Search results for: mMachine learning
4180 Finding the English Competency for Developing Public Health Village Volunteers at Ban Prasukchai in Chumpuang District, Nakhon Ratchasima Province in Thailand
Authors: Kittivate Boonyopakorn
Abstract:
The purposes of this study were to find the English competence of the public health volunteers and to develop the use of their English. The samples for the study were 41 public health village volunteers at Ban Prasukchai, in Thailand. The findings showed that the sum of all scores for the pre-test was 452, while the score for the post-test was 1,080. Therefore, the results of the experiment confirm that the post-test scores (1,080) significantly are higher than the pre-test (452). The mean score (N=41) for the pre-test was 11.02 while the mean score (N=41) for the post-test was 18.10. The standard deviation for the pre-test was 2.734; however, for the post-test it was 1.934. In addition to the experts-evaluated research tools, the results of the evaluation for the structured interviews (IOC) were 1 in value. The evaluation of congruence for the content with learning objectives (IOC) were 0.66 to 1.00 in value. The evaluation of congruence for the pre and post-test with learning objectives (IOC) are 1 in value.Keywords: finding the English competency, developing public health, village volunteers
Procedia PDF Downloads 4494179 Generating Music with More Refined Emotions
Authors: Shao-Di Feng, Von-Wun Soo
Abstract:
To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning
Procedia PDF Downloads 874178 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System
Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha
Abstract:
Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time
Procedia PDF Downloads 5754177 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1204176 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 884175 Exploring Artificial Intelligence as a Transformative Tool for Urban Management
Authors: R. R. Govind
Abstract:
In the digital age, artificial intelligence (AI) is having a significant impact on the rapid changes that cities are experiencing. This study explores the profound impact of AI on urban morphology, especially with regard to promoting friendly design choices. It addresses a significant research gap by examining the real-world effects of integrating AI into urban design and management. The main objective is to outline a framework for integrating AI to transform urban settings. The study employs an urban design framework to effectively navigate complicated urban environments, emphasize the need for urban management, and provide efficient planning and design strategies. Taking Gangtok's informal settlements as a focal point, the study employs AI methodologies such as machine learning, predictive analytics, and generative AI to tackle issues of 'urban informality'. The insights garnered not only offer valuable perspectives but also unveil AI's transformative potential in addressing contemporary urban challenges.Keywords: urban design, artificial intelligence, urban challenges, machine learning, urban informality
Procedia PDF Downloads 594174 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 974173 The Possibility of Content and Language Integrated Learning at Japanese Primary Schools
Authors: Rie Adachi
Abstract:
In Japan, it is required to improve students’ English communicative proficiency and the Education Ministry will start English education for the third grade and upper from year 2020 on. Considering the problems with the educational system, Content and Language Integrated Learning (CLIL) is more appropriate to be employed in elementary schools rather than just introducing English lessons. Effective CLIL takes place in the 4Cs Framework, and different strategies are used in various activities, such as arts and crafts, bodily expression, singing, playing roles, etc. After a CLIL workshop for local teachers focused on the 4Cs, the writer conducted a survey of the 36 participants using a questionnaire and found that they did not know the word CLIL, but seemed to have an interest after attending the workshop. The writer concluded that researchers and practitioners need to spread awareness of the 4Cs framework, to apply CLIL into Japanese educational context, to provide CLIL teacher training program and so on, in order to practice CLIL in Japanese elementary schools and nurture students with a global mindset.Keywords: CLIL, 4Cs, homeroom teachers, intercultural understanding
Procedia PDF Downloads 1664172 Errors in Selected Writings of EFL Students: A Study of Department of English, Taraba State University, Jalingo, Nigeria
Authors: Joy Aworookoroh
Abstract:
Writing is one of the active skills in language learning. Students of English as a foreign language are expected to write efficiently and proficiently in the language; however, there are usually challenges to optimal performance and competence in writing. Errors, on the other hand, in a foreign language learning situation are more positive than negative as they provide the basis for solving the limitations of the students. This paper investigates the situation in the Department of English, Taraba State University Jalingo. Students are administered a descriptive writing test across different levels of study. The target students are multilingual with an L1 of either Kuteb, Hausa or Junkun languages. The essays are accessed to identify the different kinds of errors in them alongside the classification of the order. Errors of correctness, clarity, engagement, and delivery were identified. However, the study identified that the degree of errors reduces alongside the experience and exposure of the students to an EFL classroom.Keywords: errors, writings, descriptive essay, multilingual
