Search results for: nonlinear hysteretic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17604

Search results for: nonlinear hysteretic model

14574 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas

Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran

Abstract:

Progressive phase distribution is an important consideration in reflect array antenna design which is required to form a planar wave in front of the reflect array aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflect array designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflect array antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflect arrays constructed on 0.508 mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.

Keywords: mathematical modeling, progressive phase distribution, reflect array antenna, reflection phase

Procedia PDF Downloads 385
14573 Information Technology and Business Alignments among Different Divisions: A Comparative Analysis of Japan and South Korea

Authors: Michiko Miyamoto

Abstract:

This paper empirically investigates whether information technology (IT) strategies, business strategies, and divisions are aligned to meet overall business goals for Korean Small and medium-sized enterprises (SMEs), based on structure based Strategic Alignment Model, and make comparison with those of Japanese SMEs. Using 2,869 valid responses of Korean Human Capital Corporate Panel survey, a result of this study suggests that Korean human resources (HR) departments have a major influence over IT strategy, which is the same as Japanese SMEs, even though their management styles are quite different. As for IT strategy, it is not related to other departments at all for Korean SMEs. The Korean management seems to possess a great power over each division, such as Sales/Service, Research and Development/Technical Experts, HR, and Production.

Keywords: IT-business alignment, structured based strategic alignment model, structural equation model, human resources department

Procedia PDF Downloads 276
14572 MGAUM—Towards a Mobile Government Adoption and Utilization Model: The Case of Saudi Arabia

Authors: Mohammed Alonazi, Natalia Beloff, Martin White

Abstract:

This paper presents a proposal for a mobile government adoption and utilization model (MGAUM), which is a framework designed to increase the adoption rate of m-government services in Saudi Arabia. Recent advances in mobile technologies such are Mobile compatibilities, The development of wireless communication, mobile applications and devices are enabling governments to deliver services in new ways to citizens more efficiently and economically. In the last decade, many governments around the globe are utilizing these advances effectively to develop their next generation of e-government services. However, a low adoption rate of m-government services by citizens is a common problem in Arabian countries, including Saudi Arabia. Yet, to our knowledge, very little research has been conducted focused on understanding the factors that influence citizen adoption of these m-government services in this part of the world. A set of social, cultural and technological factors have been identified in the literature, which has led to the formulation of associated research questions and hypotheses. These hypotheses will be tested on Saudi citizens using questionnaires and interview methods based around the technology acceptance model. A key objective of the MGAUM framework is to investigate and understand Saudi citizens perception towards adoption and utilization of m-government services.

Keywords: e-government, m-government, citizen services quality, technology acceptance model, Saudi Arabia, adoption framework.

Procedia PDF Downloads 313
14571 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas

Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi

Abstract:

In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.

Keywords: thermal remote sensing, insolation model, land surface temperature, geothermal anomalies

Procedia PDF Downloads 373
14570 Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas

Authors: Warda Nasir, M. N. S. Qureshi

Abstract:

Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations.

Keywords: kinetic model, whistler waves, non-maxwellian distribution function, space plasmas

Procedia PDF Downloads 318
14569 A Prediction Model of Adopting IPTV

Authors: Jeonghwan Jeon

Abstract:

With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.

Keywords: prediction, adoption, IPTV, CaRBS

Procedia PDF Downloads 421
14568 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 236
14567 Modeling in the Middle School: Eighth-Grade Students’ Construction of the Summer Job Problem

Authors: Neslihan Sahin Celik, Ali Eraslan

Abstract:

Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. In line with the results of the PISA studies, researchers in many countries have begun to question how much students in school-education system are prepared to solve the real-world problems they encounter in their future professional lives. As a result, many mathematics educators have begun to emphasize the importance of new skills and understanding such as constructing, Hypothesizing, Describing, manipulating, predicting, working together for complex and multifaceted problems for success in beyond the school. When students increasingly face this kind of situations in their daily life, it is important to make sure that students have enough experience to work together and interpret mathematical situations that enable them to think in different ways and share their ideas with their peers. Thus, model eliciting activities are one of main tools that help students to gain experiences and the new skills required. This research study was carried on the town center of a big city located in the Black Sea region in Turkey. The participants were eighth-grade students in a middle school. After a six-week preliminary study, three students in an eighth-grade classroom were selected using criterion sampling technique and placed in a focus group. The focus group of three students was videotaped as they worked on a model eliciting activity, the Summer Job Problem. The conversation of the group was transcribed, examined with students’ written work and then qualitatively analyzed through the lens of Blum’s (1996) modeling processing cycle. The study results showed that eighth grade students can successfully work with the model eliciting, develop a model based on the two parameters and review the whole process. On the other hand, they had difficulties to relate parameters to each other and take all parameters into account to establish the model.

