Search results for: hyperparameters optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3302

Search results for: hyperparameters optimization

272 Processes and Application of Casting Simulation and Its Software’s

Authors: Surinder Pal, Ajay Gupta, Johny Khajuria

Abstract:

Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied.

Keywords: casting simulation software’s, simulation technique’s, casting simulation, processes

Procedia PDF Downloads 478
271 New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell

Authors: Hamzeh Alipour, Masoumeh Bagheri, Abbasali Raz, Javad Dadgar Pakdel, Kourosh Azizi, Aboozar Soltani, Mohammad Djaefar Moemenbellah-Fard

Abstract:

Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing.

Keywords: blowfly, BEVS, gene, immature insect, recombinant protein, Sf9

Procedia PDF Downloads 99
270 Developing a Maturity Model of Digital Twin Application for Infrastructure Asset Management

Authors: Qingqing Feng, S. Thomas Ng, Frank J. Xu, Jiduo Xing

Abstract:

Faced with unprecedented challenges including aging assets, lack of maintenance budget, overtaxed and inefficient usage, and outcry for better service quality from the society, today’s infrastructure systems has become the main focus of many metropolises to pursue sustainable urban development and improve resilience. Digital twin, being one of the most innovative enabling technologies nowadays, may open up new ways for tackling various infrastructure asset management (IAM) problems. Digital twin application for IAM, as its name indicated, represents an evolving digital model of intended infrastructure that possesses functions including real-time monitoring; what-if events simulation; and scheduling, maintenance, and management optimization based on technologies like IoT, big data and AI. Up to now, there are already vast quantities of global initiatives of digital twin applications like 'Virtual Singapore' and 'Digital Built Britain'. With digital twin technology permeating the IAM field progressively, it is necessary to consider the maturity of the application and how those institutional or industrial digital twin application processes will evolve in future. In order to deal with the gap of lacking such kind of benchmark, a draft maturity model is developed for digital twin application in the IAM field. Firstly, an overview of current smart cities maturity models is given, based on which the draft Maturity Model of Digital Twin Application for Infrastructure Asset Management (MM-DTIAM) is developed for multi-stakeholders to evaluate and derive informed decision. The process of development follows a systematic approach with four major procedures, namely scoping, designing, populating and testing. Through in-depth literature review, interview and focus group meeting, the key domain areas are populated, defined and iteratively tuned. Finally, the case study of several digital twin projects is conducted for self-verification. The findings of the research reveal that: (i) the developed maturity model outlines five maturing levels leading to an optimised digital twin application from the aspects of strategic intent, data, technology, governance, and stakeholders’ engagement; (ii) based on the case study, levels 1 to 3 are already partially implemented in some initiatives while level 4 is on the way; and (iii) more practices are still needed to refine the draft to be mutually exclusive and collectively exhaustive in key domain areas.

Keywords: digital twin, infrastructure asset management, maturity model, smart city

Procedia PDF Downloads 163
269 Modeling of an Insulin Mircopump

Authors: Ahmed Slami, Med El Amine Brixi Nigassa, Nassima Labdelli, Sofiane Soulimane, Arnaud Pothier

Abstract:

Many people suffer from diabetes, a disease marked by abnormal levels of sugar in the blood; 285 million people have diabetes, 6.6% of the world adult population (in 2010), according to the International Diabetes Federation. Insulin medicament is invented to be injected into the body. Generally, the injection requires the patient to do it manually. However, in many cases he will be unable to inject the drug, saw that among the side effects of hyperglycemia is the weakness of the whole body. The researchers designed a medical device that injects insulin too autonomously by using micro-pumps. Many micro-pumps of concepts have been investigated during the last two decades for injecting molecules in blood or in the body. However, all these micro-pumps are intended for slow infusion of drug (injection of few microliters by minute). Now, the challenge is to develop micro-pumps for fast injections (1 microliter in 10 seconds) with accuracy of the order of microliter. Recently, studies have shown that only piezoelectric actuators can achieve this performance, knowing that few systems at the microscopic level were presented. These reasons lead us to design new smart microsystems injection drugs. Therefore, many technological advances are still to achieve the improvement of materials to their uses, while going through their characterization and modeling action mechanisms themselves. Moreover, it remains to study the integration of the piezoelectric micro-pump in the microfluidic platform features to explore and evaluate the performance of these new micro devices. In this work, we propose a new micro-pump model based on piezoelectric actuation with a new design. Here, we use a finite element model with Comsol software. Our device is composed of two pumping chambers, two diaphragms and two actuators (piezoelectric disks). The latter parts will apply a mechanical force on the membrane in a periodic manner. The membrane deformation allows the fluid pumping, the suction and discharge of the liquid. In this study, we present the modeling results as function as device geometry properties, films thickness, and materials properties. Here, we demonstrate that we can achieve fast injection. The results of these simulations will provide quantitative performance of our micro-pumps. Concern the spatial actuation, fluid rate and allows optimization of the fabrication process in terms of materials and integration steps.

