Search results for: normalized Hebbian learning
4513 Parents and Stakeholders’ Perspectives on Early Reading Intervention Implemented as a Curriculum for Children with Learning Disabilities
Authors: Bander Mohayya Alotaibi
Abstract:
The valuable partnerships between parents and teachers may develop positive and effective interactions between home and school. This will help these stakeholders share information and resources regarding student academics during ongoing interactions. Thus, partnerships will build a solid foundation for both families and schools to help children succeed in school. Parental involvement can be seen as an effective tool that can change homes and communities and not just schools’ systems. Seeking parents and stakeholders’ attitudes toward learning and learners can help schools design a curriculum. Subsequently, this information can be used to find ways to help improve the academic performance of students, especially in low performing schools. There may be some conflicts when designing curriculum. In addition, designing curriculum might bring more educational expectations to all the sides. There is a lack of research that targets the specific attitude of parents toward specific concepts on curriculum contents. More research is needed to study the perspective that parents of children with learning disabilities (LD) have regarding early reading curriculum. Parents and stakeholders’ perspectives on early reading intervention implemented as a curriculum for children with LD was studied through an advanced quantitative research. The purpose of this study seeks to understand stakeholders and parents’ perspectives of key concepts and essential early reading skills that impact the design of curriculum that will serve as an intervention for early struggler readers who have LD. Those concepts or stages include phonics, phonological awareness, and reading fluency as well as strategies used in house by parents. A survey instrument was used to gather the data. Participants were recruited through 29 schools and districts of the metropolitan area of the northern part of Saudi Arabia. Participants were stakeholders including parents of children with learning disability. Data were collected using distribution of paper and pen survey to schools. Psychometric properties of the instrument were evaluated for the validity and reliability of the survey; face validity, content validity, and construct validity including an Exploratory Factor Analysis were used to shape and reevaluate the structure of the instrument. Multivariate analysis of variance (MANOVA) used to find differences between the variables. The study reported the results of the perspectives of stakeholders toward reading strategies, phonics, phonological awareness, and reading fluency. Also, suggestions and limitations are discussed.Keywords: stakeholders, learning disability, early reading, perspectives, parents, intervention, curriculum
Procedia PDF Downloads 1554512 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 3404511 3D Multiuser Virtual Environments in Language Teaching
Authors: Hana Maresova, Daniel Ecler
Abstract:
The paper focuses on the use of 3D multi-user virtual environments (MUVE) in language teaching and presents the results of four years of research at the Faculty of Education, Palacký University in Olomouc (Czech Republic). In the form of an experiment, mother tongue language teaching in the 3D virtual worlds Second Life and Kitely (experimental group) and parallel traditional teaching on identical topics representing teacher's interpretation using a textbook (control group) were implemented. The didactic test, which was presented to the experimental and control groups in an identical form before and after the instruction, verified the effect of the instruction in the experimental group by comparing the results obtained by both groups. Within the three components of mother-tongue teaching (vocabulary, literature, style and communication education), the students in the literature group achieved partially better results (statistically significant in the case of items devoted to the area of visualization of the learning topic), while in the case of grammar and style education the respondents of the control group achieved better results. On the basis of the results obtained, we can conclude that the most appropriate use of MUVE can be seen in the teaching of those topics that provide the possibility of dramatization, experiential learning and group involvement and cooperation, on the contrary, with regard to the need to divide students attention between the topic taught and the control of avatar and movement in virtual reality as less suitable for teaching in the area of memorization of the topic or concepts.Keywords: distance learning, 3D virtual environments, online teaching, language teaching
Procedia PDF Downloads 1634510 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills
Authors: Kyle De Freitas, Margaret Bernard
Abstract:
Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.Keywords: educational data mining, learning management system, learning analytics, EDM framework
Procedia PDF Downloads 3264509 Critical Study on the Sensitivity of Corrosion Fatigue Crack Growth Rate to Cyclic Waveform and Microstructure in Marine Steel
Authors: V. C. Igwemezie, A. N. Mehmanparast
Abstract:
The primary focus of this work is to understand how variations in the microstructure and cyclic waveform affect the corrosion fatigue crack growth (CFCG) in steel, especially in the Paris region of the da/dN vs. ΔK curve. This work is important because it provides fundamental information on the modelling, design, selection, and use of steels for various engineering applications in the marine environment. The corrosion fatigue tests data on normalized and thermomechanical control process (TMCP) ferritic-pearlitic steels by the authors were compared with several studies on different microstructures in the literature. The microstructures of these steels are radically different and general comparative fatigue crack growth resistance performance study on the effect of microstructure in these materials are very scarce and where available are limited to few studies. The results, for purposes of engineering application, in this study show less dependency of fatigue crack growth rate (FCGR) on yield strength, tensile strength, ductility, frequency and stress ratio in the range 0.1 – 0.7. The nature of the steel microstructure appears to be a major factor in determining the rate at which fatigue cracks propagate in the entire da/dN vs. ΔK sigmoidal curve. The study also shows that the sine wave shape is the most damaging fatigue waveform for ferritic-pearlitic steels. This tends to suggest that the test under sine waveform would be a conservative approach, regardless of the waveform for design of engineering structures.Keywords: BS7910, corrosion-fatigue crack growth rate, cyclic waveform, microstructure, steel
Procedia PDF Downloads 1554508 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)
Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton
Abstract:
Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference
Procedia PDF Downloads 1084507 Searching the Relationship among Components that Contribute to Interactive Plight and Educational Execution
Authors: Shri Krishna Mishra
Abstract:
In an educational context, technology can prompt interactive plight only when it is used in conjunction with interactive plight methods. This study, therefore, examines the relationships among components that contribute to higher levels of interactive plight and execution, such as interactive Plight methods, technology, intrinsic motivation and deep learning. 526 students participated in this study. With structural equation modelling, the authors test the conceptual model and identify satisfactory model fit. The results indicate that interactive Plight methods, technology and intrinsic motivation have significant relationship with interactive Plight; deep learning mediates the relationships of the other variables with Execution.Keywords: searching the relationship among components, contribute to interactive plight, educational execution, intrinsic motivation
Procedia PDF Downloads 4544506 Audio-Visual Aids and the Secondary School Teaching
Authors: Shrikrishna Mishra, Badri Yadav
Abstract:
In this complex society of today where experiences are innumerable and varied, it is not at all possible to present every situation in its original colors hence the opportunities for learning by actual experiences always are not at all possible. It is only through the use of proper audio visual aids that the life situation can be trough in the class room by an enlightened teacher in their simplest form and representing the original to the highest point of similarity which is totally absent in the verbal or lecture method. In the presence of audio aids, the attention is attracted interest roused and suitable atmosphere for proper understanding is automatically created, but in the existing traditional method greater efforts are to be made in order to achieve the aforesaid essential requisite. Inspire of the best and sincere efforts on the side of the teacher the net effect as regards understanding or learning in general is quite negligible.Keywords: Audio-Visual Aids, the secondary school teaching, complex society, audio
Procedia PDF Downloads 4824505 The Impact of Science Teachers' Epistemological Beliefs and Metacognition on Their Use of Inquiry Based Teaching Approaches
Authors: Irfan Ahmed Rind
Abstract:
Science education has recently become the top priority of government of Pakistan. Number of schemes has been initiated for the improvement of science teaching and learning at primary and secondary levels of education, most importantly training in-service science teachers on inquiry based teaching and learning to empower students and encourage creativity, critical thinking, and innovation among them. Therefore, this approach has been promoted in the recent continuous professional development trainings for the in-service teachers. However, the follow ups on trained science teachers and educators suggest that these teachers fail to implement the inquiry based teaching and learning in their classes. In addition, these trainings also fail to bring any significant change in students’ science content knowledge and understanding as per the annual national level surveys conducted by government and independent agencies. Research suggests that science has been taught using scientific positivism, which supports objectivity based on experiments and mathematics. In contrary, the inquiry based teaching and learning are based on constructivism, which conflicts with the positivist epistemology of science teachers. It was, therefore, assumed that science teachers struggle to implement the inquiry based teaching approach as it conflicts with their basic epistemological beliefs. With this assumption, this research aimed to (i) understand how science teachers conceptualize the nature of science, and how