Keywords: middle school, modeling, mathematical modeling, summer job problem

Procedia PDF Downloads 341
14566 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development

Authors: Inese Trusina, Elita Jermolajeva

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.

Keywords: sustainability, development, power, ecological economics, regional economic, monitoring

Procedia PDF Downloads 126
14565 Bayesian Locally Approach for Spatial Modeling of Visceral Leishmaniasis Infection in Northern and Central Tunisia

Authors: Kais Ben-Ahmed, Mhamed Ali-El-Aroui

Abstract:

This paper develops a Local Generalized Linear Spatial Model (LGLSM) to describe the spatial variation of Visceral Leishmaniasis (VL) infection risk in northern and central Tunisia. The response from each region is a number of affected children less than five years of age recorded from 1996 through 2006 from Tunisian pediatric departments and treated as a poison county level data. The model includes climatic factors, namely averages of annual rainfall, extreme values of low temperatures in winter and high temperatures in summer to characterize the climate of each region according to each continentality index, the pluviometric quotient of Emberger (Q2) to characterize bioclimatic regions and component for residual extra-poison variation. The statistical results show the progressive increase in the number of affected children in regions with high continentality index and low mean yearly rainfull. On the other hand, an increase in pluviometric quotient of Emberger contributed to a significant increase in VL incidence rate. When compared with the original GLSM, Bayesian locally modeling is improvement and gives a better approximation of the Tunisian VL risk estimation. According to the Bayesian approach inference, we use vague priors for all parameters model and Markov Chain Monte Carlo method.

Keywords: generalized linear spatial model, local model, extra-poisson variation, continentality index, visceral leishmaniasis, Tunisia

Procedia PDF Downloads 400
14564 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications

Authors: Farhad Salek, Shahaboddin Resalati

Abstract:

The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.

Keywords: second life battery, electric vehicles, degradation, neural network

Procedia PDF Downloads 71
14563 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 52
14562 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials

Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan

Abstract:

In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.

Keywords: thermal model, thermal resistance, finite element simulation, neural network

Procedia PDF Downloads 362
14561 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: context-sensitive search, image search, similarity ranking, similarity search

Procedia PDF Downloads 368
14560 Weak Instability in Direct Integration Methods for Structural Dynamics

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

Keywords: dynamic analysis, high frequency, integration method, overshoot, weak instability

Procedia PDF Downloads 227
14559 Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications

Authors: Sung-Won Seo, Jang-Young Choi

Abstract:

The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system.

Keywords: wave energy converter, permanent magnet linear synchronous generator, finite element method, analytical method

Procedia PDF Downloads 305
14558 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 114
14557 Combination of the Hydrological Model and SDSM for Assessing Climate Change Impacts on Future Water Resources in the R’dom Watershed, Morocco

Authors: Abdennabi Alitane, Ali Essahlaoui, Ahmed M. Saqr, Sabine Sauvage, José-Miguel Sánchez-Pérez, Ann Van Griensven

Abstract:

Climate change effect of on water resources in semi-arid regions can be serious, it is essential to understand the effects of climate change on the water balance in order to develop sustainable adaptation strategies. This research project examined the impact of climate change on the components of the water balance in a R'Dom hydrological watershed in the Mediterranean region. The assessment of climate change impact on the future hydrology is done by using the SDSM (Statistical DownScaling Model) and SWAT+ (The Soil and Water Assessment Tool) hydrological model during the baseline period (2002–2013), the data was analyzed and compared to future climate projections . The future projections of the global circulation model canEMS2 under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios were statically downscaled for a period (2014–2100). Afterwards, the SWAT+ model is simulated for the period from 2000 to 2013, calibrated from 2002 to 2007, and validated from 2008 to 2013 using monthly streamflow data. The model results showed good performance with an NSE of 0.72 and R2 of 0.71 during the validation period. The future precipitation shows a decreasing tendency under all scenarios, with -6.59%, -2.86%, and -2.57% for RCPaveg 2.6, RCPaveg 4.5, and RCPaveg 8.5, respectively. On other hand, the average monthly streamflow of R’Dom river in the near future (2014–2043) will decrease by 44–48%, decrease by 36–48% in the Medium period (2044–2071) and decrease by 43–52% in the period (2072–2100) under the three RCP scenarios. Regarding the water balance components changes, the average annual of actual evapotranspiration is predicted to increase from 5% to 9% under the three RCP scenarios for the three future study periods. Projected average annual flows are expected to decrease by 37% to 90% under the three RCP scenarios over the three future periods. In general, the current scientific research context and the results obtained from the methodology applied will help to optimize future water planning in semi-arid regions in the face of climate change.