Procedia PDF Downloads 604171 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1224170 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application
Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu
Abstract:
Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.Keywords: augmented reality, multimedia, user interface, engineering, education technology
Procedia PDF Downloads 5734169 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1364168 Using Chatbots to Create Situational Content for Coursework
Authors: B. Bricklin Zeff
Abstract:
This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.Keywords: chatbot, nursing, pragmatics, role-play, AI
Procedia PDF Downloads 634167 Language Teachers as Materials Developers in China: A Multimethod Approach
Authors: Jiao Li
Abstract:
Language teachers have been expected to play diversified new roles in times of educational changes. Considering the critical role that materials play in teaching and learning, language teachers have been increasingly involved in developing materials. Using identity as an analytic lens, this study aims to explore language teachers’ experiences as materials developers in China, focusing on the challenges they face and responses to them. It will adopt a multimethod approach. At the first stage, about 12 language teachers who have developed or are developing materials will be interviewed to have a broad view of their experiences. At the second stage, three language teachers who are developing materials will be studied by collecting interview data, policy documents, and data obtained from online observation of their group meetings so as to gain a deeper understanding of their experiences in materials development. It is expected that this study would have implications for teacher development, materials development, and curriculum development as well.Keywords: educational changes, teacher development, teacher identity, teacher learning, materials development
Procedia PDF Downloads 1274166 Potentials for Learning History through Role-Playing in Virtual Reality: An Exploratory Study on Role-Playing on a Virtual Heritage Site
Authors: Danzhao Cheng, Eugene Ch'ng
Abstract:
Virtual Reality technologies can reconstruct cultural heritage objects and sites to a level of realism. Concentrating mostly on documenting authentic data and accurate representations of tangible contents, current virtual heritage is limited to accumulating visually presented objects. Such constructions, however, are fragmentary and may not convey the inherent significance of heritage in a meaningful way. In order to contextualise fragmentary historical contents where history can be told, a strategy is to create a guided narrative via role-playing. Such an approach can strengthen the logical connections of cultural elements and facilitate creative synthesis within the virtual world. This project successfully reconstructed the Ningbo Sanjiangkou VR site in Yuan Dynasty combining VR technology and role-play game approach. The results with 80 pairs of participants suggest that VR role-playing can be beneficial in a number of ways. Firstly, it creates thematic interactivity which encourages users to explore the virtual heritage in a more entertaining way with task-oriented goals. Secondly, the experience becomes highly engaging since users can interpret a historical context through the perspective of specific roles that exist in past societies. Thirdly, personalisation allows open-ended sequences of the expedition, reinforcing user’s acquisition of procedural knowledge relative to the cultural domain. To sum up, role-playing in VR poses great potential for experiential learning as it allows users to interpret a historical context in a more entertaining way.Keywords: experiential learning, maritime silk road, role-playing, virtual heritage, virtual reality
Procedia PDF Downloads 1634165 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning
Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola
Abstract:
In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.Keywords: augmented reality, distance learning, STEM didactics, technology in education
Procedia PDF Downloads 1274164 Musical Diversity: The Differences between Public and Private Kindergartens in China
Authors: Kunyu Yan
Abstract:
Early childhood music education plays a significant role in an individual’s growth. Music can help children understand themselves and relate to others, and make connections between family, school, and society. In recent years, with the development of early childhood education in China, an increasing number of kindergartens have been established, and many of them pay more attention to music education. This research has two main aims. One is to discover how and why music is used in both public and private kindergartens. The second aim is to make recommendations for widening the use of music in kindergartens. In order to achieve these aims, the research uses two main methods. Firstly, it considers the historical background and cultural context of early childhood education in China; and secondly, it uses an approach that compares public and private kindergartens. In this research, six kindergartens were chosen from Qingdao city in Shandong Province as case studies, including 3 public kindergartens and 3 private kindergartens. This research was based on using