Search results for: web user profile
1281 Enhance Indoor Environment in Buildings and Its Effect on Improving Occupant's Health
Authors: Imad M. Assali
Abstract:
Recently, the world main problem is a global warming and climate change affecting both outdoor and indoor environments, especially the air quality (AQ) as a result of vast migration of people from rural areas to urban areas. Therefore, cities became more crowded and denser from an irregular population increase, along with increasing urbanization caused many problems for the environment such as increasing the land prices, changes in life style, and the new buildings are not adapted to the climate producing uncomfortable and unhealthy indoor building conditions. As interior environments are the places that create the most intimate relationship with the user. Consequently, the indoor environment quality (IEQ) for buildings became uncomfortable and unhealthy for its occupants. The symptoms commonly associated with poor indoor environment such as itchy, headache, fatigue, and respiratory complaints such as cough and congestion, etc. The symptoms tend to improve over time or even disappear when people are away from the building. Therefore, designing a healthy indoor environment to fulfill human needs is the main concern for architects and interior designer. However, this research explores how occupant expectations and environmental attitudes may influence occupant health and satisfaction within the context of the indoor environment. In doing so, it reviews and contributes to the methods and tools used to evaluate only the indoor environment quality (IEQ) components of building performance. Its main aim is to review the literature on indoor human comfort. This is followed by a review of previous papers published related to human comfort. Finally, this paper will provide possible approaches in design level of healthy buildings.Keywords: sustainable building, indoor environment quality (IEQ), occupant's health, active system, sick building syndrome (SBS)
Procedia PDF Downloads 3661280 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan
Authors: Kandi Sridhar, Charles Albert Linton
Abstract:
Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics
Procedia PDF Downloads 1811279 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles
Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad
Abstract:
As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.Keywords: computational methods, context-awareness, design process, smart spaces
Procedia PDF Downloads 3351278 FRATSAN: A New Software for Fractal Analysis of Signals
Authors: Hamidreza Namazi
Abstract:
Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 4691277 Experimental Validation of Computational Fluid Dynamics Used for Pharyngeal Flow Patterns during Obstructive Sleep Apnea
Authors: Pragathi Gurumurthy, Christina Hagen, Patricia Ulloa, Martin A. Koch, Thorsten M. Buzug
Abstract:
Obstructive sleep apnea (OSA) is a sleep disorder where the patient suffers a disturbed airflow during sleep due to partial or complete occlusion of the pharyngeal airway. Recently, numerical simulations have been used to better understand the mechanism of pharyngeal collapse. However, to gain confidence in the solutions so obtained, an experimental validation is required. Therefore, in this study an experimental validation of computational fluid dynamics (CFD) used for the study of human pharyngeal flow patterns during OSA is performed. A stationary incompressible Navier-Stokes equation solved using the finite element method was used to numerically study the flow patterns in a computed tomography-based human pharynx model. The inlet flow rate was set to 250 ml/s and such that a flat profile was maintained at the inlet. The outlet pressure was set to 0 Pa. The experimental technique used for the validation of CFD of fluid flow patterns is phase contrast-MRI (PC-MRI). Using the same computed tomography data of the human pharynx as in the simulations, a phantom for the experiment was 3 D printed. Glycerol (55.27% weight) in water was used as a test fluid at 25°C. Inflow conditions similar to the CFD study were simulated using an MRI compatible flow pump (CardioFlow-5000MR, Shelley Medical Imaging Technologies). The entire experiment was done on a 3 T MR system (Ingenia, Philips) with 108 channel body coil using an RF-spoiled, gradient echo sequence. A comparison of the axial velocity obtained in the pharynx from the numerical simulations and PC-MRI shows good agreement. The region of jet impingement and recirculation also coincide, therefore validating the numerical simulations. Hence, the experimental validation proves the reliability and correctness of the numerical simulations.Keywords: computational fluid dynamics, experimental validation, phase contrast-MRI, obstructive sleep apnea
Procedia PDF Downloads 3131276 Digital Platform for Psychological Assessment Supported by Sensors and Efficiency Algorithms
Authors: Francisco M. Silva
