Search results for: image and telemetric data
24129 Me and My Selfie: Identity Building Through Self Representation in Social Media
Authors: Revytia Tanera
Abstract:
This research is a pilot study to examine the rise of selfie trend in dealing with individual self representation and identity building in social media. The symbolic interactionism theory is used as the concept of the desired self image, and Cooley’s looking glass-self concept is used to analyze the mechanical reflection of ourselves; how do people perform their “digital self” in social media. In-depth interviews were conducted in the study with a non-random sample who owns a smartphone with a front camera feature and are active in social media. This research is trying to find out whether the selfie trend brings any influence on identity building on each individual. Through analysis of interview results, it can be concluded that people take selfie photos in order to express themselves and to boost their confidence. This study suggests a follow up and more in depth analysis on identity and self representation from various age groups.Keywords: self representation, selfie, social media, symbolic interaction, looking glass-self
Procedia PDF Downloads 30224128 The Cultural Shift in Pre-owned Fashion as Sustainable Consumerism in Vietnam
Authors: Lam Hong Lan
Abstract:
The textile industry is said to be the second-largest polluter, responsible for 92 million tonnes of waste annually. There is an urgent need to practice the circular economy to increase the use and reuse around the world. By its nature, the pre-owned fashion business is considered part of the circular economy as it helps to eliminate waste and circulate products. Second-hand clothes and accessories used to be associated with a ‘cheap image’ that carried ‘old energy’ in Vietnam. This perception has been shifted, especially amongst the younger generation. Vietnamese consumer is spending more on products and services that increase self-esteem. The same consumer is moving away from a collectivist social identity towards a ‘me, not we’ outlook as they look for a way to express their individual identity. And pre-owned fashion is one of their solutions as it values money, can create a unique personal style for the wearer and links with sustainability. The design of this study is based on the second-hand shopping motivation theory. A semi-structured online survey with 100 consumers from one pre-owned clothing community and one pre-owned e-commerce site in Vietnam. The findings show that in contrast with Vietnamese older consumers (55+yo) who, in the previous study, generally associated pre-owned fashion with ‘low-cost’, ‘cheap image’ that carried ‘old energy’, young customers (20-30 yo) were actively promoted their pre-owned fashion items to the public via outlet’s social platforms and their social media. This cultural shift comes from the impact of global and local discourse around sustainable fashion and the growth of digital platforms in the pre-owned fashion business in the last five years, which has generally supported wider interest in pre-owned fashion in Vietnam. It can be summarised in three areas: (1) global and local celebrity influencers. A number of celebrities have been photographed wearing vintage items in music videos, photoshoots or at red carpet events. (2) E-commerce and intermediaries. International e-commerce sites – e.g., Vinted, TheRealReal – and/or local apps – e.g., Re.Loved – can influence attitudes and behaviors towards pre-owned consumption. (3) Eco-awareness. The increased online coverage of climate change and environmental pollution has encouraged customers to adopt a more eco-friendly approach to their wardrobes. While sustainable biomaterials and designs are still navigating their way into sustainability, sustainable consumerism via pre-owned fashion seems to be an immediate solution to lengthen the clothes lifecycle. This study has found that young consumers are primarily seeking value for money and/or a unique personal style from pre-owned/vintage fashion while using these purchases to promote their own “eco-awareness” via their social media networks. This is a good indication for fashion designers to keep in mind in their design process and for fashion enterprises in their business model’s choice to not overproduce fashion items.Keywords: cultural shift, pre-owned fashion, sustainable consumption, sustainable fashion.
