Search results for: automatic identification token
803 Identifying Risk Factors for Readmission Using Decision Tree Analysis
Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka
Abstract:
This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.Keywords: decision tree, hospital, internal medicine, readmission
Procedia PDF Downloads 258802 Milling Simulations with a 3-DOF Flexible Planar Robot
Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden
Abstract:
Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.Keywords: control, milling, multibody, robotic, simulation
Procedia PDF Downloads 249801 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management
Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin
Abstract:
The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus
Procedia PDF Downloads 114800 The Integration Process of Non-EU Citizens in Luxembourg: From an Empirical Approach Toward a Theoretical Model
Authors: Angela Odero, Chrysoula Karathanasi, Michèle Baumann
Abstract:
Integration of foreign communities has been a forefront issue in Luxembourg for some time now. The country’s continued progress depends largely on the successful integration of immigrants. The aim of our study was to analyze factors which intervene in the course of integration of Non-EU citizens through the discourse of Non-EU citizens residing in Luxembourg, who have signed the Welcome and Integration Contract (CAI). The two-year contract offers integration services to assist foreigners in getting settled in the country. Semi-structured focus group discussions with 50 volunteers were held in English, French, Spanish, Serbo-Croatian or Chinese. Participants were asked to talk about their integration experiences. Recorded then transcribed, the transcriptions were analyzed with the help of NVivo 10, a qualitative analysis software. A systematic and reiterative analysis of decomposing and reconstituting was realized through (1) the identification of predetermined categories (difficulties, challenges and integration needs) (2) initial coding – the grouping together of similar ideas (3) axial coding – the regrouping of items from the initial coding in new ways in order to create sub-categories and identify other core dimensions. Our results show that intervening factors include language acquisition, professional career and socio-cultural activities or events. Each of these factors constitutes different components whose weight shifts from person to person and from situation to situation. Connecting these three emergent factors are two elements essential to the success of the immigrant’s integration – the role of time and deliberate effort from the immigrants, the community, and the formal institutions charged with helping immigrants integrate. We propose a theoretical model where the factors described may be classified in terms of how they predispose, facilitate, and / or reinforce the process towards a successful integration. Measures currently in place propose one size fits all programs yet integrative measures which target the family unit and those customized to target groups based on their needs would work best.Keywords: integration, integration services, non-eu citizens, qualitative analysis, third country nationals
Procedia PDF Downloads 306799 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 180798 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization
Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu
Abstract:
Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up
Procedia PDF Downloads 322797 Food Poisoning (Salmonellosis) as a Public Health Problem Through Consuming the Meat and Eggs of the Carrier Birds
Authors: M.Younus, M. Athar Khan, Asif Adrees
Abstract:
The present research endeavour was made to investigate the Public Health impact of Salmonellosis through consuming the meat and eggs of the carrier’s birds and to see the prevalence of Salmonella enteritidis and Salmonella typhimurium from poultry feed, poultry meat, and poultry eggs and their role in the chain of transmission of salmonellae to human beings and causing food poisoning. The ultimate objective was to generate data to improve the quality of poultry products and human health awareness. Salmonellosis is one of the most wide spread food borne zoonoses in all the continents of the world. The etiological agents Salmonella enteritidis and Salmonella typhimurium not only produce the disease but during the convalescent phase (after the recovery of disease) remain carriers for indefinite