Search results for: Construction materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10022

Search results for: Construction materials

6962 An Analytical Study of FRP-Concrete Bridge Superstructures

Authors: Wael I. Alnahhal

Abstract:

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.

Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis

Procedia PDF Downloads 336
6961 Investigating the Status of Black Women in Brazil: Beyond Housekeepers and Samba Dancers

Authors: Sandra Maria Cerqueira Da Silva

Abstract:

The construction of the material world involves a series of social power relations. These relations, in a way, can dictate, shape, judge and drive the profiles of so-called ‘ideal’ individuals. Gender relations, as power relations, are defined based on hierarchies, obediences and inequalities, and male domination seems, with few exceptions, to be rooted in every society around the world. The profile of the Brazilian woman, beyond patriarchal and market determinations, is strongly subjected to media products. Women are, numerically, the majority in Brazilian society. The social indicators point to slight advances in terms of years of study and professional qualification, as well as access to the job market; yet, differences in opportunity and conditions — often explained though the ‘unquestionable’ cultural rancidness argument — still hinder women’s ability to reach and keep job positions. These unequalities are also visible in everyday interactions and in gender relations, and they become greater once race is added to the analysis. For a black woman, her racial origins may play a part in determining the construction of her gender roles. In these terms, there is need to investigate the racial character of the sexual differences within a larger social proccess of naturalization and justification of cultural hierarchies. Thus, the goal of this study is to identify and discuss the media-built image of black women in Brazil. Furthermore, it is necessary to seek views different than those of the ruling classes. The study uses a qualitative approach based on the feminist standpoint, which intends to hold women’s experiences as central. The body of the research — images taken from the Internet — was treated through critical content analysis. The results show that in Brazil the profile of black women, beyond the machist and sexist generalizations, objectifies them or sees them as servants, always at the disposal of non-blacks. It is necessary to overcome the history of this nation, always considering the contribution of these women to the growth and development of places and societies. This can be done through the acknowledgement and highlighting of the few black women who were able to overcome the many barriers in their path and reach leadership position in the country. There are still many important challenges in the way of finding affirmative policies and reaching a more equal society in terms of gender and race; a serious and firm political commitment seems sine qua non.

Keywords: black woman, feminist standpoint, markings, objectification

Procedia PDF Downloads 278
6960 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 404
6959 X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions

Authors: Vincent Kheswa

Abstract:

X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV.

Keywords: bismuth-titanium-phosphate glass, x-ray shielding, LAC, MAC, radiation shielding

Procedia PDF Downloads 63
6958 Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay

Authors: A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.

Keywords: nanobentonite particles, clayey soil, unconfined compression stress, soil improvement.

Procedia PDF Downloads 129
6957 Effect of Manual Compacting and Semi-Automatic Compacting on Behavior of Stabilized Earth Concrete

Authors: Sihem Chaibeddra, Fattoum Kharchi, Fahim Kahlouche, Youcef Benna

Abstract:

In the recent years, a considerable level of interest has been developed on the use of earth in construction, led by its rediscovery as an environmentally building material. The Stabilized Earth Concrete (SEC) is a good alternative to the cement concrete, thanks to its thermal and moisture regulating features. Many parameters affect the behavior of stabilized earth concrete. This article presents research results related to the influence of the compacting nature on some SEC properties namely: The mechanical behavior, capillary absorption, shrinkage and sustainability to water erosion, and this, basing on two types of compacting: Manual and semi-automatic.