Procedia PDF Downloads 8824127 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 17724126 Survivable IP over WDM Network Design Based on 1 ⊕ 1 Network Coding
Authors: Nihed Bahria El Asghar, Imen Jouili, Mounir Frikha
Abstract:
Inter-datacenter transport network is very bandwidth and delay demanding. The data transferred over such a network is also highly QoS-exigent mostly because a huge volume of data should be transported transparently with regard to the application user. To avoid the data transfer failure, a backup path should be reserved. No re-routing delay should be observed. A dedicated 1+1 protection is however not applicable in inter-datacenter transport network because of the huge spare capacity. In this context, we propose a survivable virtual network with minimal backup based on network coding (1 ⊕ 1) and solve it using a modified Dijkstra-based heuristic.Keywords: network coding, dedicated protection, spare capacity, inter-datacenters transport network
Procedia PDF Downloads 45024125 Development of Enhanced Data Encryption Standard
Authors: Benjamin Okike
Abstract:
There is a need to hide information along the superhighway. Today, information relating to the survival of individuals, organizations, or government agencies is transmitted from one point to another. Adversaries are always on the watch along the superhighway to intercept any information that would enable them to inflict psychological ‘injuries’ to their victims. But with information encryption, this can be prevented completely or at worst reduced to the barest minimum. There is no doubt that so many encryption techniques have been proposed, and some of them are already being implemented. However, adversaries always discover loopholes on them to perpetuate their evil plans. In this work, we propose the enhanced data encryption standard (EDES) that would deploy randomly generated numbers as an encryption method. Each time encryption is to be carried out, a new set of random numbers would be generated, thereby making it almost impossible for cryptanalysts to decrypt any information encrypted with this newly proposed method.Keywords: encryption, enhanced data encryption, encryption techniques, information security
Procedia PDF Downloads 15424124 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6324123 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.Keywords: ANPR, CS, CNN, deep learning, NPL
Procedia PDF Downloads 31124122 Implementing Fault Tolerance with Proxy Signature on the Improvement of RSA System
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Fault tolerance and data security are two important issues in modern communication systems. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on the improved RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.Keywords: fault tolerance, improved RSA, key agreement, proxy signature
Procedia PDF Downloads 42824121 Black Bodies Matter: The Contemporary Manifestation of Saartjie Baartman
Authors: Rokeshia Renné Ashley
Abstract:
The purpose of this study is to understand the perception of historical figure Saartjie 'Sara/Sarah' Baartman from a cross cultural perspective of black women in the United States and black women in South Africa. Semi-structured interviews (n = 30) uncover that many women in both countries did not have an accurate representation, recollection, or have been exposed to the story of Baartman. Nonetheless, those who were familiar with Baartman’s story, those participants compared her to modern examples of black women who are showcased in a contemporary familiarity. The women are described by participants as women who reveal their bodies in a sexualized manner and have the curves that are similar to Baartman’s historic figure. This comparison emphasized a connection to popular images of black women who represent the curvaceous ideal. Findings contribute to social comparison theory by providing a lens for examining black women’s body image.Keywords: black women, body modification, media, South Africa
Procedia PDF Downloads 32424120 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects
Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour
Abstract:
One of the main problems of the design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnel projects in which there is a number of tunnels and different professional teams involved. In this regard, comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels, such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate, and so forth, can be calculated and reported in a standard format.Keywords: engineering geology, rock mass classification, rock mechanic, tunnel
Procedia PDF Downloads 8524119 The Underestimate of the Annual Maximum Rainfall Depths Due to Coarse Time Resolution Data
Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Tommaso Picciafuoco, Corrado Corradini
Abstract:
