be approximated by ideal sliding mode in any accuracy in terms of semigroup approach is obtained.Keywords: partial differential equations, flexible lamina, variable structural control, semigroup of linear operators
Procedia PDF Downloads 853233 Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft
Authors: Yan Rongxin, Sun Wei, Li Weidan
Abstract:
Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10-1 Pa·m3/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W.Keywords: leak testing, manned spacecraft, sound transmitting, ultrasonic
Procedia PDF Downloads 3263232 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 4183231 Assessing Knowledge Management Impacts: Challenges, Limits and Base for a New Framework
Authors: Patrick Mbassegue, Mickael Gardoni
Abstract:
In a market environment centered more and more on services and the digital economy, knowledge management becomes a framework that can help organizations to create value and to improve their overall performance. Based on an optimal allocation of scarce resources, managers are interested in demonstrating the added value generated by knowledge management projects. One of the challenges faced by organizations is the difficulty in measuring impacts and concrete results of knowledge management initiatives. The present article concerns the measure of concrete results coming from knowledge management projects based on balance scorecard model. One of the goals is to underline what can be done based on this model but also to highlight the limits associated. The present article is structured in five parts; 1-knowledge management projects and organizational impacts; 2- a framework and a methodology to measure organizational impacts; 3- application illustrated in two case studies; 4- limits concerning the proposed framework; 5- the proposal of a new framework to measure organizational impacts.Keywords: knowledge management, project, balance scorecard, impacts
Procedia PDF Downloads 2623230 Exploring the Potential of Blockchain to Improve Higher Education
Authors: Tony Cripps, Larry Kimber
Abstract:
This paper will begin by briefly explaining how blockchain technology works. Then, after highlighting a few of the ways it promises to heavily impact all aspects of the digital landscape, the focus will shift to Blockchain in the field of education, with specific emphasis placed on practical applications in foreign language education. Blockchain is a decentralized Internet-based software application that guarantees truth in transactions. This means whenever two parties engage in a transaction using Blockchain, it is time-stamped, added to a block of other transactions, and then permanently attached to an unalterable ‘chain’ of blocks. The potential for developing applications with Blockchain is therefore immense, since software systems that ensure the impossibility of outside tampering are invaluable. Innovative ideas in every imaginable domain are presently being entertained and Blockchain in education is no exception. For instance, records kept within and between institutions of students’ grade performance, academic achievement and verification of assignment/course completion are just a few examples of how this new technology might potentially be used to revolutionize education. It is hoped that this paper will be of use to all educators interested in the application of technology in the field of education.Keywords: blockchain, disruption, potential, technology
Procedia PDF Downloads 138