Keywords: behavior, compacting, manual, SEC, semi-automatic

Procedia PDF Downloads 362
6956 Intelligent Materials and Functional Aspects of Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape-memory alloys are a new class of functional materials with a peculiar property known as shape memory effect. These alloys return to a previously defined shape on heating after deformation in low temperature product phase region and take place in a class of functional materials due to this property. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Shape memory effect is based on martensitic transitions, which govern the remarkable changes in internal crystalline structure of materials. Martensitic transformation, which is a solid state phase transformation, occurs in thermal manner in material on cooling from high temperature parent phase region. This transformation is governed by changes in the crystalline structure of the material. Shape memory alloys cycle between original and deformed shapes in bulk level on heating and cooling, and can be used as a thermal actuator or temperature-sensitive elements due to this property. Martensitic transformations usually occur with the cooperative movement of atoms by means of lattice invariant shears. The ordered parent phase structures turn into twinned structures with this movement in crystallographic manner in thermal induced case. The twinned martensites turn into the twinned or oriented martensite by stressing the material at low temperature martensitic phase condition. The detwinned martensite turns into the parent phase structure on first heating, first cycle, and parent phase structures turn into the twinned and detwinned structures respectively in irreversible and reversible memory cases. On the other hand, shape memory materials are very important and useful in many interdisciplinary fields such as medicine, pharmacy, bioengineering, metallurgy and many engineering fields. The choice of material as well as actuator and sensor to combine it with the host structure is very essential to develop main materials and structures. Copper based alloys exhibit this property in metastable beta-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling. Martensitic transition occurs as self-accommodated martensite with inhomogeneous shears, lattice invariant shears which occur in two opposite directions, <110 > -type directions on the {110}-type plane of austenite matrix which is basal plane of martensite. This kind of shear can be called as {110}<110> -type mode and gives rise to the formation of layered structures, like 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper based alloys which have the chemical compositions in weight; Cu-26.1%Zn 4%Al and Cu-11%Al-6%Mn. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit super lattice reflections inherited from parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that locations and intensities of diffraction peaks change with the aging time at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close each other.

Keywords: Shape memory effect, martensite, twinning, detwinning, self-accommodation, layered structures

Procedia PDF Downloads 432
6955 Building Bridges on Roads With Major Constructions

Authors: Mohamed Zaidour

Abstract:

In this summary, we are going to look in brief at the bridges and their building and construction on most roads and we have followed a simple method to explain each field clearly because the geographical and climatic diversity of an area leads to different methods and types of roads and installation engineering in other areas In mountain areas we need to build retaining walls in areas of rain. It needs to construct ferries to discharge water from roads in areas of temporary or permanent rivers. There is a need to build bridges and construct road installations in the process of collecting the necessary information, such as soil type. This information needs it, engineer, when designing the constructor and in this section, we will identify the types and methods of calculation bridge columns rules phrases the walls are chock.

Keywords: bridges, buildings, concrete, constructions, roads

Procedia PDF Downloads 122
6954 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods

Authors: Jamshid Hussain, Kuen Song Lin

Abstract:

For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.

Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS

Procedia PDF Downloads 24
6953 First-Principles Study of Inter-Cage Interactions in Inorganic Molecular Crystals

Authors: Abdul Majid, Alia Jabeen, Nimra Zulifqar

Abstract:

The inorganic molecular crystal (IMCs) due to their unusual structure has grabbed a lot of attention due to anisotropy in crystal structure. The IMCs consist of the molecular structures joined together via weak forces. Therefore, a difference between the bonding between the inter-cage and intra-cage interactions exists. To look closely at the bonding and interactions, we investigated interactions between two cages of Sb2O3 structure. The interactions were characterized via Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results revealed strong intra-cage covalent bonding while weak van der Waals (vdWs) interactions along inter-cages exits. This structure cannot be termed as layered material although they have anisotropy in bonding and presence of weak vdWs interactions but its bulk is termed as inorganic layered clusters. This is due to the fact that the free standing sheet/films with these materials are not possible. This type of structures may be the most feasible to be used for the system to deal with high pressures and stress bearing materials.

Keywords: inorganic molecular crystals, density functional theory, cages, interactions

Procedia PDF Downloads 97
6952 A Radiographic Survey of Eggshell Powder Effect on Tibial Bone Defect Repair Tested in Dog

Authors: M. Yadegari, M. Nourbakhsh, N. Arbabzadeh

Abstract:

The skeletal system injuries are of major importance. In addition, it is recommended to use materials for hard tissue repair in open or closed fractures. It is important to use complex minerals with a beneficial effect on hard tissue repair, stimulating cell growth in the bone. Materials that could help avoid bone fracture inflammatory reaction and speed up bone fracture repair are of utmost importance in the treatment of bone fractures. Similar to minerals, the inner eggshell membrane consists of carbohydrates, lipids, proteins with the high pH, high calcium absorptive capacity and with faster bone fracture repair ability. In the present radiographic survey, eggshell-derived bone graft substitutes were used for bone defect repair in 8 dog tibia, measuring bone density on the day of implant placement and 30 and 60 days after placement. In fact, the result of this study shows the difference in bone growth and misshapen bones between treatment and control sites. Cell growth was adequate in treatment sites and misshapen bones were less frequent here than in control sites.