Keywords: climate change, water balance, R'Dom watershed, SDSM, SWAT+ model

Procedia PDF Downloads 9
14556 Stock Price Prediction with 'Earnings' Conference Call Sentiment

Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu

Abstract:

Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.

Keywords: earnings call script, random forest, sentiment analysis, stock price prediction

Procedia PDF Downloads 296
14555 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz

Abstract:

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Keywords: permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient

Procedia PDF Downloads 386
14554 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 74
14553 Designing an Effective Accountability Model for Islamic Azad University Using the Qualitative Approach of Grounded Theory

Authors: Davoud Maleki, Neda Zamani

Abstract:

The present study aims at exploring the effective accountability model of Islamic Azad University using a qualitative approach of grounded theory. The data of this study were obtained from semi-structured interviews with 25 professors and scholars in Islamic Azad University of Tehran who were selected by theoretical sampling method. In the data analysis, the stepwise method and Strauss and Corbin analytical methods (1992) were used. After identification of the main component (balanced response to stakeholders’ needs) and using it to bring the categories together, expressions and ideas representing the relationships between the main and subcomponents, and finally, the revealed components were categorized into six dimensions of the paradigm model, with the relationships among them, including causal conditions (7 components), main component (balanced response to stakeholders’ needs), strategies (5 components), environmental conditions (5 components), intervention features (4 components), and consequences (3 components). Research findings show an exploratory model for describing the relationships between causal conditions, main components, accountability strategies, environmental conditions, university environmental features, and that consequences.

Keywords: accountability, effectiveness, Islamic Azad University, grounded theory

Procedia PDF Downloads 90
14552 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 200
14551 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 146
14550 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: carbon nanotubes, vibration control, piezoelectric layers, elastic foundation

Procedia PDF Downloads 276
14549 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 367
14548 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods

Authors: J. Tamosaitiene

Abstract:

The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.

Keywords: risk, system, model, construction

Procedia PDF Downloads 171
14547 Job Characteristics, Emotion Regulation and University Teachers' Well-Being: A Job Demands-Resources Analysis

Authors: Jiying Han

Abstract:

Teaching is widely known to be an emotional endeavor, and teachers’ ability to regulate their emotions is important for their well-being and the effectiveness of their classroom management. Considering that teachers’ emotion regulation is an underexplored issue in the field of educational research, some studies have attempted to explore the role of emotion regulation in teachers’ work and to explore the links between teachers’ emotion regulation, job characteristics, and well-being, based on the Job Demands-Resources (JD-R) model. However, those studies targeted primary or secondary teachers. So far, very little is known about the relationships between university teachers’ emotion regulation and its antecedents and effects on teacher well-being. Based on the job demands-resources model and emotion regulation theory, this study examined the relationships between job characteristics of university teaching (i.e., emotional job demands and teaching support), emotion regulation strategies (i.e., reappraisal and suppression), and university teachers’ well-being. Data collected from a questionnaire survey of 643 university teachers in China were analysed. The results indicated that (1) both emotional job demands and teaching support had desirable effects on university teachers’ well-being; (2) both emotional job demands and teaching support facilitated university teachers’ use of reappraisal strategies; and (3) reappraisal was beneficial to university teachers’ well-being, whereas suppression was harmful. These findings support the applicability of the job demands-resources model to the contexts of higher education and highlight the mediating role of emotion regulation.

Keywords: emotional job demands, teaching support, emotion regulation strategies, the job demands-resources model

Procedia PDF Downloads 162
14546 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: attention, fire detection, smoke detection, spatio-temporal

Procedia PDF Downloads 209
14545 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model

Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura

Abstract:

This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.

Keywords: Malawi rainfall, forecast model, predictors, SST

Procedia PDF Downloads 395