this influence their understanding of learning, learners, their own roles as teachers and their teaching strategies, (ii) identify the conflict of science teachers’ epistemological beliefs with the inquiry based teaching approach, and (iii) find the ways in which science teachers epistemological beliefs may be developed from positivism to constructivism, so that they may effectively use the inquiry based teaching approach in teaching science. Using qualitative case study approach, thirty six secondary and higher secondary science teachers (21 male and 15 female) were selected. Data was collected using interviewed, participatory observations (sixty lessons were observed), and twenty interviews from students for verifications of teachers’ responses. The findings suggest that most of the science teacher were positivist in defining the nature of science. Most of them limit themselves to one fix answer that is provided in the books and that there is only one 'right' way to teach science. There is no room for students’ or teachers’ own opinion or bias when it comes to scientific concepts. Inquiry based teaching seems 'no right' to them. They find it difficult to allow students to think out of the box. However, some interesting exercises were found to be very effective in bringing the change in teachers’ epistemological beliefs. These will be discussed in detail in the paper. The findings have major implications for the teachers, educators, and policymakers.Keywords: science teachers, epistemology, metacognition, inquiry based teaching
Procedia PDF Downloads 1504504 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP
Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost
Abstract:
The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)
Procedia PDF Downloads 4264503 Dao Embodied – Embodying Dao: The Body as Locus of Personal Cultivation in Ancient Daoist and Confucian Philosophy
Authors: Geir Sigurðsson
Abstract:
This paper compares ancient Daoist and Confucian approaches to the human body as a locus for learning, edification or personal cultivation. While pointing out some major differences between ancient Chinese and mainstream Western visions of the body, it seeks at the same time inspiration in some seminal Western phenomenological and post-structuralist writings, in particular from Maurice Merleau-Ponty and Pierre Bourdieu. By clarifying the somewhat dissimilar scopes of foci found in Daoist and Confucian philosophies with regard to the role of and attitude to the body, the conclusion is nevertheless that their approaches are comparable, and that both traditions take the physical body to play a vital role in the cultivation of excellence. Lastly, it will be argued that cosmological underpinnings prevent the Confucian li from being rigid and invariable and that it rather emerges as a flexible learning device to train through active embodiment a refined sensibility for one’s cultural environment.Keywords: body, Confucianism, Daoism, li (ritual), phenomenology
Procedia PDF Downloads 1314502 Learners' Perceptions about Teacher Written Feedback in the School of Foreign Languages, Anadolu University
Authors: Gaye Senbag
Abstract:
In English language teaching, feedback is considered as one of the main components of writing instruction. Teachers put a lot of time and effort in order to provide learners with written feedback for effective language learning. At Anadolu University School of Foreign Languages (AUSFL) students are given written feedback for their each piece of writing through online platforms such as Edmodo and Turnitin, and traditional methods. However, little is known regarding how learners value and respond to teacher-provided feedback. As the perceptions of the students remarkably affect their learning, this study examines how they perceive the effectiveness of feedback provided by the teacher. Aiming to analyse it, 30 intermediate level (B1+ CEFR level) students were given a questionnaire, which includes Likert scale questions. The results will be discussed in detail.Keywords: feedback, perceptions, writing, English Language Teaching (ELT)
Procedia PDF Downloads 2474501 Deploying a Platform as a Service Cloud Solution to Support Student Learning
Authors: Jiangping Wang
Abstract:
This presentation describes the design and implementation of PaaS (platform as a service) cloud-based labs that are used in database-related courses to teach students practical skills. Traditionally, all labs are implemented in a desktop-based environment where students have to install heavy client software to access database servers. In order to release students from that burden, we have successfully deployed the cloud-based solution to support database-related courses, from which students and teachers can practice and learn database topics in various database courses via cloud access. With its development environment, execution runtime, web server, database server, and collaboration capability, it offers a shared pool of configurable computing resources and comprehensive environment that supports students’ needs without the complexity of maintaining the infrastructure.Keywords: PaaS, database environment, e-learning, web server
Procedia PDF Downloads 2684500 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings
Authors: Annette Cosgrove
Abstract:
The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.Keywords: TEL, DTL, digital teaching, digital assessment
Procedia PDF Downloads 704499 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method
Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González
Abstract:
This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea
Procedia PDF Downloads 3624498 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 914497 Fostering Inclusive Learning: The Role of Intercultural Communication in Multilingual Primary Education
Authors: Ozge Yalciner
Abstract:
Intercultural communication is crucial in the education of multilingual learners in primary grades, significantly influencing their academic and social development. This study explores how intercultural communication intersects with multilingual education, highlighting the importance of culturally responsive teaching practices. It addresses the challenges and opportunities presented by diverse linguistic backgrounds and proposes strategies for creating inclusive and supportive learning environments. The research emphasizes the need for teacher training programs that equip educators with the skills to recognize and address cultural differences, thereby enhancing student engagement and participation. This study was completed in an elementary school in a city in the Midwest, USA. The data was collected through observations and interviews with students and teachers. It discusses the integration of multicultural perspectives in curricula and the promotion of language diversity as an asset. Peer interactions and collaborative learning are highlighted as crucial for developing intercultural competence among young learners. The findings suggest that meaningful intercultural communication fosters a sense of belonging and mutual respect, leading to improved educational outcomes for multilingual students. Prioritizing intercultural communication in primary education is essential for supporting the linguistic and cultural identities of multilingual learners. By adopting inclusive pedagogical approaches and fostering an environment of cultural appreciation, educators can better support their students' academic success and personal growth.Keywords: diversity, intercultural communication, multilingual learners, primary grades
Procedia PDF Downloads 394496 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2924495 Adaptive Programming for Indigenous Early Learning: The Early Years Model
Authors: Rachel Buchanan, Rebecca LaRiviere
Abstract:
Context: The ongoing effects of colonialism continue to be experienced through paternalistic policies and funding processes that cause disjuncture between and across Indigenous early childhood programming on-reserve and in urban and Northern settings in Canada. While various educational organizations and social service providers have risen to address these challenges in the short, medium and long term, there continues to be a lack in nation-wide cohesive, culturally grounded, and meaningful early learning programming for Indigenous children in Canada. Indigenous-centered early learning programs tend to face one of two scaling dilemmas: their program goals are too prescriptive to enable the program to be meaningfully replicated in different cultural/ community settings, or their program goals are too broad to be meaningfully adapted to the unique cultural and contextual needs and desires of Indigenous communities (the “franchise approach”). There are over 600 First Nations communities in Canada representing more than 50 Nations and languages. Consequently, Indigenous early learning programming cannot be applied with a universal or “one size fits all” approach. Sustainable and comprehensive programming must be responsive to each community context, building upon existing strengths and assets to avoid program duplication and irrelevance. Thesis: Community-driven and culturally adapted early childhood programming is critical but cannot be achieved on a large scale within traditional program models that are constrained by prescriptive overarching program goals. Principles, rather than goals, are an effective way to navigate and evaluate complex and dynamic systems. Principles guide an intervention to be adaptable, flexible and scalable. The Martin Family Initiative (MFI) ’s Early Years program engages a principles-based approach to programming. As will be discussed in this paper, this approach enables the program to catalyze existing community-based strengths and organizational assets toward bridging gaps across and disjuncture between Indigenous early learning programs, as well as to scale programming in sustainable, context-responsive and dynamic ways. This paper argues that using a principles-driven and adaptive scaling approach, the Early Years model establishes important learnings for culturally adapted Indigenous early learning programming in Canada. Methodology: The Early Years has leveraged this approach to develop an array of programming with partner organizations and communities across the country. The Early Years began as a singular pilot project in one First Nation. In just three years, it has expanded to five different regions and community organizations. In each context, the program supports the partner organization through different means and to different ends, the extent to which is determined in partnership with each community-based organization: in some cases, this means supporting the organization to build home visiting programming from the ground-up; in others, it means offering organization-specific culturally adapted early learning resources to support the programming that already exists in communities. Principles underpin but do not define the practices of the program in each of these relationships. This paper will explore numerous examples of principles-based adaptability with the context of the Early Years, concluding that the program model offers theadaptability and dynamism necessary to respond to unique and ever-evolving community contexts and needs of Indigenous children today.Keywords: culturally adapted programming, indigenous early learning, principles-based approach, program scaling