Keywords: bone repair, eggshell powder, implant, radiography

Procedia PDF Downloads 324
6951 The Geometrical Cosmology: The Projective Cast of the Collective Subjectivity of the Chinese Traditional Architectural Drawings

Authors: Lina Sun

Abstract:

Chinese traditional drawings related to buildings and construction apply a unique geometry differentiating with western Euclidean geometry and embrace a collection of special terminologies, under the category of tu (the Chinese character for drawing). This paper will on one side etymologically analysis the terminologies of Chinese traditional architectural drawing, and on the other side geometrically deconstruct the composition of tu and locate the visual narrative language of tu in the pictorial tradition. The geometrical analysis will center on selected series of Yang-shi-lei tu of the construction of emperors’ mausoleums in Qing Dynasty (1636-1912), and will also draw out the earlier architectural drawings and the architectural paintings such as the jiehua, and paintings on religious frescoes and tomb frescoes as the comparison. By doing these, this research will reveal that both the terminologies corresponding to different geometrical forms respectively indicate associations between architectural drawing and the philosophy of Chinese cosmology, and the arrangement of the geometrical forms in the visual picture plane facilitates expressions of the concepts of space and position in the geometrical cosmology. These associations and expressions are the collective intentions of architectural drawing evolving in the thousands of years’ tradition without breakage and irrelevant to the individual authorship. Moreover, the architectural tu itself as an entity, not only functions as the representation of the buildings but also express intentions and strengthen them by using the Chinese unique geometrical language flexibly and intentionally. These collective cosmological spatial intentions and the corresponding geometrical words and languages reveal that the Chinese traditional architectural drawing functions as a unique architectural site with subjectivity which exists parallel with buildings and express intentions and meanings by itself. The methodology and the findings of this research will, therefore, challenge the previous researches which treat architectural drawings just as the representation of buildings and understand the drawings more than just using them as the evidence to reconstruct the information of buildings. Furthermore, this research will situate architectural drawing in between the researches of Chinese technological tu and artistic painting, bridging the two academic areas which usually treated the partial features of architectural drawing separately. Beyond this research, the collective subjectivity of the Chinese traditional drawings will facilitate the revealing of the transitional experience from traditions to drawing modernity, where the individual subjective identities and intentions of architects arise. This research will root for the understanding both the ambivalence and affinity of the drawing modernity encountering the traditions.

Keywords: Chinese traditional architectural drawing (tu), etymology of tu, collective subjectivity of tu, geometrical cosmology in tu, geometry and composition of tu, Yang-shi-lei tu

Procedia PDF Downloads 124
6950 Efficient Signcryption Scheme with Provable Security for Smart Card

Authors: Jayaprakash Kar, Daniyal M. Alghazzawi

Abstract:

The article proposes a novel construction of signcryption scheme with provable security which is most suited to implement on smart card. It is secure in random oracle model and the security relies on Decisional Bilinear Diffie-Hellmann Problem. The proposed scheme is secure against adaptive chosen ciphertext attack (indistiguishbility) and adaptive chosen message attack (unforgebility). Also, it is inspired by zero-knowledge proof. The two most important security goals for smart card are Confidentiality and authenticity. These functions are performed in one logical step in low computational cost.

Keywords: random oracle, provable security, unforgebility, smart card

Procedia PDF Downloads 594
6949 Structural Health Assessment of a Masonry Bridge Using Wireless

Authors: Nalluri Lakshmi Ramu, C. Venkat Nihit, Narayana Kumar, Dillep

Abstract:

Masonry bridges are the iconic heritage transportation infrastructure throughout the world. Continuous increase in traffic loads and speed have kept engineers in dilemma about their structural performance and capacity. Henceforth, research community has an urgent need to propose an effective methodology and validate on real-time bridges. The presented research aims to assess the structural health of an Eighty-year-old masonry railway bridge in India using wireless accelerometer sensors. The bridge consists of 44 spans with length of 24.2 m each and individual pier is 13 m tall laid on well foundation. To calculate the dynamic characteristic properties of the bridge, ambient vibrations were recorded from the moving traffic at various speeds and the same are compared with the developed three-dimensional numerical model using finite element-based software. The conclusions about the weaker or deteriorated piers are drawn from the comparison of frequencies obtained from the experimental tests conducted on alternative spans. Masonry is a heterogeneous anisotropic material made up of incoherent materials (such as bricks, stones, and blocks). It is most likely the earliest largely used construction material. Masonry bridges, which were typically constructed of brick and stone, are still a key feature of the world's highway and railway networks. There are 1,47,523 railway bridges across India and about 15% of these bridges are built by masonry, which are around 80 to 100 year old. The cultural significance of masonry bridges cannot be overstated. These bridges are considered to be complicated due to the presence of arches, spandrel walls, piers, foundations, and soils. Due to traffic loads and vibrations, wind, rain, frost attack, high/low temperature cycles, moisture, earthquakes, river overflows, floods, scour, and soil under their foundations may cause material deterioration, opening of joints and ring separation in arch barrels, cracks in piers, loss of brick-stones and mortar joints, distortion of the arch profile. Few NDT tests like Flat jack Tests are being employed to access the homogeneity, durability of masonry structure, however there are many drawbacks because of the test. A modern approach of structural health assessment of masonry structures by vibration analysis, frequencies and stiffness properties is being explored in this paper.