Keywords: COMSOL software, piezoelectric, micro-pump, microfluidic

Procedia PDF Downloads 347
268 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 141
267 Dual-Phase High Entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅) BxCy Ceramics Produced by Spark Plasma Sintering

Authors: Ana-Carolina Feltrin, Daniel Hedman, Farid Akhtar

Abstract:

High entropy ceramic (HEC) materials are characterized by their compositional disorder due to different metallic element atoms occupying the cation position and non-metal elements occupying the anion position. Several studies have focused on the processing and characterization of high entropy carbides and high entropy borides, as these HECs present interesting mechanical and chemical properties. A few studies have been published on HECs containing two non-metallic elements in the composition. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BxCy ceramics with different amounts of x and y, (0.25 HfC + 0.25 ZrC + 0.25 VC + 0.25 TiB₂), (0.25 HfC + 0.25 ZrC + 0.25 VB2 + 0.25 TiB₂) and (0.25 HfC + 0.25 ZrB2 + 0.25 VB2 + 0.25 TiB₂) were sintered from boride and carbide precursor powders using SPS at 2000°C with holding time of 10 min, uniaxial pressure of 50 MPa and under Ar atmosphere. The sintered specimens formed two HEC phases: a Zr-Hf rich FCC phase and a Ti-V HCP phase, and both phases contained all the metallic elements from 5-50 at%. Phase quantification analysis of XRD data revealed that the molar amount of hexagonal phase increased with increased mole fraction of borides in the starting powders, whereas cubic FCC phase increased with increased carbide in the starting powders. SPS consolidated (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BC0.5 and (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B1.5C0.25 had respectively 94.74% and 88.56% relative density. (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B0.5C0.75 presented the highest relative density of 95.99%, with Vickers hardness of 26.58±1.2 GPa for the borides phase and 18.29±0.8 GPa for the carbides phase, which exceeded the reported hardness values reported in the literature for high entropy ceramics. The SPS sintered specimens containing lower boron and higher carbon presented superior properties even though the metallic composition in each phase was similar to other compositions investigated. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅H₀.₂₅)BxCy ceramics were successfully fabricated in a boride-carbide solid solution and the amount of boron and carbon was shown to influence the phase fraction, hardness of phases, and density of the consolidated HECs. The microstructure and phase formation was highly dependent on the amount of non-metallic elements in the composition and not only the molar ratio between metals when producing high entropy ceramics with more than one anion in the sublattice. These findings show the importance of further studies about the optimization of the ratio between C and B for further improvements in the properties of dual-phase high entropy ceramics.

Keywords: high-entropy ceramics, borides, carbides, dual-phase

Procedia PDF Downloads 174
266 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 219
265 Assessing the Effectiveness of Warehousing Facility Management: The Case of Mantrac Ghana Limited

Authors: Kuhorfah Emmanuel Mawuli

Abstract:

Generally, for firms to enhance their operational efficiency of logistics, it is imperative to assess the logistics function. The cost of logistics conventionally represents a key consideration in the pricing decisions of firms, which suggests that cost efficiency in logistics can go a long way to improve margins. Warehousing, which is a key part of logistics operations, has the prospect of influencing operational efficiency in logistics management as well as customer value, but this potential has often not been recognized. It has been found that there is a paucity of research that evaluates the efficiency of warehouses. Indeed, limited research has been conducted to examine potential barriers to effective warehousing management. Due to this paucity of research, there is limited knowledge on how to address the obstacles associated with warehousing management. In order for warehousing management to become profitable, there is the need to integrate, balance, and manage the economic inputs and outputs of the entire warehouse operations, something that many firms tend to ignore. Management of warehousing is not solely related to storage functions. Instead, effective warehousing management requires such practices as maximum possible mechanization and automation of operations, optimal use of space and capacity of storage facilities, organization through "continuous flow" of goods, a planned system of storage operations, and safety of goods. For example, there is an important need for space utilization of the warehouse surface as it is a good way to evaluate the storing operation and pick items per hour. In the setting of Mantrac Ghana, not much knowledge regarding the management of the warehouses exists. The researcher has personally observed many gaps in the management of the warehouse facilities in the case organization Mantrac Ghana. It is important, therefore, to assess the warehouse facility management of the case company with the objective of identifying weaknesses for improvement. The study employs an in-depth qualitative research approach using interviews as a mode of data collection. Respondents in the study mainly comprised warehouse facility managers in the studied company. A total of 10 participants were selected for the study using a purposive sampling strategy. Results emanating from the study demonstrate limited warehousing effectiveness in the case company. Findings further reveal that the major barriers to effective warehousing facility management comprise poor layout, poor picking optimization, labour costs, and inaccurate orders; policy implications of the study findings are finally outlined.