Abstract:
Technology is evolving, creating an impact on our everyday lives and the telehealth industry. Telehealth encapsulates the provision of healthcare services and information via a technological approach. There are several benefits of using web-based methods to provide healthcare help. Nonetheless, few health and psychological help approaches combine this method with wearable sensors. This paper aims to create an online platform for users to receive self-care help and information using wearable sensors. In addition, researchers developing a similar project obtain a solid foundation as a reference. This study provides descriptions and analyses of the software and hardware architecture. Exhibits and explains a heart rate dynamic and efficient algorithm that continuously calculates the desired sensors' values. Presents diagrams that illustrate the website deployment process and the webserver means of handling the sensors' data. The goal is to create a working project using Arduino compatible hardware. Heart rate sensors send their data values to an online platform. A microcontroller board uses an algorithm to calculate the sensor heart rate values and outputs it to a web server. The platform visualizes the sensor's data, summarizes it in a report, and creates alerts for the user. Results showed a solid project structure and communication from the hardware and software. The web server displays the conveyed heart rate sensor's data on the online platform, presenting observations and evaluations.Keywords: Arduino, heart rate BPM, microcontroller board, telehealth, wearable sensors, web-based healthcare
Procedia PDF Downloads 1281275 A Review on Cloud Computing and Internet of Things
Authors: Sahar S. Tabrizi, Dogan Ibrahim
Abstract:
Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.Keywords: cloud computing, cloud systems, cloud services, IaaS, PaaS, SaaS
Procedia PDF Downloads 2341274 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images
Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj
Abstract:
Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization
Procedia PDF Downloads 1371273 Study of Clutch Cable Architecture and Its Influence in Efficiency of Mechanical Cable Release System
Authors: M. Devamanalan, K. Pothiraj, M. Sudhan
Abstract:
In competitive market like India, there is a high demand on the equal contribution on performance and its durability aspect of any system. In General vehicle has multiple sub-systems such as powertrain, BIW, Brakes, Actuations, Suspension and Seats etc., To withstand the market challenges, the contribution of each sub-system is very vital. The malfunction of any one sub system will directly have an impact on the performance of the major system which lead to dis-satisfaction to the end user. The Powertrain system consists of several sub-systems in which clutch is one of the prime sub-systems in MT vehicles which assist for smoother gear shifts with proper clutch dis-engagement and engagement. In general, most of the vehicles will have a mechanical or semi or full hydraulic clutch release system, whereas in small Commercial Vehicles (SCV) the majorly used clutch release system is mechanical cable release system due to its lesser cost and functional requirements. The major bottle neck in the cable type clutch release system is increase in pedal effort due to hysteresis increase and Gear shifting hard due to efficiency loss / cable slackness over the mileage accumulation of the vehicle. This study is to mainly focus on how the efficiency and hysteresis change over the mileage of the vehicle occurs because of the design architecture of outer and inner cable. The study involves several cable design validation results from vehicle level and rig level through the defined cable routing and test procedures. Results are compared to evaluate the suitable cable design architecture based on better efficiency and lower hysteresis parameters at initial and end of the validation.Keywords: clutch, clutch cable, efficiency, architecture, cable routing
Procedia PDF Downloads 1211272 Teaching Foreign Languages Across the Curriculum (FLAC): Hybrid French/English Courses and their Dual Impact on Interdisciplinarity and L2 Competency
Authors: M. Caporale
Abstract:
French Curricula across the US have recently suffered low enrollment and have experienced difficulties with retention, thus resulting in fewer students minoring and majoring in French and enrolling in upper-level classes. Successful undergraduate programs offer French courses with a strong cultural and interdisciplinary or multidisciplinary component. The World Language Curriculum in liberal arts colleges in America needs to take into account the cultural aspects of the language and encourage students to think critically about the country or countries they are studying. Limiting the critical inquiry to language or literature narrowly defined provides and incomplete and stagnant picture of France and the Francophone world in today's global community. This essay discusses the creation and implementation of a hybrid interdisciplinary L1/L2 course titled "Topics in Francophone Cinema" (subtitle "Francophone Women on Screen and Behind the Camera"). Content-based interdisciplinary courses undoubtedly increase the profile of French and Francophone cultural Studies by introducing students of other disciplines to fundamental questions relating to the French and Francophone cultures (in this case, women's rights in the Francophone world). At the same time, this study determines that through targeted reading and writing assignments, sustained aural exposure to L2 through film,and student participation in a one-credit supplementary weekly practicum (creative film writing workshop), significant advances in L2 competence are achieved with students' oral and written production levels evolving from Advanced Low to Advanced-mid, as defined by the ACFL guidelines. Use of differentiated assessment methods for L1/L2 and student learning outcomes for both groups will also be addressed.Keywords: interdisciplinary, Francophone cultural studies, language competency, content-based
Procedia PDF Downloads 5011271 The Experiences of Claiming Welfare Benefits for People with Disabilities in the UK
Authors: Jennifer McNeill
Abstract:
Over the years UK Governments have extended the use of welfare conditionality to more marginalised groups. Whereas in the past, disabled people’s rights to unconditional welfare were defended, significant numbers of disabled people have in recent years been re-classified as ‘fit for work’ as a result of this policy shift towards increased conditionality targeting more welfare service user groups. This paper discusses findings from a five-year project exploring the ethics and efficacy of welfare conditionality. Drawing on repeat interviews over three years with 58 disabled welfare service users across England and Scotland, the paper explores the experience of, and impact of conditionality upon, disabled participants. In particular, participants described the process of claiming disability-related benefits as stigmatising, with some describing the medical assessments as demeaning, traumatic and even painful. The medical assessments are conducted by private contractors and participants felt they were treated unfairly, under suspicion and under surveillance. This finding is important in line with a recent UN report concerned with the practice of such assessments. The findings reveal that notions of ‘deservedness’ are embedded in this system as disabled recipients argue for their entitlement to welfare claims relative to what are deemed to be less deserving groups of benefit claimants. This indicates an increasing competition ethic within different sections of the most marginalised social groups that facilitate further forms of social fragmentation, particularly in relation to opposition to benefit cuts and other changes requiring concerted and organised forms of resistance. The impact of media and political scapegoating of the most marginal has generated divisions within even those who position themselves as legitimate recipients.Keywords: disability, medical assessments, stigma, welfare conditionality
Procedia PDF Downloads 2061270 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study
Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li
Abstract:
Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture
Procedia PDF Downloads 4811269 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance
Authors: Habtamu Tkubet Ebuy
Abstract:
Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort
Procedia PDF Downloads 1071268 Investigating the Characteristics of Correlated Parking-Charging Behaviors for Electric Vehicles: A Data-Driven Approach
Authors: Xizhen Zhou, Yanjie Ji
Abstract:
In advancing the management of integrated electric vehicle (EV) parking-charging behaviors, this study uses Changshu City in Suzhou as a case study to establish a data association mechanism for parking-charging platforms and to develop a database for EV parking-charging behaviors. Key indicators, such as charging start time, initial state of charge, final state of charge, and parking-charging time difference, are considered. Utilizing the K-S test method, the paper examines the heterogeneity of parking-charging behavior preferences among pure EV and non-pure EV users. The K-means clustering method is employed to analyze the characteristics of parking-charging behaviors for both user groups, thereby enhancing the overall understanding of these behaviors. The findings of this study reveal that using a classification model, the parking-charging behaviors of pure EVs can be classified into five distinct groups, while those of non-pure EVs can be separated into four groups. Among them, both types of EV users exhibit groups with low range anxiety for complete charging with special journeys, complete charging at destination, and partial charging. Additionally, both types have a group with high range anxiety, characterized by pure EV users displaying a preference for complete charging with specific journeys, while non-pure EV users exhibit a preference for complete charging. Notably, pure EV users also display a significant group engaging in nocturnal complete charging. The findings of this study can provide technical support for the scientific and rational layout and management of integrated parking and charging facilities for EVs.Keywords: traffic engineering, potential preferences, cluster analysis, EV, parking-charging behavior