Keywords: masonry bridges, condition assessment, wireless sensors, numerical analysis modal frequencies

Procedia PDF Downloads 175
6948 Incorporation of Coarse Rubber Aggregates in the Formulation of Self-Compacting Concrete: Optimization and Characterization

Authors: Zaoiai Said, Makani Abdelkadir, Tafraoui Ahmed

Abstract:

Concrete material suffers from a relatively low tensile strength and deformation capacity is limited. Such defects of the concrete are very fragile and sensitive to shrinkage cracking materials. The Self- Compacting Concrete (SCC) are highly fluid concretes whose implementation without vibration. This material replaces traditional vibrated concrete mainly seen techno-economic interest it presents. The SCC has several advantages which are at the origin of their development crunching. The research is therefore to conduct a comparison in terms of rheological and mechanical performance between different formulations to find the optimal dosage for rubber granulates. Through this research, we demonstrated that it is possible to make different settings SCC composition having good rheological and mechanical properties. This study also showed that the substitution of natural coarse aggregates (NA) by coarse rubber aggregates (RA) in the composition of the SCC, contributes to a slight variation of workability in the fresh state parameters still remaining in the field of SCC required by the AFGC recommendations. The experimental results show that the compressive strengths of SCC decreased slightly by substituting NA by RA. Finally, the decrease in free shrinkage is proportional to the percentage of RA incorporated into the composition of concrete. This reduction is mainly due to the improvement of the deformability of these materials.

Keywords: self-compacting concrete, coarse rubber aggregate, rheological characterization, mechanical performance, shrinkage

Procedia PDF Downloads 291
6947 Numerical Investigation of Geotextile Application in Clay Reinforcement in ABAQUS Software

Authors: Seyed Abolhasan Naeini, Eisa Aliagahei

Abstract:

Today, the use of geosynthetic materials in geotechnical activities is increasing significantly. One of the main uses of these materials is to increase the compressive strength of clay reinforced by geotextile layers. In the present study, the effect of clay reinforcement by geotextile layers in increasing the compressive strength of clay has been investigated using modeling in ABAQUS 6.11.3 software. For this purpose, the modified Drager Prager model has been chosen to simulate the stress-strain behavior of soil layers and the linear elastic model for the geotextile layer. Unreinforced samples and reinforced samples are modeled by geotextile layers (1, 2 and 3 geotextile layers) by software. In order to validate the results, an article in the same field was used and the numerical modeling results were calibrated with the laboratory results. Based on the obtained results, the software has a suitable capability for modeling and the results of the numerical model overlap with the laboratory results to a very acceptable extent, by increasing the number of geotextile layers, the error between the results of the laboratory sample and the software model increases. The highest amount of error is related to the sample reinforced with three layers of geotextile and is 7.3%.

Keywords: Abaqus, cap model, clay, geotextile layer, reinforced soil

Procedia PDF Downloads 91
6946 Paraffin/Expanded Perlite Composite as a Novel Form-Stable Phase Change Material for Latent Heat Energy Storage

Authors: Awni Alkhazaleh

Abstract:

Latent heat storage using Phase Change Materials (PCMs) has attracted growing attention recently in the renewable energy utilization and building energy efficiency. Paraffin (PA) of low melting temperature, which is close to human comfort temperature in the range of 24-28 °C has been considered to be used in building applications. A form-stable composite Paraffin/Expanded perlite (PA-EP) has been prepared by retaining PA into porous particles of EP. DSC (Differential scanning calorimeter) is used to measure the thermal properties of PA in the form-stable composite with/without building materials. TGA (Thermal gravimetric analysis) shows that the composite is thermally stable. SEM (Scanning electron microscope) demonstrates that the layer structure of the EP particles is uniformly absorbed by PA. The mechanical properties in flexural mode have been discussed. The thermal energy storage performance has been evaluated using a small test room (100 mm ×100 mm ×100 mm) with thickness 10 mm. The flammability test of modified sample has been discussed using a cone calorimeter. The results confirm that the form-stable composite PA has the function of reducing building energy consumption.