Keywords: assessing, warehousing, facility, management

Procedia PDF Downloads 73
264 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 117
263 Finite Element Modelling of Mechanical Connector in Steel Helical Piles

Authors: Ramon Omar Rosales-Espinoza

Abstract:

Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.

Keywords: piles, FEA, steel, mechanical connector

Procedia PDF Downloads 268
262 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 91
261 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit

Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 87
260 Characterization of Soil Microbial Communities from Vineyard under a Spectrum of Drought Pressures in Sensitive Area of Mediterranean Region

Authors: Gianmaria Califano, Júlio Augusto Lucena Maciel, Olfa Zarrouk, Miguel Damasio, Jose Silvestre, Ana Margarida Fortes

Abstract:

Global warming, with rapid and sudden changes in meteorological conditions, is one of the major constraints to ensuring agricultural and crop resilience in the Mediterranean regions. Several strategies are being adopted to reduce the pressure of drought stress on grapevines at regional and local scales: improvements in the irrigation systems, adoption of interline cover crops, and adaptation of pruning techniques. However, still, more can be achieved if also microbial compartments associated with plants are considered in crop management. It is known that the microbial community change according to several factors such as latitude, plant variety, age, rootstock, soil composition and agricultural management system. Considering the increasing pressure of the biotic and abiotic stresses, it is of utmost necessity to also evaluate the effects of drought on the microbiome associated with the grapevine, which is a commercially important crop worldwide. In this study, we characterize the diversity and the structure of the microbial community under three long-term irrigation levels (100% ETc, 50% ETc and rain-fed) in a drought-tolerant grapevine cultivar present worldwide, Syrah. To avoid the limitations of culture-dependent methods, amplicon sequencing with target primers for bacteria and fungi was applied to the same soil samples. The use of the DNeasy PowerSoil (Qiagen) extraction kit required further optimization with the use of lytic enzymes and heating steps to improve DNA yield and quality systematically across biological treatments. Target regions (16S rRNA and ITS genes) of our samples are being sequenced with Illumina technology. With bioinformatic pipelines, it will be possible to obtain a characterization of the bacterial and fungal diversity, structure and composition. Further, the microbial communities will be assessed for their functional activity, which remains an important metric considering the strong inter-kingdom interactions existing between plants and their associated microbiome. The results of this study will lay the basis for biotechnological applications: in combination with the establishment of a bacterial library, it will be possible to explore the possibility of testing synthetic microbial communities to support plant resistance to water scarcity.

Keywords: microbiome, metabarcoding, soil, vinegrape, syrah, global warming, crop sustainability

Procedia PDF Downloads 130
259 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application

Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar

Abstract:

This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.

Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis

Procedia PDF Downloads 90
258 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 59
257 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 62
256 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 80
255 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 45
254 Research on Innovation Service based on Science and Technology Resources in Beijing-Tianjin-Hebei

Authors: Runlian Miao, Wei Xie, Hong Zhang

Abstract:

In China, Beijing-Tianjin-Hebei is regarded as a strategically important region because itenjoys highest development in economic development, opening up, innovative capacity and andpopulation. Integrated development of Beijing-Tianjin-Hebei region is increasingly emphasized by the government recently years. In 2014, it has ascended to one of the national great development strategies by Chinese central government. In 2015, Coordinated Development Planning Compendium for Beijing-Tianjin-Hebei Region was approved. Such decisions signify Beijing-Tianjin-Hebei region would lead innovation-driven economic development in China. As an essential factor to achieve national innovation-driven development and significant part of regional industry chain, the optimization of science and technology resources allocation will exert great influence to regional economic transformation and upgrading and innovation-driven development. However, unbalanced distribution, poor sharing of resources and existence of information isolated islands have contributed to different interior innovation capability, vitality and efficiency, which impeded innovation and growth of the whole region. Under such a background, to integrate and vitalize regional science and technology resources and then establish high-end, fast-responding and precise innovation service system basing on regional resources, would be of great significance for integrated development of Beijing-Tianjin-Hebei region and even handling of unbalanced and insufficient development problem in China. This research uses the method of literature review and field investigation and applies related theories prevailing home and abroad, centering service path of science and technology resources for innovation. Based on the status quo and problems of regional development of Beijing-Tianjin-Hebei, theoretically, the author proposed to combine regional economics and new economic geography to explore solution to problem of low resource allocation efficiency. Further, the author puts forward to applying digital map into resource management and building a platform for information co-building and sharing. At last, the author presents the thought to establish a specific service mode of ‘science and technology plus digital map plus intelligence research plus platform service’ and suggestion on co-building and sharing mechanism of 3 (Beijing, Tianjin and Hebei ) plus 11 (important cities in Hebei Province).

Keywords: Beijing-Tianjin-Hebei, science and technology resources, innovation service, digital platform

Procedia PDF Downloads 165
253 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling

Authors: Moustafa Osman Mohammed

Abstract:

The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.

Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology

Procedia PDF Downloads 71
252 Effect of Term of Preparation on Performance of Cool Chamber Stored White Poplar Hardwood Cuttings in Nursery

Authors: Branislav Kovačević, Andrej Pilipović, Zoran Novčić, Marina Milović, Lazar Kesić, Milan Drekić, Saša Pekeč, Leopold Poljaković Pajnik, Saša Orlović

Abstract:

Poplars present one of the most important tree species used for phytoremediation in the northern hemisphere. They can be used either as direct “cleaners” of the contaminated soils or as buffer zones preventing the contaminant plume to the surrounding environment. In order to produce appropriate planting material for this purpose, there is a long process of the breeding of the most favorable candidates. Although the development of the poplar propagation technology has been evolving for decades, white poplar nursery production, as well as the establishment of short-rotation coppice plantations, still considerably depends on the success of hardwood cuttings’ survival. This is why easy rooting is among the most desirable properties in white poplar breeding. On the other hand, there are many opportunities for the optimization of the technological procedures in order to meet the demands of particular genotype (clonal technology). In this study the effect of the term of hardwood cuttings’ preparation of four white poplar clones on their survival and further growth of rooted cuttings in nursery conditions were tested. There were three terms of cuttings’ preparation: the beginning of February (2nd Feb 2023), the beginning of March (3rd Mar 2023) and the end of March (21nd Mar 2023), which is regarded as the standard term. The cuttings were stored in cool chamber at 2±2°C. All cuttings were planted on the same date (11th Apr 2023), in soil prepared with rotary tillage, and then cultivated by usual nursey procedures. According to the results obtained after the bud set (29th Sept 2023) there were significant differences in the survival and growth of rooted cuttings between examined terms of cutting preparation. Also, there were significant differences in the reaction of examined clones on terms of cutting preparation. In total, the best results provided cuttings prepared at the first term (2nd Feb 2023) (survival rate of 39.4%), while performance after two later preparation terms was significantly poorer (20.5% after second and 16.5% after third term). These results stress the significance of dormancy preservation in cuttings of examined white poplar clones for their survival, which could be especially important in context of climate change. Differences in clones’ reaction to term of cutting preparation suggest necessity of adjustment of the technology to the needs of particular clone i.e. design of clone specific technology.

Keywords: rooting, Populus alba, nursery, clonal technology

Procedia PDF Downloads 68
251 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 485
250 Detailed Analysis of Mechanism of Crude Oil and Surfactant Emulsion