Procedia PDF Downloads 1864494 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1024493 The Impact of the COVID-19 Pandemic on the Armenian Higher Education System: Challenges аnd Perspectives
Authors: Armine Vahanyan
Abstract:
Humanity has been still coping with the new COVID-19 pandemic. Healthcare providers, economists, psychologists, and other specialists speak about the impact of the virus on different spheres of our life. In the list of similar discussions, the impact of pandemics on global education is of utmost importance. Ideally, providing quality education services should be crucial, and the ways education programs are being adapted will determine the success or failure of the service providers. The paper aims to summarize the research touching upon the current situation of higher education in Armenia. The research includes data from official reports, surveys among education leads, faculty, and students, as well as personal observations and consideration. Through descriptive analysis, the findings of the research are being presented from various aspects. Interim results of the research unveiled two major issues in the sector of higher education in Armenia. On the one hand, the entire compulsory digitization of instruction, assessment, and grading has evoked serious gaps related to the lack of technical competencies. There is an urgent need for professional development programs that will address most of the concerns due to the shift to the online instruction mode. On the other hand, online teaching and learning require revision and adaptation of the existing curricula. Given that the content of certain programs may not be compromised, the teaching methods, the assignments, and evaluation require profound transformation, which will still be in line with course learning outcomes and student learning outcomes. The given paper focuses on the ways the mentioned issues are being addressed in Armenia. The extent of commitment for changes and adaptability to the new situation varies from the government-funded and private universities. In particular, the paper compares and contrasts activities and measures taken at the Armenian State Pedagogical University and the American University of Armenia. Thus, the Pedagogical University focused on the use of Google Classroom as the only means for teaching and learning as well as adopted the compulsory synchronous instruction mode. The American University, on the contrary, kept practicing the academic freedom, enabling both synchronous and asynchronous instruction modes, ensuring alignment of the course learning outcomes and student learning outcomes. The State University utilized the assignments and assessment, which would work for the on-campus instruction mode, while the American university employed a variety of assignments applicable for online teaching mode. The latter has suggested the utilization of multiple apps, internet sources, and online library access for a better online instant. Discussions with faculty through online forums and/or professional development workshops also facilitate restructuring and adaptation of the courses. Finally, the paper will synthesize the results of the undertaken research and will outline the e-learning perspectives and opportunities boosted by the known devastating healthcare issue.Keywords: assessment, compulsory digitization of education services, online teaching, instruction mode, program restructuring
Procedia PDF Downloads 1274492 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context
Authors: Andrea Fiorista
Abstract:
The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL
Procedia PDF Downloads 874491 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3044490 The Analysis of Gizmos Online Program as Mathematics Diagnostic Program: A Story from an Indonesian Private School
Authors: Shofiayuningtyas Luftiani
Abstract:
Some private schools in Indonesia started integrating the online program Gizmos in the teaching-learning process. Gizmos was developed to supplement the existing curriculum by integrating it into the instructional programs. The program has some features using an inquiry-based simulation, in which students conduct exploration by using a worksheet while teachers use the teacher guidelines to direct and assess students’ performance In this study, the discussion about Gizmos highlights its features as the assessment media of mathematics learning for secondary school students. The discussion is based on the case study and literature review from the Indonesian context. The purpose of applying Gizmos as an assessment media refers to the diagnostic assessment. As a part of the diagnostic assessment, the teachers review the student exploration sheet, analyze particularly in the students’ difficulties and consider findings in planning future learning process. This assessment becomes important since the teacher needs the data about students’ persistent weaknesses. Additionally, this program also helps to build student’ understanding by its interactive simulation. Currently, the assessment over-emphasizes the students’ answers in the worksheet based on the provided