Keywords: flammability, latent heat storage, paraffin, plasterboard

Procedia PDF Downloads 223
6945 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 140
6944 Effect of Self-Lubricating Carbon Materials on the Tribological Performance of Ultra-High Molecular Weight Polyethylene

Authors: Nayeli Camacho, Fernanda Lara-Perez, Carolina Ortega-Portilla, Diego G. Espinosa-Arbelaez, Juan M. Alvarado-Orozco, Guillermo C. Mondragon-Rodriguez

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) has been the gold standard material for total knee replacements for almost five decades. Wear damage to UHMWPE articulating surface is inevitable due to the natural sliding and rolling movements of the knee. This generates a considerable amount of wear debris, which results in mechanical instability of the joint, reduces joint mobility, increases pain with detrimental biologic responses, and causes component loosening. The presence of wear particles has been closely related to adverse reactions in the knee joint surrounding tissue, especially for particles in the range of 0.3 to 2 μm. Carbon-based materials possess excellent mechanical properties and have shown great promise in tribological applications. In this study, diamond-like carbon coatings (DLC) and carbon nanotubes (CNTs) were used to decrease the wear rate of ultra-high molecular weight polyethylene. A titanium doped DLC (Ti-DLC) was deposited by magnetron sputtering on stainless steel precision spheres while CNTs were used as a second phase reinforcement in UHMWPE at a concentration of 1.25 wt.%. A comparative tribological analysis of the wear of UHMWPE and UHMWPE-CNTs with a stainless steel counterpart with and without Ti-DLC coating is presented. The experimental wear testing was performed on a pin-on-disc tribometer under dry conditions, using a reciprocating movement with a load of 1 N at a frequency of 2 Hz for 100,000 and 200,000 cycles. The wear tracks were analyzed with high-resolution scanning electron microscopy to determine wear modes and observe the size and shape of the wear debris. Furthermore, profilometry was used to study the depth of the wear tracks and to map the wear of the articulating surface. The wear tracks at 100,000 and 200,000 cycles on all samples were relatively shallow, and they were in the range of average roughness. It was observed that the Ti-DLC coating decreases the mass loss in the UHMWPE and the depth of the wear track. The combination of both carbon-based materials decreased the material loss compared to the system of stainless steel and UHMWPE. Burnishing of the surface was the predominant wear mode observed with all the systems, more subtle for the systems with Ti-DLC coatings. Meanwhile, in the system composed of stainless steel-UHMWPE, the intrinsic surface roughness of the material was completely replaced by the wear tracks.

Keywords: CNT reinforcement, self-lubricating materials, Ti-DLC, UHMWPE tribological performance

Procedia PDF Downloads 114
6943 Electrical and Piezoelectric Properties of Vanadium-Modified Lead-Free (K₀.₅Na₀.₅)NbO₃ Ceramics

Authors: Radhapiyari Laishram, Chongtham Jiten, K. Chandramani Singh

Abstract:

During the last decade, there has been a significant growth in developing lead-free piezoelectric ceramics which have the potential to replace the currently dominant but highly superior lead-based piezoelectric materials such as PZT. Among the lead-free piezoelectrics, (K0.5Na0.5)NbO3 - based piezoceramics are promising candidates due to their superior piezoelectric properties and high Curie temperatures. In this work, (K0.5Na0.5)(Nb1-xVx)O3 powders with x varying the range 0 to 0.05 were synthesized from the raw materials K2CO3, Na2CO3, Nb2O5, and V2O5. These powders were ball milled with high-energy Retsch PM 100 ball mill using isopropanol as the medium at the speed of 200rpm for a duration of 8h. The milled powders were sintered at 1080oC for 1h. The crystalline phase of all the calcined powders and corresponding ceramics prepared was found to be perovskite with orthorhombic symmetry. The ceramic with V5+ content of x=0.03 exhibits the maximum values in density of 4.292 g/cc, room temperature dielectric constant (εr) of 432, and piezoelectric charge constant (d33) of 93pC/N. For this sample, the dielectric tan δ loss remains relatively low over a wide temperature range. The temperature dependence of P-E hysteresis loops has been investigated for the ceramic composition with x = 0.03.