three types of data collection methods: observation, semi-structured interviews with teachers, and questionnaires with parents. Participant and non-participant observational methods were used and included in daily routines at the kindergartens in order to experience the situation of music education first-hand. Interviews were associated with teachers’ views of teaching and learning music, the perceptions of the music context, and their strategies of using music. Lastly, the questionnaire was designed to obtain the views of current music education from the children’s parents in the respective kindergartens. The results are shown with three main themes: (1) distinct characteristics of public kindergartens (e.g., similar equipment, low tuition fee, qualified teachers, etc); (2) distinct characteristics of private kindergartens (e.g., various tuition fees, own teaching system, trained teachers, etc); and (3) differences between public and private kindergartens (e.g., funding, requirements for teachers, parents’ demands, etc). According to the results, we can see that the main purpose of using music in China is to develop the musical ability of children, and teachers focus on musical learning, such as singing in tune and playing instruments. However, as revealed in this research, there are many other uses and functions of music in these educational settings, including music used for non-musical learning (e.g., counting, learning language, etc.) or in supporting social routines.Keywords: differences between private and public school, early childhood education, music education, uses and functions of music
Procedia PDF Downloads 2214163 Using Mind Map Technique to Enhance Medical Vocabulary Retention for the First Year Nursing Students at a Higher Education Institution
Authors: Nguyen Quynh Trang, Nguyễn Thị Hông Nhung
Abstract:
The study aimed to identify the effectiveness of using the mind map technique to enhance students’ medical vocabulary retention among a group of students at a higher education institution - Thai Nguyen University of Medicine and Pharmacy during the first semester of the school year 2022-2023. The research employed a quasi-experimental method, exploring primary sources such as questionnaires and the analyzed results of pre-and-post tests. Almost teachers and students showed high preferences for the implementation of the mind map technique in language teaching and learning. Furthermore, results from the pre-and-post tests between the experimental group and control one pointed out that this technique brought back positive academic performance in teaching and learning English. The research findings revealed that there should be more supportive policies to evoke the use of the mind map technique in a pedagogical context. Aim of the Study: The purpose of this research was to investigate whether using mind mapping can help students to enhance nursing students’ medical vocabulary retention and to assess the students’ attitudes toward using mind mapping as a tool to improve their vocabulary. The methodology of the study: The research employed a quasi-experimental method, exploring primary sources such as questionnaires and the analyzed results of pre-and-post tests. The contribution of the study: The research contributed to the innovation of teaching vocabulary methods for English teachers at a higher education institution. Moreover, the research helped the English teachers and the administrators at a university evoke and maintain the motivation of students not only in English classes but also in other subjects. The findings of this research were beneficial to teachers, students, and researchers interested in using mind mapping to teach and learn English vocabulary. The research explored and proved the effectiveness of applying mind mapping in teaching and learning English vocabulary. Therefore, teaching and learning activities were conducted more and more effectively and helped students overcome challenges in remembering vocabulary and creating motivation to learn English vocabulary.Keywords: medical vocabulary retention, mind map technique, nursing students, medical vocabulary
Procedia PDF Downloads 734162 Determining the Information Technologies Usage and Learning Preferences of Construction
Authors: Naci Büyükkaracığan, Yıldırım Akyol
Abstract:
Information technology is called the technology which provides transmission of information elsewhere regardless of time, location, distance. Today, information technology is providing the occurrence of ground breaking changes in all areas of our daily lives. Information can be reached quickly to millions of people with help of information technology. In this Study, effects of information technology on students for educations and their learning preferences were demonstrated with using data obtained from questionnaires administered to students of 2015-2016 academic year at Selcuk University Kadınhanı Faik İçil Vocational School Construction Department. The data was obtained by questionnaire consisting of 30 questions that was prepared by the researchers. SPSS 21.00 package programme was used for statistical analysis of data. Chi-square tests, Mann-Whitney U test, Kruskal-Wallis and Kolmogorov-Smirnov tests were used in the data analysis for Descriptiving statistics. In a study conducted with the participation of 61 students, 93.4% of students' reputation of their own information communication device (computer, smart phone, etc.) That have been shown to be at the same rate and to the internet. These are just a computer of itself, then 45.90% of