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

A number of surfactants which exhibit ultra-low interfacial tension and an excellent microemulsion phase behavior with crude oils of low to medium gravity are not sufficiently soluble at optimum salinity to produce stable aqueous solutions. Such solutions often show phase separation after a few days at reservoir temperature, which does not suffice the purpose and the time is short when compared to the residence time in a reservoir for a surfactant flood. The addition of polymer often exacerbates the problem although the poor stability of the surfactant at high salinity remains a pivotal issue. Surfactants such as SDS, Ctab with large hydrophobes produce lowest IFT, but are often not sufficiently water soluble at desired salinity. Hydrophilic co-solvents and/or co-surfactants are needed to make the surfactant-polymer solution stable at the desired salinity. This study focuses on contrasting the effect of addition of a co-solvent in stability of a surfactant –oil emulsion. The idea is to use a co-surfactant to increase stability of an emulsion. Stability of the emulsion is enhanced because of creation of micro-emulsion which is verified both visually and with the help of particle size analyzer at varying concentration of salinity, surfactant and co-surfactant. A lab-experimental method description is provided and the method is described in detail to permit readers to emulate all results. The stability of the oil-water emulsion is visualized with respect to time, temperature, salinity of the brine and concentration of the surfactant. Nonionic surfactant TX-100 when used as a co-surfactant increases the stability of the oil-water emulsion. The stability of the prepared emulsion is checked by observing the particle size distribution. For stable emulsion in volume% vs particle size curve, the peak should be obtained for particle size of 5-50 nm while for the unstable emulsion a bigger sized particles are observed. The UV-Visible spectroscopy is also used to visualize the fraction of oil that plays important role in the formation of micelles in stable emulsion. This is important as the study will help us to decide applicability of the surfactant based EOR method for a reservoir that contains a specific type of crude. The use of nonionic surfactant as a co-surfactant would also increase the efficiency of surfactant EOR. With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. Taking this into consideration, the work focuses on the optimization of the secondary recovery(Water flooding) with the help of surfactant and/or co-surfactants by creating desired conditions in the reservoir.

Keywords: co-surfactant, enhanced oil recovery, micro-emulsion, surfactant flooding

Procedia PDF Downloads 256
249 Commercial Winding for Superconducting Cables and Magnets

Authors: Glenn Auld Knierim

Abstract:

Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.

Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable

Procedia PDF Downloads 146
248 Morphological and Property Rights Control of Plot Pattern in Urban Regeneration: Case Inspiration from Germany and the United States

Authors: Nan Wu, Peng Liu

Abstract:

As a morphological element reflecting the land property rights structure, the plot pattern plays a crucial role in shaping the form and quality of the built environment. Therefore, it is one of the core control elements of urban regeneration. As China's urban development mode is shifting from growth-based development to urban regeneration, it is urgent to explore a more refined way for the planning control of the plot pattern, which further promotes the optimization of urban form and land property structure. European and American countries such as Germany and the United States began to deal with the planning control of plot patterns in urban regeneration earlier and established relatively mature methods and mechanisms. Therefore, this paper summarizes two typical scenarios of plot pattern regeneration in old cities in China: the first one is "limited scale plot pattern rezoning", which mainly deals with the regeneration scenario of tearing down the old and building the new, and the focus of its control is to establish an adaptive plot pattern rezoning methodology and mechanism; The second is "localized parcel regeneration under the existing property rights," which mainly deals with the renewal scenario of alteration and addition, and its control focuses on the establishment of control rules for individual plot regeneration. For the two typical plot pattern regeneration scenarios, Germany (Berlin) and the United States (New York) are selected as two international cases with reference significance, and the framework of plot pattern form and property rights control elements of urban regeneration is established from four latitudes, namely, the overall operation mode, form control methods, property rights control methods, and effective implementation prerequisites, so as to compare and analyze the plot pattern control methods of the two countries under different land systems and regeneration backgrounds. Among them, the German construction planning system has formed a more complete technical methodology for block-scale rezoning, and together with the overall urban design, it has created a practical example in the critical redevelopment of the inner city of Berlin. In the United States (New York), the zoning method establishes fine zoning regulations and rules for adjusting development rights based on the morphological indicators plots so as to realize effective control over the regeneration of local plots under the existing property rights pattern. On the basis of summarizing the international experience, we put forward the proposal of plot pattern and property rights control for the organic regeneration of old cities in China.

Keywords: plot pattern, urban regeneration, urban morphology, property rights, regulatory planning

Procedia PDF Downloads 48
247 Enhancement of Shelflife of Malta Fruit with Active Packaging

Authors: Rishi Richa, N. C. Shahi, J. P. Pandey, S. S. Kautkar

Abstract:

Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months.

Keywords: Malta fruit, scavenger, packaging, shelf life

Procedia PDF Downloads 282
246 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: finite elements, Lagrangian, optimal stress location, serendipity

Procedia PDF Downloads 109
245 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 145
244 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 151
243 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 70