Procedia PDF Downloads 811267 Flood Mapping and Inoudation on Weira River Watershed (in the Case of Hadiya Zone, Shashogo Woreda)
Authors: Alilu Getahun Sulito
Abstract:
Exceptional floods are now prevalent in many places in Ethiopia, resulting in a large number of human deaths and property destruction. Lake Boyo watershed, in particular, had also traditionally been vulnerable to flash floods throughout the Boyo watershed. The goal of this research is to create flood and inundation maps for the Boyo Catchment. The integration of Geographic information system(GIS) technology and the hydraulic model (HEC-RAS) were utilized as methods to attain the objective. The peak discharge was determined using Fuller empirical methodology for intervals of 5, 10, 15, and 25 years, and the results were 103.2 m3/s, 158 m3/s, 222 m3/s, and 252 m3/s, respectively. River geometry, boundary conditions, manning's n value of varying land cover, and peak discharge at various return periods were all entered into HEC-RAS, and then an unsteady flow study was performed. The results of the unsteady flow study demonstrate that the water surface elevation in the longitudinal profile rises as the different periods increase. The flood inundation charts clearly show that regions on the right and left sides of the river with the greatest flood coverage were 15.418 km2 and 5.29 km2, respectively, flooded by 10,20,30, and 50 years. High water depths typically occur along the main channel and progressively spread to the floodplains. The latest study also found that flood-prone areas were disproportionately affected on the river's right bank. As a result, combining GIS with hydraulic modelling to create a flood inundation map is a viable solution. The findings of this study can be used to care again for the right bank of a Boyo River catchment near the Boyo Lake kebeles, according to the conclusion. Furthermore, it is critical to promote an early warning system in the kebeles so that people can be evacuated before a flood calamity happens. Keywords: Flood, Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation MappingKeywords: Weira River, Boyo, GIS, HEC- GEORAS, HEC- RAS, Inundation Mapping
Procedia PDF Downloads 501266 CFD Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)
Procedia PDF Downloads 1471265 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.
Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama
Abstract:
The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel
Procedia PDF Downloads 1501264 Adding a Few Language-Level Constructs to Improve OOP Verifiability of Semantic Correctness
Authors: Lian Yang
Abstract:
Object-oriented programming (OOP) is the dominant programming paradigm in today’s software industry and it has literally enabled average software developers to develop millions of commercial strength software applications in the era of INTERNET revolution over the past three decades. On the other hand, the lack of strict mathematical model and domain constraint features at the language level has long perplexed the computer science academia and OOP engineering community. This situation resulted in inconsistent system qualities and hard-to-understand designs in some OOP projects. The difficulties with regards to fix the current situation are also well known. Although the power of OOP lies in its unbridled flexibility and enormously rich data modeling capability, we argue that the ambiguity and the implicit facade surrounding the conceptual model of a class and an object should be eliminated as much as possible. We listed the five major usage of class and propose to separate them by proposing new language constructs. By using well-established theories of set and FSM, we propose to apply certain simple, generic, and yet effective constraints at OOP language level in an attempt to find a possible solution to the above-mentioned issues regarding OOP. The goal is to make OOP more theoretically sound as well as to aid programmers uncover warning signs of irregularities and domain-specific issues in applications early on the development stage and catch semantic mistakes at runtime, improving correctness verifiability of software programs. On the other hand, the aim of this paper is more practical than theoretical.Keywords: new language constructs, set theory, FSM theory, user defined value type, function groups, membership qualification attribute (MQA), check-constraint (CC)