A considerable part of rainfall data to be used in the hydrological practice is available in aggregated form within constant time intervals. This can produce undesirable effects, like the underestimate of the annual maximum rainfall depth, Hd, associated with a given duration, d, that is the basic quantity in the development of rainfall depth-duration-frequency relationships and in determining if climate change is producing effects on extreme event intensities and frequencies. The errors in the evaluation of Hd from data characterized by a coarse temporal aggregation, ta, and a procedure to reduce the non-homogeneity of the Hd series are here investigated. Our results indicate that: 1) in the worst conditions, for d=ta, the estimation of a single Hd value can be affected by an underestimation error up to 50%, while the average underestimation error for a series with at least 15-20 Hd values, is less than or equal to 16.7%; 2) the underestimation error values follow an exponential probability density function; 3) each very long time series of Hd contains many underestimated values; 4) relationships between the non-dimensional ratio ta/d and the average underestimate of Hd, derived from continuous rainfall data observed in many stations of Central Italy, may overcome this issue; 5) these equations should allow to improve the Hd estimates and the associated depth-duration-frequency curves at least in areas with similar climatic conditions.Keywords: central Italy, extreme events, rainfall data, underestimation errors
Procedia PDF Downloads 19424118 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction
Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun
Abstract:
The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.Keywords: usability, qualitative data, text-processing algorithm, natural language processing
Procedia PDF Downloads 28624117 Intelligent Production Machine
Authors: A. Şahinoğlu, R. Gürbüz, A. Güllü, M. Karhan
Abstract:
This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified.Keywords: cutting process, sound processing, intelligent late, sound analysis
Procedia PDF Downloads 33824116 The Effectiveness and Accuracy of the Schulte Holt IOL Toric Calculator Processor in Comparison to Manually Input Data into the Barrett Toric IOL Calculator
Authors: Gabrielle Holt
Abstract:
This paper is looking to prove the efficacy of the Schulte Holt IOL Toric Calculator Processor (Schulte Holt ITCP). It has been completed using manually inputted data into the Barrett Toric Calculator and comparing the number of minutes taken to complete the Toric calculations, the number of errors identified during completion, and distractions during completion. It will then compare that data to the number of minutes taken for the Schulte Holt ITCP to complete also, using the Barrett method, as well as the number of errors identified in the Schulte Holt ITCP. The data clearly demonstrate a momentous advantage to the Schulte Holt ITCP and notably reduces time spent doing Toric Calculations, as well as reducing the number of errors. With the ever-growing number of cataract surgeries taking place around the world and the waitlists increasing -the Schulte Holt IOL Toric Calculator Processor may well demonstrate a way forward to increase the availability of ophthalmologists and ophthalmic staff while maintaining patient safety.Keywords: Toric, toric lenses, ophthalmology, cataract surgery, toric calculations, Barrett
Procedia PDF Downloads 10024115 Change Point Detection Using Random Matrix Theory with Application to Frailty in Elderly Individuals
Authors: Malika Kharouf, Aly Chkeir, Khac Tuan Huynh
Abstract:
Detecting change points in time series data is a challenging problem, especially in scenarios where there is limited prior knowledge regarding the data’s distribution and the nature of the transitions. We present a method designed for detecting changes in the covariance structure of high-dimensional time series data, where the number of variables closely matches the data length. Our objective is to achieve unbiased test statistic estimation under the null hypothesis. We delve into the utilization of Random Matrix Theory to analyze the behavior of our test statistic within a high-dimensional context. Specifically, we illustrate that our test statistic converges pointwise to a normal distribution under the null hypothesis. To assess the effectiveness of our proposed approach, we conduct evaluations on a simulated dataset. Furthermore, we employ our method to examine changes aimed at detecting frailty in the elderly.Keywords: change point detection, hypothesis tests, random matrix theory, frailty in elderly
Procedia PDF Downloads 6224114 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 19424113 Main Cause of Children's Deaths in Indigenous Wayuu Community from Department of La Guajira: A Research Developed through Data Mining Use
Authors: Isaura Esther Solano Núñez, David Suarez
Abstract:
The main purpose of this research is to discover what causes death in children of the Wayuu community, and deeply analyze those results in order to take corrective measures to properly control infant mortality. We consider important to determine the reasons that are producing early death in this specific type of population, since they are the most vulnerable to high risk environmental conditions. In this way, the government, through competent authorities, may develop prevention policies and the right measures to avoid an increase of this tragic fact. The methodology used to develop this investigation is data mining, which consists in gaining and examining large amounts of data to produce new and valuable information. Through this technique it has been possible to determine that the child population is dying mostly from malnutrition. In short, this technique has been very useful to develop this study; it has allowed us to transform large amounts of information into a conclusive and important statement, which has made it easier to take appropriate steps to resolve a particular situation.Keywords: malnutrition, data mining, analytical, descriptive, population, Wayuu, indigenous