period of time. The carrier state was not only the source of spread of disease with in the poultry but also caused typhoid fever in humans. The chain of transmission started from poultry feed to poultry meat and ultimately to humans as dead end hosts. In this experiment a total number of 200 samples of human stool and blood were collected randomly (100 samples of human stool and 100 samples of human blood) of 100 patients suspected from food poisoning patients from different hospitals of Lahore area for the identification of Salmonella enteritidis and Salmonella typhimurium through PCR method in order to see the public health impact of Salmonellosis through consuming the meat and eggs of the carrier birds. On the average 14 and 10 stool samples were found positive against Salmonella enteritidis and Salmonella typhimurium from each of the 25 patients from each hospital respectively in case of suspected food poisoning patients. Similarly on an average 5% and 6% blood samples were found positive from 25 patients of each hospital respectively. There was a significant difference (P< 0.05) in the sero positivity of stool and blood samples of suspected food poisoning patients as far as Salmonella enteritidis and Salmonella typhimurium was concerned. However there was no significant difference (P<0.05) between the hospitals.Keywords: salmonella, zoonosis, food, transmission, eggs
Procedia PDF Downloads 666796 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering
Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott
Abstract:
Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.Keywords: cancer research, graph theory, machine learning, single cell analysis
Procedia PDF Downloads 114795 Milk Yield and Fingerprinting of Beta-Casein Precursor (CSN2) Gene in Some Saudi Camel Breeds
Authors: Amr A. El Hanafy, Yasser M. Saad, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan
Abstract:
Camels are substantial providers of transport, milk, sport, meat, shelter, fuel, security and capital in many countries, particularly Saudi Arabia. Identification of animal breeds has progressed rapidly during the last decade. Advanced molecular techniques are playing a significant role in breeding or strain protection laws. On the other hand, fingerprinting of some molecular markers related to some productive traits in farm animals represents most important studies to our knowledge, which aim to conserve these local genetic resources, and to the genetic improvement of such local breeds by selective programs depending on gene markers. Milk records were taken two days in each week from female camels of Majahem, Safara, Wathaha, and Hamara breeds, respectively from different private farms in northern Jeddah, Riyadh and Alwagh governorates and average weekly yields were calculated. DNA sequencing for CSN2 gene was used for evaluating the genetic variations and calculating the genetic distance values among four Saudi camel populations which are Hamra(R), Safra(Y), Wadha(W) and Majaheim(M). In addition, this marker was analyzed for reconstructing the Neighbor joining tree among evaluating camel breeds. In respect to milk yield during winter season, result indicated that average weekly milk yield of Safara camel breed (30.05 Kg/week) is significantly (p < 0.05) lower than the other 3 breeds which ranged from 39.68 for Hamara to 42.42 Kg/week for Majahem, while there are not significant differences between these three breeds. The Neighbor Joining analysis that re-constructed based on DNA variations showed that samples are clustered into two unique clades. The first clade includes Y (from Y4 to Y18) and M (from M1, to M9). On the other hand, the second cluster is including all R (from R1 to R6) and W (from W1 to W6). The genetic distance values were equal 0.0068 (between the groups M&Y and R&W) and equal 0 (within each group).Keywords: milk yield, beta-casein precursor (CSN2), Saudi camel, molecular markers
Procedia PDF Downloads 216794 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 89793 Species Distribution and Incidence of Inducible Clindamycin Resistance in Coagulase-Negative Staphylococci Isolated from Blood Cultures of Patients with True Bacteremia in Turkey
Authors: Fatma Koksal Cakirlar, Murat Gunaydin, Nevri̇ye Gonullu, Nuri Kiraz
Abstract:
During the last few decades, the increasing prevalence of methicillin resistant-CoNS isolates has become a common problem worldwide. Macrolide-lincosamide-streptogramin B (MLSB) antibiotics are effectively used for the treatment of CoNS infections. However, resistance to MLSB antibiotics is prevalent among staphylococci. The aim of this study is to determine species distribution and the incidence of inducible clindamycin resistance in CoNS isolates caused nosocomial bacteremia in our hospital. Between January 2014 and October 2015, a total of 484 coagulase-negative CoNS isolates were isolated from blood samples of patients with true bacteremia who were hospitalized in intensive care units and in other departments of Istanbul University Cerrahpasa Medical Hospital. Blood cultures were analyzed with the BACTEC 9120 system (Becton Dickinson, USA). The identification and antimicrobial resistance of isolates were determined by Phoenix automated system (BD Diagnostic Systems, Sparks, MD). Inducible clindamycin resistance was detected using D-test. The species distribution was as follows: Staphylococcus epidermidis 211 (43%), S. hominis 154 (32%), S. haemolyticus 69 (14%), S. capitis 28 (6%), S. saprophyticus 11 (2%), S. warnerii 7 (1%), S. schleiferi 5 (1%) and S. lugdunensis 1 (0.2%). Resistance to methicillin was detected in 74.6% of CoNS isolates. Methicillin resistance was highest in S.hemoliticus isolates (89%). Resistance rates of CoNS strains to the antibacterial agents, respectively, were as follows: ampicillin 77%, gentamicin 20%, erythromycin 71%, clindamycin 22%, trimethoprim-sulfamethoxazole 45%, ciprofloxacin 52%, tetracycline 34%, rifampicin 20%, daptomycin 0.2% and linezolid 0.2%. None of the strains were resistant to vancomycin and teicoplanin. Fifteen (3%) CoNS isolates were D-test positive, inducible MLSB resistance type (iMLSB-phenotype), 94 (19%) were constitutively resistant (cMLSB -phenotype), and 237 (46,76%) isolates were found D-test negative, indicating truly clindamycin-susceptible MS phenotype (M-phenotype resistance). The incidence of iMLSB-phenotypes was higher in S. epidermidis isolates (4,7%) compared to other CoNS isolates.Keywords: bacteremia, inducible MLSB resistance phenotype, methicillin-resistant, staphylococci
Procedia PDF Downloads 240792 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform
Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki
Abstract:
Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry
Procedia PDF Downloads 91791 Effect of Climate Variability on Children Health Outcomes in Rural Uganda
Authors: Emily Injete Amondo, Alisher Mirzabaev, Emmanuel Rukundo
Abstract:
Children in rural farming households are often vulnerable to a multitude of risks, including health risks associated with climate change and variability. Cognizant of this, this study empirically traced the relationship between climate variability and nutritional health outcomes in rural children while identifying the cause-and-effect transmission mechanisms. We combined four waves of the rich Uganda National Panel Survey (UNPS), part of the World Bank Living Standards Measurement Studies (LSMS) for the period 2009-2014, with long-term and high-frequency rainfall and temperature datasets. Self-reported drought and flood shock variables were further used in separate regressions for triangulation purposes and robustness checks. Panel fixed effects regressions were applied in the empirical analysis, accounting for a variety of causal identification issues. The results showed significant negative outcomes for children’s anthropometric measurements due to the impacts of moderate and extreme droughts, extreme wet spells, and heatwaves. On the contrary, moderate wet spells were positively linked with nutritional measures. Agricultural production and child diarrhea were the main transmission channels, with heatwaves, droughts, and high rainfall variability negatively affecting crop output. The probability of diarrhea was positively related to increases in temperature and dry spells. Results further revealed that children in households who engaged in ex-ante or anticipatory risk-reducing strategies such as savings had better health outcomes as opposed to those engaged in ex-post coping such as involuntary change of diet. These results highlight the importance of adaptation in smoothing the harmful effects of climate variability on the health of rural households and children in Uganda.Keywords: extreme weather events, undernutrition, diarrhea, agricultural production, gridded weather data
Procedia PDF Downloads 103790 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 380789 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies
Authors: Tania Viju, Bimal P., Naseer M. A.