Keywords: dielectric properties, ferroelectric properties, perovskie, piezoelectric properties

Procedia PDF Downloads 339
6942 Contentious Issues Concerning the Methodology of Using the Lexical Approach in Teaching ESP

Authors: Elena Krutskikh, Elena Khvatova

Abstract:

In tertiary settings expanding students’ vocabulary and teaching discursive competence is seen as one of the chief goals of a professional development course. However, such a focus often is detrimental to students’ cognitive competences, such as analysis, synthesis, and creative processing of information, and deprives students of motivation for self-improvement and self-development of language skills. The presentation is going to argue that in an ESP course special attention should be paid to reading/listening which can promote understanding and using the language as a tool for solving significant real world problems, including professional ones. It is claimed that in the learning process it is necessary to maintain a balance between the content and the linguistic aspect of the educational process as language acquisition is inextricably linked with mental activity and the need to express oneself is a primary stimulus for using a language. A study conducted among undergraduates indicates that they place a premium on quality materials that motivate them and stimulate their further linguistic and professional development. Thus, more demands are placed on study materials that should contain new information for students and serve not only as a source of new vocabulary but also prepare them for real tasks related to professional activities.

Keywords: critical reading, english for professional development, english for specific purposes, high order thinking skills, lexical approach, vocabulary acquisition

Procedia PDF Downloads 171
6941 Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment

Authors: Safa Ladhari, Alireza Saidi, Phuong Nguyen-Tri

Abstract:

During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method.

Keywords: protective equipment, antibacterial textile materials, biodegradable polymer, electrospinning, hybrid antibacterial nanoparticles

Procedia PDF Downloads 85
6940 The Usage of Adobe in Historical Structures of Van City

Authors: Mustafa Gülen, Eylem Güzel, Soner Guler

Abstract:

The studies concentrated on the historical background of Van show the fact that Van has had a significant position as a settlement since ancient times and that it has hosted many civilizations during history. With the dominance of Ottoman Empire in 16th century, the region had been re-constructed by building new walls at the southern side of Van Castle. These construction activities had mostly been fulfilled by the usage of adobe which had been a fundamental material for thousands of years. As a result of natural disasters, battles and the move at the threshold of 20th century to the new settlement which is 9 kilometers away from the Ancient City Van is an open-air museum with the ruins of churches, mosques and baths. In this study, the usage of adobe in historical structures of Van city is evaluated in detail.

Keywords: historical structures, adobe, Van city, adobe

Procedia PDF Downloads 615
6939 Benchmarking of Petroleum Tanker Discharge Operations at a Nigerian Coastal Terminal and Jetty Facilitates Optimization of the Ship–Shore Interface

Authors: Bassey O. Bassey

Abstract:

Benchmarking has progressively become entrenched as a requisite activity for process improvement and enhancing service delivery at petroleum jetties and terminals, most especially during tanker discharge operations at the ship – shore interface, as avoidable delays result in extra operating costs, non-productive time, high demurrage payments and ultimate product scarcity. The jetty and terminal in focus had been operational for 3 and 8 years respectively, with proper operational and logistic records maintained to evaluate their progress over time in order to plan and implement modifications and review of procedures for greater technical and economic efficiency. Regular and emergency staff meetings were held on a team, departmental and company-wide basis to progressively address major challenges that were encountered during each operation. The process and outcome of the resultant collectively planned changes carried out within the past two years forms the basis of this paper, which mirrors the initiatives effected to enhance operational and maintenance excellence at the affected facilities. Operational modifications included a second cargo receipt line designated for gasoline, product loss control at jetty and shore ends, enhanced product recovery and quality control, and revival of terminal–jetty backloading operations. Logistic improvements were the incorporation of an internal logistics firm and shipping agency, fast tracking of discharge procedures for tankers, optimization of tank vessel selection process, and third party product receipt and throughput. Maintenance excellence was achieved through construction of two new lay barges and refurbishment of the existing one; revamping of existing booster pump and purchasing of a modern one as reserve capacity; extension of Phase 1 of the jetty to accommodate two vessels and construction of Phase 2 for two more vessels; regular inspection, draining, drying and replacement of cargo hoses; corrosion management program for all process facilities; and an improved, properly planned and documented maintenance culture. Safety, environmental and security compliance were enhanced by installing state-of-the-art fire fighting facilities and equipment, seawater intake line construction as backup for borehole at the terminal, remediation of the shoreline and marine structures, modern spill containment equipment, improved housekeeping and accident prevention practices, and installation of hi-technology security enhancements, among others. The end result has been observed over the past two years to include improved tanker turnaround time, higher turnover on product sales, consistent product availability, greater indigenous human capacity utilisation by way of direct hires and contracts, as well as customer loyalty. The lessons learnt from this exercise would, therefore, serve as a model to be adapted by other operators of similar facilities, contractors, academics and consultants in a bid to deliver greater sustainability and profitability of operations at the ship – shore interface to this strategic industry.