Procedia PDF Downloads 16324112 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids
Authors: Ayalew Yimam Ali
Abstract:
The Y-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the Y-junction microchannel can be a difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the Y-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the Y-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement
Procedia PDF Downloads 2724111 Person Re-Identification using Siamese Convolutional Neural Network
Authors: Sello Mokwena, Monyepao Thabang
Abstract:
In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese
Procedia PDF Downloads 7724110 Synthesis and Performance Study of Co3O4 as a Bi-Functional Next Generation Material
Authors: Shrikaant Kulkarni, Akshata Naik Nimbalkar
Abstract:
In this worki a method protocol has been developed for the synthesis of innovative Co3O4 material by using a method of chemical synthesis followed by calcination. The effect of calcination temperature on the morphology, structure and catalytic performance on material in question is investigated by using characterization tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy and electrochemical techniques. The SEM images reveal that the morphology of the Co3O4 material undergoes a change from the rod to a beadlike shape on calcination at temperature of 700 °C. The XRD image shows that although the morphology of synthesized Co3O4 material exhibits a cubic phase but it differs in crystallinity depending upon morphology. Similarly spherical beadlike Co3O4 material has exhibited better activity than its rodlike counterpart which is reflected from electrochemical findings. Further, its performance in terms of bifunctional nature and hlods a lot much of promise as a excellent electrode material in the next generation batteries and fuel cells.Keywords: bifunctional, next generation material, Co3O4, XRD
Procedia PDF Downloads 38224109 Application of the Mobile Phone for Occupational Self-Inspection Program in Small-Scale Industries
Authors: Jia-Sin Li, Ying-Fang Wang, Cheing-Tong Yan
Abstract:
In this study, an integrated approach of Google Spreadsheet and QR code which is free internet resources was used to improve the inspection procedure. The mobile phone Application(App)was also designed to combine with a web page to create an automatic checklist in order to provide a new integrated information of inspection management system. By means of client-server model, the client App is developed for Android mobile OS and the back end is a web server. It can set up App accounts including authorized data and store some checklist documents in the website. The checklist document URL could generate QR code first and then print and paste on the machine. The user can scan the QR code by the app and filled the checklist in the factory. In the meanwhile, the checklist data will send to the server, it not only save the filled data but also executes the related functions and charts. On the other hand, it also enables auditors and supervisors to facilitate the prevention and response to hazards, as well as immediate report data checks. Finally, statistics and professional analysis are performed using inspection records and other relevant data to not only improve the reliability, integrity of inspection operations and equipment loss control, but also increase plant safety and personnel performance. Therefore, it suggested that the traditional paper-based inspection method could be replaced by the APP which promotes the promotion of industrial security and reduces human error.Keywords: checklist, Google spreadsheet, APP, self-inspection
Procedia PDF Downloads 12224108 Industry 4.0 and Supply Chain Integration: Case of Tunisian Industrial Companies
Authors: Rym Ghariani, Ghada Soltane, Younes Boujelbene
Abstract:
Industry 4.0, a set of emerging smart and digital technologies, has been the main focus of operations management researchers and practitioners in recent years. The objective of this research paper is to study the impact of Industry 4.0 on the integration of the supply chain (SCI) in Tunisian industrial companies. A conceptual model to study the relationship between Industry 4.0 technologies and supply chain integration was designed. This model contains three explained variables (Big data, Internet of Things, and Robotics) and one variable to be explained (supply chain integration). In order to answer our research questions and investigate the research hypotheses, principal component analysis and discriminant analysis were used using SPSS26 software. The results reveal that there is a statistically positive impact significant impact of Industry 4.0 (Big data, Internet of Things and Robotics) on the integration of the supply chain. Interestingly, big data has a greater positive impact on supply chain integration than the Internet of Things and robotics.Keywords: industry 4.0 (I4.0), big data, internet of things, robotics, supply chain integration