answer keys while students perform their skill in translating the question, doing the simulation and answering the question. Whereas, the assessment should involve the multiple perspectives and sources of students’ performance since teacher should adjust the instructional programs with the complexity of students’ learning needs and styles. Consequently, the approach to improving the assessment components is selected to challenge the current assessment. The purpose of this challenge is to involve not only the cognitive diagnosis but also the analysis of skills and error. Concerning the selected setting for this diagnostic assessment that develops the combination of cognitive diagnosis, skills analysis and error analysis, the teachers should create an assessment rubric. The rubric plays the important role as the guide to provide a set of criteria for the assessment. Without the precise rubric, the teacher potentially ineffectively documents and follows up the data about students at risk of failure. Furthermore, the teachers who employ the program of Gizmos as the diagnostic assessment might encounter some obstacles. Based on the condition of assessment in the selected setting, the obstacles involve the time constrain, the reluctance of higher teaching burden and the students’ behavior. Consequently, the teacher who chooses the Gizmos with those approaches has to plan, implement and evaluate the assessment. The main point of this assessment is not in the result of students’ worksheet. However, the diagnostic assessment has the two-stage process; the process to prompt and effectively follow-up both individual weaknesses and those of the learning process. Ultimately, the discussion of Gizmos as the media of the diagnostic assessment refers to the effort to improve the mathematical learning process.Keywords: diagnostic assessment, error analysis, Gizmos online program, skills analysis
Procedia PDF Downloads 1824489 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action
Authors: Elisabeth Unterfrauner, Christian Voigt
Abstract:
Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement
Procedia PDF Downloads 1324488 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD
Authors: Kourosh Modarresi
Abstract:
The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage
Procedia PDF Downloads 3094487 Training as Barrier for Implementing Inclusion for Students with Learning Difficulties in Mainstream Primary Schools in Saudi Arabia
Authors: Mohammed Alhammad
Abstract:
The movement towards the inclusion of students with special educational needs (SEN) in mainstream schools has become widely accepted practice in many countries. However in Saudi Arabia, this is not happening. Instead the practice for students with learning difficulties (LD) is to study in special classrooms in mainstream schools and they are not included with their peers, except at break times and morning assembly, and on school trips. There are a number of barriers that face implementing inclusion for students with LD in mainstream classrooms: one such barrier is the training of teachers. The training, either pre- or in-service, that teachers receive is seen as playing an important role in leading to the successful implementation of inclusion. The aim of this presentation is to explore how pre-service training and in-service training are acting as barriers for implementing inclusion of students with LD in mainstream primary schools in Saudi Arabia from the perspective of teachers. The qualitative research approach was used to explore this barrier. Twenty-four teachers (general education teachers, special education teachers) were interviewed using semi-structured interview and a number of documents were used as method of data collection. The result showed teachers felt that not much attention was paid to inclusion in pre-services training for general education teachers and special education teachers in Saudi Arabia. In addition, pre-service training for general education teachers does not normally including modules on special education. Regarding the in-service training, no courses at all about inclusion are provided for teachers. Furthermore, training courses in special education are few. As result, the knowledge and skills required to implemented inclusion successfully.Keywords: inclusion, learning difficulties, Saudi Arabia, training
Procedia PDF Downloads 3754486 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 1904485 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 1134484 Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices: Construction Proceedings and Validation
Authors: Cristina Costa-Lobo, Sandra Fernandes, Miguel Magalhães, José Dinis-Carvalho, Alfredo Regueiro, Ana Carvalho
Abstract:
This paper is a report on the findings of the construction and the validation of a questionnaire monetized in a portuguese higher education context with undergraduate students. The Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices consists of six scales: Critical appraisal of the project, Developed Learning and Skills, Teamwork, Teacher and Tutor Roles, Evaluation of Student Performance, and Project Effectiveness as a Teaching-Learning Methodology. The proceedings of its construction are analyzed, and the validity and internal consistency analysis are described. Findings indicate good indicators of validity, good fidelity and an interpretable factorial structure.Keywords: entrepreneurship project, higher education, psychopedagogical practices, teacher and tutor roles
Procedia PDF Downloads 381