Keywords: benchmarking, optimisation, petroleum jetty, petroleum terminal

Procedia PDF Downloads 368
6938 The Case for Creativity in the Metaverse

Authors: D. van der Merwe

Abstract:

As the environment and associated media in which creativity is expressed transitions towards digital spaces, that same creativity undergoes a transition from individual to social forms of expression. This paper explores how the emerging social construction collectively called ‘The Metaverse’ will fundamentally alter creativity: by examining creativity as a social rather than individual process, as well as the mimetic logic underlying the platforms in which this creativity is expressed, a crisis in identity, commodification and social programming is revealed wherein the artist is more a commodity than their creations, resulting in prosthetic personalities pandering to an economic logic driven by biased algorithms. Consequently the very aura of the art and creative media produced within the digital domain must be re-assessed in terms of its cultural and exhibition value.

Keywords: aura, commodification, creativity, metaverse, mimesis, social programming

Procedia PDF Downloads 18
6937 Effects of Plasma Technology in Biodegradable Films for Food Packaging

Authors: Viviane P. Romani, Bradley D. Olsen, Vilásia G. Martins

Abstract:

Biodegradable films for food packaging have gained growing attention due to environmental pollution caused by synthetic films and the interest in the better use of resources from nature. Important research advances were made in the development of materials from proteins, polysaccharides, and lipids. However, the commercial use of these new generation of sustainable materials for food packaging is still limited due to their low mechanical and barrier properties that could compromise the food quality and safety. Thus, strategies to improve the performance of these materials have been tested, such as chemical modifications, incorporation of reinforcing structures and others. Cold plasma is a versatile, fast and environmentally friendly technology. It consists of a partially ionized gas containing free electrons, ions, and radicals and neutral particles able to react with polymers and start different reactions, leading to the polymer degradation, functionalization, etching and/or cross-linking. In the present study, biodegradable films from fish protein prepared through the casting technique were plasma treated using an AC glow discharge equipment. The reactor was preliminary evacuated to ~7 Pa and the films were exposed to air plasma for 2, 5 and 8 min. The films were evaluated by their mechanical and water vapor permeability (WVP) properties and changes in the protein structure were observed using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Potential cross-links and elimination of surface defects by etching might be the reason for the increase in tensile strength and decrease in the elongation at break observed. Among the times of plasma application tested, no differences were observed when higher times of exposure were used. The X-ray pattern showed a broad peak at 2θ = 19.51º that corresponds to the distance of 4.6Å by applying the Bragg’s law. This distance corresponds to the average backbone distance within the α-helix. Thus, the changes observed in the films might indicate that the helical configuration of fish protein was disturbed by plasma treatment. SEM images showed surface damage in the films with 5 and 8 min of plasma treatment, indicating that 2 min was the most adequate time of treatment. It was verified that plasma removes water from the films once weight loss of 4.45% was registered for films treated during 2 min. However, after 24 h in 50% of relative humidity, the water lost was recovered. WVP increased from 0.53 to 0.65 g.mm/h.m².kPa after plasma treatment during 2 min, that is desired for some foods applications which require water passage through the packaging. In general, the plasma technology affects the properties and structure of fish protein films. Since this technology changes the surface of polymers, these films might be used to develop multilayer materials, as well as to incorporate active substances in the surface to obtain active packaging.

Keywords: fish protein films, food packaging, improvement of properties, plasma treatment

Procedia PDF Downloads 166
6936 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials

Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu

Abstract:

The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.