Procedia PDF Downloads 2411263 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education
Procedia PDF Downloads 1341262 Study on Shifting Properties of CVT Rubber V-belt
Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato
Abstract:
The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission
Procedia PDF Downloads 1451261 Comparison of an Anthropomorphic PRESAGE® Dosimeter and Radiochromic Film with a Commercial Radiation Treatment Planning System for Breast IMRT: A Feasibility Study
Authors: Khalid Iqbal
Abstract:
This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.Keywords: 3D dosimetry, PRESAGE®, IMRT, QA, EBT2 GAFCHROMIC film
Procedia PDF Downloads 4181260 The Impact of Technology on Physics Development
Authors: Fady Gaml Malk Mossad
Abstract:
these days, distance training that make use of internet generation is used widely all over the international to triumph over geographical and time primarily based issues in schooling. portraits, animation and other auxiliary visual resources help scholar to apprehend the topics easily. specially some theoretical guides which are pretty hard to understand along with physics and chemistry require visual material for college kids to apprehend subjects really. in this look at, physics packages for laboratory of physics path had been advanced. All facilities of internet-primarily based instructional technology have been used for students in laboratory research to avoid making mistakes and to analyze higher physics subjects.Android is a mobile running machine (OS) primarily based at the linux kerrnel and currently developed by way of google. With a user interface based on direct manipulation, Android is designed often for touchscreen cell deviced which includes smartphone and pill laptop, with specialized person interface for tv (Android television), vehicles (Android automobile), and wrist watches (Android wear). Now, nearly all peoples using cellphone. smartphone seems to be a have to-have item, because phone has many benefits. in addition, of course cellphone have many blessings for education, like resume of lesson that shape of 7451f44f4142a41b41fe20fbf0d491b7. but, this text isn't always approximately resume of lesson. this article is ready realistic based on android, precisely for physics. consequently, we can give an explanation for our concept approximately physics’s realistic primarily based on android and for output, we want many students might be like to reading physics and continually don't forget approximately physics’s phenomenon through physics’s sensible based on android.Keywords: physics education, laboratory, web-based education, distance, educationandroid, smartphone, physics practical
Procedia PDF Downloads 161259 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication
Authors: Devanjan Bhattacharya, Jitka Komarkova
Abstract:
The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.Keywords: geospatial, web-based GIS, geohazard, warning system
Procedia PDF Downloads 4091258 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine
Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav
Abstract:
This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA
Procedia PDF Downloads 2111257 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics
Authors: Puneet Kumar, Jonnalagadda Srinivas
Abstract:
The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.Keywords: hygrothermal effect, free vibration, buckling load, agglomeration
Procedia PDF Downloads 2651256 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics
Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono
Abstract:
In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design
Procedia PDF Downloads 1091255 No Histological and Biochemical Changes Following Administration of Tenofovir Nanoparticles: Animal Model Study
Authors: Aniekan Peter, ECS Naidu, Edidiong Akang, U. Offor, R. Kalhapure, A. A. Chuturgoon, T. Govender, O. O. Azu
Abstract:
Introduction: Nano-drugs are novel innovations in the management of human immunodeficiency virus (HIV) pandemic, especially resistant strains of the virus in their sanctuary sites: testis and the brain. There are safety concerns to be addressed to achieve the full potential of this new drug delivery system. Aim of study: Our study was designed to investigate toxicity profile of Tenofovir Nanoparticle (TDF-N) synthesized by University of Kwazulu-Natal (UKZN) Nano-team for prevention and treatment of HIV infection. Methodology: Ten adult male Sprague-Dawley rats maintained at the Animal House of the Biomedical Resources Unit UKZN were used for the study. The animals were weighed and divided into two groups of 5 animal each. Control animals (A) were administered with normal saline. Therapeutic dose (4.3 mg/kg) of TDF-N was administered to group B. At the end of four weeks, animals were weighed and sacrificed. Liver and kidney were removed fixed in formal saline, processed and stained using H/E, PAS and MT stains for light microscopy. Serum