the students. The main reasons for the students' use of the Internet, social networking sites are 85.24%, 13.11% following the news of the site, as seen. All student assignments in information technology, have stated that they use in the preparation of the project. When students acquire scientific knowledge in the profession regarding their preferred sources evaluated were seen exactly when their preferred internet. Male students showed that daily use of information technology while compared to female students was statistically significantly less. Construction Package program where students are eager to learn about the reputation of 72.13% and 91.80% identified in the well which they agreed that an indispensable element in the professional advancement of information technology.Keywords: information technologies, computer, construction, internet, learning systems
Procedia PDF Downloads 2944161 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling
Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed
Abstract:
Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.Keywords: machine learning, pattern recognition, facial pose classification, time series
Procedia PDF Downloads 3494160 The Phenomenon: Harmonious Bilingualism in America
Authors: Irdawati Bay Nalls
Abstract:
This study looked at Bilingual First Language Acquisition (BFLA) Spanish-English Mexican Americans across an elementary public school in the United States and the possibility of maintaining harmonious bilingualism. Adopting a phenomenological approach, with a focus on the status of bilingualism in education within a marginalized community, classroom observations, and small group and one-on-one interviews were conducted. This study explored the struggles of these bilinguals as they acculturated in America through their attempt to blend heritage and societal languages and cultural practices. Results revealed that bilinguals as young as 5 years old expressed their need to retain Spanish as a heritage language while learning English. 12 years old foresee that Spanish will not be taught to them in schools and highlighted the need to learn Spanish outside the school environments. Their voices revealed counter-narratives on identity and the need to maintain harmonious bilingualism as these students strived to give equal importance to the learning of English and Spanish as first languages despite the setbacks faced.Keywords: BFLA, Mexican-American, bilingual, harmonious bilingualism
Procedia PDF Downloads 1424159 A Quantitative Study of Blackboard Utilisation at a University of Technology in South Africa
Authors: Lawrence Meda, Christopher Dumas, Moses Moyo, Zayd Waghid
Abstract:
As a result of some schools embracing technology to enhance students’ learning experiences in the digital era, the Faculty of Education at a University of Technology in South Africa has mandated lecturers to scale up their utilisation of technology in their teaching. Lecturers have been challenged to utilise the institution’s Learning Management System - Blackboard among other technologies - to adequately prepare trainee teachers to be able to teach competently in schools. The purpose of this study is to investigate the extent to which lecturers are utilising Blackboard to enhance their teaching. The study will be conducted using a quantitative approach, and its paradigmatic position will be positivist. The study will be done as a case study of the university’s Faculty of Education. Data will be extracted from all 100 lecturers’ Blackboard sites according to their respective modules, and it will be analysed using the four pillars of Blackboard as a conceptual framework. It is presumed that there is an imbalance on the lecturers’ utilisation of the four pillars of Blackboard as the majority use it as a content dumping site.Keywords: blackboard, digital, education, technology
Procedia PDF Downloads 1394158 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1554157 Foundation Phase Teachers' Experiences of School Based Support Teams: A Case of Selected Schools in Johannesburg
Authors: Ambeck Celyne Tebid, Harry S. Rampa
Abstract:
The South African Education system recognises the need for all learners including those experiencing learning difficulties, to have access to a single unified system of education. For teachers to be pedagogically responsive to an increasingly diverse learner population without appropriate support has been proven to be unrealistic. As such, this has considerably hampered interest amongst teachers, especially those at the foundation phase to work within an Inclusive Education (IE) and training system. This qualitative study aimed at investigating foundation phase teachers’ experiences of school-based support teams (SBSTs) in two Full-Service (inclusive schools) and one Mainstream public primary school in the Gauteng province of South Africa; with particular emphasis on finding ways to supporting them, since teachers claimed they were not empowered in their initial training to teach learners experiencing learning difficulties. Hence, SBSTs were created at school levels to fill this gap thereby, supporting teaching and learning by identifying and addressing learners’, teachers’ and schools’ needs. With the notion that IE may be failing because of systemic reasons, this study uses Bronfenbrenner’s (1979) ecosystemic as well as Piaget’s (1980) maturational theory to examine the nature of support and experiences amongst teachers taking individual and systemic factors into consideration. Data was collected using in-depth, face-to-face