Procedia PDF Downloads 6524107 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman
Authors: Asil Zureigat, Ayat Odat
Abstract:
Analyzing the old and bringing in the new is an ever ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman the paper seeks to make the exception, the rule by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.Keywords: architectural city identity, cladding materials, façade architecture, image of the city
Procedia PDF Downloads 23224106 Analysing Competitive Advantage of IoT and Data Analytics in Smart City Context
Authors: Petra Hofmann, Dana Koniel, Jussi Luukkanen, Walter Nieminen, Lea Hannola, Ilkka Donoghue
Abstract:
The Covid-19 pandemic forced people to isolate and become physically less connected. The pandemic has not only reshaped people’s behaviours and needs but also accelerated digital transformation (DT). DT of cities has become an imperative with the outlook of converting them into smart cities in the future. Embedding digital infrastructure and smart city initiatives as part of normal design, construction, and operation of cities provides a unique opportunity to improve the connection between people. The Internet of Things (IoT) is an emerging technology and one of the drivers in DT. It has disrupted many industries by introducing different services and business models, and IoT solutions are being applied in multiple fields, including smart cities. As IoT and data are fundamentally linked together, IoT solutions can only create value if the data generated by the IoT devices is analysed properly. Extracting relevant conclusions and actionable insights by using established techniques, data analytics contributes significantly to the growth and success of IoT applications and investments. Companies must grasp DT and be prepared to redesign their offerings and business models to remain competitive in today’s marketplace. As there are many IoT solutions available today, the amount of data is tremendous. The challenge for companies is to understand what solutions to focus on and how to prioritise and which data to differentiate from the competition. This paper explains how IoT and data analytics can impact competitive advantage and how companies should approach IoT and data analytics to translate them into concrete offerings and solutions in the smart city context. The study was carried out as a qualitative, literature-based research. A case study is provided to validate the preservation of company’s competitive advantage through smart city solutions. The results of the research contribution provide insights into the different factors and considerations related to creating competitive advantage through IoT and data analytics deployment in the smart city context. Furthermore, this paper proposes a framework that merges the factors and considerations with examples of offerings and solutions in smart cities. The data collected through IoT devices, and the intelligent use of it, can create competitive advantage to companies operating in smart city business. Companies should take into consideration the five forces of competition that shape industries and pay attention to the technological, organisational, and external contexts which define factors for consideration of competitive advantages in the field of IoT and data analytics. Companies that can utilise these key assets in their businesses will most likely conquer the markets and have a strong foothold in the smart city business.Keywords: data analytics, smart cities, competitive advantage, internet of things
Procedia PDF Downloads 13924105 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 26824104 Best Season for Seismic Survey in Zaria Area, Nigeria: Data Quality and Implications
Authors: Ibe O. Stephen, Egwuonwu N. Gabriel
Abstract:
Variations in seismic P-wave velocity and depth resolution resulting from variations in subsurface water saturation were investigated in this study in order to determine the season of the year that gives the most reliable P-wave velocity and depth resolution of the subsurface in Zaria Area, Nigeria. A 2D seismic refraction tomography technique involving an ABEM Terraloc MK6 Seismograph was used to collect data across a borehole of standard log with the centre of the spread situated at the borehole site. Using the same parameters this procedure was repeated along the same spread for at least once in a month for at least eight months in a year for four years. The choice for each survey time depended on when there was significant variation in rainfall data. The seismic data collected were tomographically inverted. The results suggested that the average P-wave velocity ranges of the subsurface in the area are generally higher when the ground was wet than when it was dry. The results also suggested that the overburden of about 9.0 m in thickness, the weathered basement of about 14.0 m in thickness and the fractured basement