Keywords: analytic solution, braided composites, elasticity properties, technology factor

Procedia PDF Downloads 241
6935 Sample Hospital Buildings as Modern Health Facilities in Early Republican Turkey

Authors: Mehmet Sener, Emre Kishali

Abstract:

The establishment of republic brought radical changes related to the modernization of life in early republican Turkey considering the revolutions in socio-economical, cultural and political aspects. These changes also had many influences on the formation of city planning and architectural medium that the arrangements related with health facility production had an important place amongst them. While the health services were witnessing great transformations with all its sides, socio-cultural and architectural framework of these facilities necessitated the adaption of new conceptual approaches which led to the construction new hospital buildings by the republican state with a name ‘Sample Hospital’. In this period, the state constructed sample hospitals in some cities (Adana, Ankara, Erzurum, İstanbul, Konya, Sivas and Trabzon) for the aim of being a good example for further hospitals sheltering all the characteristics of a contemporary health complex for that day. In this study, these six hospitals will firstly be elucidated considering their historical evaluations and current situations. Then, being one of the most significant modern heritages of republican history, the ways to provide the interrelationship of these complexes with the rapidly evolving current world will be discussed by proposing solutions or approaches coming from the fields of city planning, architectural preservation, engineering and architectural history together with an awareness of the socio-economic conditions, health services and architectural medium of Turkey. These hospitals are complexes composed of building ensembles which have functional relationships with each other. So, some strategies will be proposed for the preservation, renovation, and refurbishment of these complexes with an awareness of the possibility of the conflict between conservation practices and today’s health facility standards. Accordingly, the addition or removal of some elements in the complex or the suggestion of some architectural changes for the modernization of these health facilities will be investigated considering the requirements of the contemporary architectural design of health facilities. Since these hospitals are highly complex structures and have vastly changing design and construction standards, they cannot be used without adopting necessary architectural and technological interventions. So, the adaptive re-use of these buildings instead of demolition or the preservation of their overall characteristics becomes inevitable for the sustaining of these health facility heritages in Turkey. In this context, a multidisciplinary analysis will be made in this study on ‘Sample Hospital’ concept and buildings existing in Turkish modern architectural history within the framework of the adaptive reuse of these health complexes.

Keywords: adaptive re-use, conservation, early republican Turkey, sample hospital

Procedia PDF Downloads 245
6934 Life Expansion: Autobiography, Ficctionalized Digital Diaries and Forged Narratives of Everyday Life on Instagram

Authors: Pablo M. S. Vallejos

Abstract:

The article aims to analyze the autobiographical practices of users on Instagram, observing the instrumentalization of image resources in the construction of visual narratives that make up that archive and digital diary. Through bibliographical review, discourse exploration and case studies, the research also aims to present a new theoretical perception about everyday records - edited with a collage of filters and aesthetic tools - that permeate that social network, understanding it as a platform fictionalizing and an expansion of life. In this way, therefore, the work reflects on possible futures in the elaboration of representations and identities in the context of digital spaces in the 21st century.

Keywords: visual culture, social media, autobiography, image

Procedia PDF Downloads 85
6933 Rheology Study of Polyurethane (COAPUR 6050) For Composite Materials Usage

Authors: Sabrina Boutaleb, Kouider Halim Benrahou, François Schosseler, Abdelouahed Tounsi, El Abbas Adda Bedia

Abstract:

The use of polyurethane in different areas becomes more frequent. This is due to significant advantages they have including their lightness and resistance. However, their use requires a mastery of their mechanical performance. We will present in this work, a COAPUR 6050 which can be used to develop composite materials. COAPUR 6050 is an associative polyurethane thickener allowing fine rheological adjustment of flat or semi-gloss paints. COAPUR 6050 is characterised by its thickening efficiency at low shear rate. It is a solvent-free liquid product. It promotes good paint pick up, while maintaining a low yield point after shearing, and consequently a good levelling. We will then determine its rheological behaviour experimentally using different annular gaps. The rheological properties of COAPUR 6050 were researched by rotational rheometer (Rheometer-Mars III) using different annular gaps. There is the influence of the size of the annular gap on the behaviour as well as on the rheological parameters of the COAPUR 6050. The rheological properties data of COAPUR 6050 were regressed by nonlinear regression method and their rheological models were established, are characterized by yield pseudoplastic model. In this case, it is essential to make a viscometric correction. The latter was developed and presented in the experimental results.

Keywords: COAPUR 6050, flow’s couette, polyurethane, rheological behaviours

Procedia PDF Downloads 505