interviews, document analysis and observation with 6 foundation phase teachers drawn from 3 different schools, 3 SBST coordinators, and 3 school principals. Data was analysed using the phenomenological data analysis method. Amongst the findings of the study is that South African full- service and mainstream schools have functional SBSTs which render formal and informal support to the teachers; this support varies in quality depending on the socio-economic status of the relevant community where the schools are situated. This paper, however, argues that what foundation phase teachers settled for as ‘support’ is flawed; as well as how they perceive the SBST and its role is problematic. The paper conclude by recommending that, the SBST should consider other approaches at foundation phase teacher support such as, empowering teachers with continuous practical experiences on how to deal with real classroom scenarios, as well as ensuring that all support, be it on academic or non-academic issues should be provided within a learning community framework where the teacher, family, SBST and where necessary, community organisations should harness their skills towards a common goal.Keywords: foundation phase, full- service schools, inclusive education, learning difficulties, school-based support teams, teacher support
Procedia PDF Downloads 2344156 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1274155 A Model for Adaptive Online Quiz: QCitra
Authors: Rosilah Hassan, Karam Dhafer Mayoof, Norngainy Mohd Tawil, Shamshubaridah Ramlee
Abstract:
Application of adaptive online quiz system and a design are performed in this paper. The purpose of adaptive quiz system is to establish different questions automatically for each student and measure their competence on a definite area of discipline. This model determines students competencies in cases like distant-learning which experience challenges frequently. Questions are specialized to allow clear deductions about student gains; they are able to identify student competencies more effectively. Also, negative effects of questions requiring higher knowledge than competency over student’s morale and self-confidence are dismissed. The advantage of the system in the quiz management requires less total time for measuring and is more flexible. Self sufficiency of the system in terms of repeating, planning and assessment of the measurement process allows itself to be used in the individual education sets. Adaptive quiz technique prevents students from distraction and motivation loss, which is led by the questions with quite lower hardness level than student’s competency.Keywords: e-learning, adaptive system, security, quiz database
Procedia PDF Downloads 4494154 Still Pictures for Learning Foreign Language Sounds
Authors: Kaoru Tomita
Abstract:
This study explores how visual information helps us to learn foreign language pronunciation. Visual assistance and its effect for learning foreign language have been discussed widely. For example, simplified illustrations in textbooks are used for telling learners which part of the articulation organs are used for pronouncing sounds. Vowels are put into a chart that depicts a vowel space. Consonants are put into a table that contains two axes of place and manner of articulation. When comparing a still picture and a moving picture for visualizing learners’ pronunciation, it becomes clear that the former works better than the latter. The visualization of vowels was applied to class activities in which native and non-native speakers’ English was compared and the learners’ feedback was collected: the positions of six vowels did not scatter as much as they were expected to do. Specifically, two vowels were not discriminated and were arranged very close in the vowel space. It was surprising for the author to find that learners liked analyzing their own pronunciation by linking formant ones and twos on a sheet of paper with a pencil. Even a simple method works well if it leads learners to think about their pronunciation analytically.Keywords: feedback, pronunciation, visualization, vowel
Procedia PDF Downloads 2494153 Change of Education Business in the Age of 5G
Authors: Heikki Ruohomaa, Vesa Salminen
Abstract:
Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation
Procedia PDF Downloads 1754152 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3194151 A Qualitative Study of the Efficacy of Teaching for Conceptual Understanding to Enhance Confidence and Engagement in Early Mathematics
Authors: Nigel P. Coutts, Stellina Z. Sim
Abstract:
Research suggests that the pedagogy we utilize when teaching mathematics contributes to a negative attitude towards the discipline. Worried by this, we have explored teaching mathematics for understanding, fluency, and confidence. We investigated strategies to engage students with the beauty of mathematics, moving them beyond mimicry and memorization. The result is an integrated pedagogy and curriculum arrangement which combines concept-based mathematics with Number Talks, Visible Thinking Routines, and Teaching for Understanding. Our qualitative research shows that students self-report greater self-confidence and heightened engagement with mathematical thinking. Teacher reflections on student learning echo this finding. As a result of this, we advocate for teacher training in the implementation of a concept-based curriculum supplemented with Number Talk strategies.Keywords: mathematical thinking, teaching for understanding, student confidence, concept-based learning, engagement
Procedia PDF Downloads 152