at a depth of about 23.0 m best fitted the borehole log. This best fit was consistently obtained in the months between March and May when the average total rainfall was about 44.8 mm in the area. The results had also shown that the velocity ranges in both dry and wet formations fall within the standard ranges as provided in literature. In terms of velocity, this study has not in any way clearly distinguished the quality of the results of the seismic data obtained when the subsurface was dry from the results of the data collected when the subsurface was wet. It was concluded that for more detailed and reliable seismic studies in Zaria Area and its environs with similar climatic condition, the surveys are best conducted between March and May. The most reliable seismic data for depth resolution are most likely obtainable in the area between March and May.Keywords: best season, variations in depth resolution, variations in P-wave velocity, variations in subsurface water saturation, Zaria area
Procedia PDF Downloads 29324103 Irradion: Portable Small Animal Imaging and Irradiation Unit
Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek
Abstract:
In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging
Procedia PDF Downloads 9424102 Structuring and Visualizing Healthcare Claims Data Using Systems Architecture Methodology
Authors: Inas S. Khayal, Weiping Zhou, Jonathan Skinner
Abstract:
Healthcare delivery systems around the world are in crisis. The need to improve health outcomes while decreasing healthcare costs have led to an imminent call to action to transform the healthcare delivery system. While Bioinformatics and Biomedical Engineering have primarily focused on biological level data and biomedical technology, there is clear evidence of the importance of the delivery of care on patient outcomes. Classic singular decomposition approaches from reductionist science are not capable of explaining complex systems. Approaches and methods from systems science and systems engineering are utilized to structure healthcare delivery system data. Specifically, systems architecture is used to develop a multi-scale and multi-dimensional characterization of the healthcare delivery system, defined here as the Healthcare Delivery System Knowledge Base. This paper is the first to contribute a new method of structuring and visualizing a multi-dimensional and multi-scale healthcare delivery system using systems architecture in order to better understand healthcare delivery.Keywords: health informatics, systems thinking, systems architecture, healthcare delivery system, data analytics
Procedia PDF Downloads 35024101 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering
Authors: Emiel Caron
Abstract:
Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics
Procedia PDF Downloads 19624100 Contrast Media Effects and Radiation Dose Assessment in Contrast Enhanced Computed Tomography
Authors: Buhari Samaila, Sabiu Abdullahi, Buhari Maidamma
Abstract:
Background: Contrast-enhanced computed tomography (CE-CT) is a technique that uses contrast media to improve image quality and diagnostic accuracy. It is a widely used imaging modality in medical diagnostics, offering high-resolution images for accurate diagnosis. However, concerns regarding the potential adverse effects of contrast media and radiation dose exposure have prompted ongoing investigation and assessment. It is important to assess the effects of contrast media and radiation dose in CE-CT procedures. Objective: This study aims to assess the effects of contrast media and radiation dose in contrast-enhanced computed tomography (CECT) procedures. Methods: A comprehensive review of the literature was conducted to identify studies related to contrast media effects and radiation dose assessment in CECT. Relevant data, including location, type of research, objective, method, findings, conclusion, authors, and year of publications, were extracted, analyzed, and reported. Results: The findings revealed that several studies have investigated the impacts of contrast media and radiation doses in CECT procedures, with iodinated contrast agents being the most commonly employed. Adverse effects associated with contrast media administration were reported, including allergic reactions, nephrotoxicity, and thyroid dysfunction, albeit at relatively low incidence rates. Additionally, radiation dose levels varied depending on the imaging protocol and anatomical region scanned. Efforts to minimize radiation exposure through optimization techniques were evident across studies. Conclusion: Contrast-enhanced computed tomography (CECT) remains an invaluable tool in medical imaging; however, careful consideration of contrast media effects and radiation dose exposure is imperative. Healthcare practitioners should weigh the diagnostic benefits against potential risks, employing strategies to mitigate adverse effects and optimize radiation dose levels for patient safety and effective diagnosis. Further research is warranted to enhance the understanding and management of contrast media effects and radiation dose optimization in CECT procedures.Keywords: CT, contrast media, radiation dose, effect of radiation
Procedia PDF Downloads 26