Abstract:
This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.Keywords: decision support system, dynamic management, road accident blackspots, road safety
Procedia PDF Downloads 145788 Between Hope and Despair: Exploring Experiences and Belonging of Return Migrants and Their Children in Albania
Authors: Elida Cena
Abstract:
Return migration is receiving increased attention as the phenomenon challenges assumptions of natural ‘homecomings’. This talk outlines preliminary findings from an ongoing PhD study which explores return migration of Albanian migrants (aged 30-50 years) and their children (aged 7-18 years). Participants (n=51) were purposively recruited from two Albanian cities with divergent social and economic conditions, and the majority had returned from Greece following the recent economic downturn in that country. Qualitative data were collected through in-depth interviews with respondents aged 13 years and above, and were augmented with focus groups and family case studies. Data collection for case studies was aided by photo elicitation, interviews and participatory techniques (drawing) were employed for children aged 7-12 years. Through a multidisciplinary perspective, findings will uncover experiences of migrants and children upon return, the quest to identify with the originating country and create a sense of belongingness. Narrative analysis reveals that the abrupt return was associated with ambivalent feelings and disillusionment about their (re)settlement for both younger and older participants. Faced with unexpected realities and lack of opportunities, particularly for the children of migrants, Albania is viewed as a ‘transit country’, a temporary solution to escape the crisis in the destination country and move to a more developed western country. Adult return migrants articulate lack of employment and insecurity for the future. Apart from school difficulties, children experience isolation and social exclusion, marked by stigmatized labelling from other peers which exacerbates their belonging. Such mobilities have had deeper effects in complicating family relationships as influenced by many disintegration factors. Feelings of alienation and being emigrant for the second time were common in participants' accounts. Findings concerning the difficulties of individuals (re)connecting with their ethnic background and the impact on their identities are discussed in relation to the literature on return migration and identification.Keywords: return migration, belonging, identity, disintegration, integration
Procedia PDF Downloads 362787 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum
Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar
Abstract:
The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.Keywords: biosorption, brown marine macroalgae, copper, ion-exchange
Procedia PDF Downloads 327786 Management of High Conservation Value Forests (HCVF) in Peninsular Malaysia as Part of Sustainable Forest Management Practices
Authors: Abu Samah Abdul Khalim, Hamzah Khali Aziz
Abstract:
Tropical forests in Malaysia safeguard enormous biological diversity while providing crucial benefits and services for the sustainable development of human communities. They are highly significant globally, both for their diverse and threatened species and as representative unique ecosystems. In order to promote the conservation and sustainable management of forest in this country, the Forestry Department (FD) is using ITTO guidelines on managing the forest under the Sustainable Forest Management practice (SFM). The fundamental principles of SFM are the sustained provision of products, goods and services; economic viability, social acceptability and the minimization of environmental/ecological impacts. With increased awareness and recognition of the importance of tropical forests and biodiversity in the global environment, efforts have been made to classify forests and natural areas with unique values or properties in a universally accepted scale. In line with that the concept of High Conservation Value Forest (HCVF) first used by the Forest Stewardship Council (FSC) in 1999, has been adopted and included as Principle ‘9’ in the Malaysia Criteria and Indicators for Forest Management Certification (MC&I 2002). The MC&I 2002 is a standard used for assessing forest management practices of the Forest Management Unit (FMU) level for purpose of certification. The key to the concept of HCVF is identification of HCVs of the forest. This paper highlighted initiative taken by the Forestry Department Peninsular Malaysia in establishing and managing HCVF areas within the Permanent Forest Reserves (PFE). To date almost all states forestry department in Peninsular Malaysia have established HCVFs in their respective states under different categories. Among others, the establishments of HCVF in this country are related to the importance of conserving biological diversity of the flora in the natural forest in particular endemic and threatened species such as Shorea bentongensis. As such it is anticipated that by taking this important initiatives, it will promote the conservation of biological diversity in the PFE of Peninsular Malaysia in line with the Sustainable Forest Management practice.Keywords: high conservation value forest, sustainable forest management, forest management certification, Peninsular Malaysia