was obtained for renal function test (RFT), liver function test (LFT) and full blood count (FBC) using appropriate analysers. Cellular measurements were done using ImageJ and Leica software 2.0. Data were analysed using graph pad 6, values < 0.05 were significant. Results: We reported no histological alterations in the liver, kidney, FBC, LFT and RFT between the TDF-N animals and saline control. There were no significant differences in weight, organo-somatic index and histological measurements in the treatment group when compared with saline control. Conclusion/recommendations: TDF-N is not toxic to the liver, kidney and blood cells in our study. More studies using human subjects is recommended.Keywords: tenofovir nanoparticles, liver, kidney, blood cells
Procedia PDF Downloads 1851254 Smart Campus Digital Twin: Basic Framework - Current State, Trends and Challenges
Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar
Abstract:
This study presents an analysis of the Digital Twin concept applied to the academic environment, focusing on the development of a Digital Twin Smart Campus Framework. Using bibliometric analysis methodologies and literature review, the research investigates the evolution and applications of the Digital Twin in educational contexts, comparing these findings with the advances of Industry 4.0. It was identified gaps in the existing literature and highlighted the need to adapt Digital Twin principles to meet the specific demands of a smart campus. By integrating Industry 4.0 concepts such as automation, Internet of Things, and real-time data analytics, we propose an innovative framework for the successful implementation of the Digital Twin in academic settings. The results of this study provide valuable insights for university campus managers, allowing for a better understanding of the potential applications of the Digital Twin for operations, security, and user experience optimization. In addition, our framework offers practical guidance for transitioning from a digital campus to a digital twin smart campus, promoting innovation and efficiency in the educational environment. This work contributes to the growing literature on Digital Twins and Industry 4.0, while offering a specific and tailored approach to transforming university campuses into smart and connected spaces, high demanded by Society 5.0 trends. It is hoped that this framework will serve as a basis for future research and practical implementations in the field of higher education and educational technology.Keywords: smart campus, digital twin, industry 4.0, education trends, society 5.0
Procedia PDF Downloads 601253 Application of Medical Information System for Image-Based Second Opinion Consultations–Georgian Experience
Authors: Kldiashvili Ekaterina, Burduli Archil, Ghortlishvili Gocha
Abstract:
Introduction – Medical information system (MIS) is at the heart of information technology (IT) implementation policies in healthcare systems around the world. Different architecture and application models of MIS are developed. Despite of obvious advantages and benefits, application of MIS in everyday practice is slow. Objective - On the background of analysis of the existing models of MIS in Georgia has been created a multi-user web-based approach. This presentation will present the architecture of the system and its application for image based second opinion consultations. Methods – The MIS has been created with .Net technology and SQL database architecture. It realizes local (intranet) and remote (internet) access to the system and management of databases. The MIS is fully operational approach, which is successfully used for medical data registration and management as well as for creation, editing and maintenance of the electronic medical records (EMR). Five hundred Georgian language electronic medical records from the cervical screening activity illustrated by images were selected for second opinion consultations. Results – The primary goal of the MIS is patient management. However, the system can be successfully applied for image based second opinion consultations. Discussion – The ideal of healthcare in the information age must be to create a situation where healthcare professionals spend more time creating knowledge from medical information and less time managing medical information. The application of easily available and adaptable technology and improvement of the infrastructure conditions is the basis for eHealth applications. Conclusion - The MIS is perspective and actual technology solution. It can be successfully and effectively used for image based second opinion consultations.Keywords: digital images, medical information system, second opinion consultations, electronic medical record
Procedia PDF Downloads 4511252 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria
Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh
Abstract:
Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app
Procedia PDF Downloads 147