Procedia PDF Downloads 330785 Determination Of Mechanism Of Resistance To Pyrethroid By Anopheles Gambiae Sensu Lato From Gombe State, Nigeria
Authors: Lazarus Joseph Goje, Asamau Yusuf, Simon Gabriel Mafulul, Nabiha Garba, Nura Abubakar
Abstract:
The emergence of insecticide resistance in Anopheles gambiae sensu lato poses a significant challenge to malaria control efforts, particularly in endemic regions like Gombe, Nigeria. This study aimed to investigate the mechanisms underlying pyrethroid resistance and identify the prevalent Anopheles species in the area. Morphological identification was performed using keys from Gille and Coetzee, confirmed by molecular techniques employing SINE200 PCR for precise species characterization. The results revealed that the Anopheles gambiae complex comprised 75% of the mosquito population, indicating its dominance in the region. Knockdown rate bioassays demonstrated a time-dependent increase in resistance to insecticides, with notable exceptions observed with deltamethrin. Susceptibility testing conducted 24 hours post-exposure confirmed that the population exhibited resistance to all tested insecticides, with DDT showing the highest resistance level. Molecular analysis identified Anopheles coluzzii as the most prevalent species in Gombe, followed by Anopheles arabiensis. Additionally, the prevalence of kdr alleles was assessed, revealing a significant correlation between the L1014F mutation and resistance phenotypes. Specifically, the frequency of the L1014F allele was linked to increased resistance levels, while the homozygous susceptible allele was also prevalent, suggesting the potential influence of other resistance mechanisms. In conclusion, this study highlights the critical need for ongoing surveillance of insecticide resistance in Anopheles gambiae populations. It underscores the importance of understanding the genetic basis of resistance to inform effective vector control strategies. The findings emphasize that adaptive management of insecticide use, considering the dynamics of resistance and species composition, is essential for enhancing malaria control efforts in Gombe State, Nigeria and similar regions.Keywords: pyrethroid insecticide, resistance, susceptible, PCR, malaria
Procedia PDF Downloads 3784 Design and Development of an Autonomous Beach Cleaning Vehicle
Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk
Abstract:
In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics
Procedia PDF Downloads 30783 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan
Authors: Fawad Ali
Abstract:
Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer
Procedia PDF Downloads 72782 From Faces to Feelings: Exploring Emotional Contagion and Empathic Accuracy through the Enfacement Illusion
Authors: Ilenia Lanni, Claudia Del Gatto, Allegra Indraccolo, Riccardo Brunetti
Abstract:
Empathy represents a multifaceted construct encompassing affective and cognitive components. Among these, empathic accuracy—defined as the ability to accurately infer another person’s emotions or mental state—plays a pivotal role in fostering empathetic understanding. Emotional contagion, the automatic process through which individuals mimic and synchronize facial expressions, vocalizations, and postures, is considered a foundational mechanism for empathy. This embodied simulation enables shared emotional experiences and facilitates the recognition of others’ emotional states, forming the basis of empathic accuracy. Facial mimicry, an integral part of emotional contagion, creates a physical and emotional resonance with others, underscoring its potential role in enhancing empathic understanding. Building on these findings, the present study explores how manipulating emotional contagion through the enfacement illusion impacts empathic accuracy, particularly in the recognition of complex emotional expressions. The enfacement illusion was implemented as a visuo-tactile multisensory manipulation, during which participants experienced synchronous and spatially congruent tactile stimulation on their own face while observing the same stimulation being applied to another person’s face. This manipulation enhances facial mimicry, which is hypothesized to play a key role in improving empathic accuracy. Following the enfacement illusion, participants completed a modified version of the Diagnostic Analysis of Nonverbal Accuracy–Form 2 (DANVA2-AF). The task included 48 images of adult faces expressing happiness, sadness, or morphed emotions blending neutral with happiness or sadness to increase recognition difficulty. These images featured both familiar and unfamiliar faces, with familiar faces belonging to the actors involved in the prior visuo-tactile stimulation. Participants were required to identify the target’s emotional state as either "happy" or "sad," with response accuracy and reaction times recorded. Results from this study indicate that emotional contagion, as manipulated through the enfacement illusion, significantly enhances empathic accuracy, particularly for the recognition of happiness. Participants demonstrated greater accuracy and faster response times in identifying happiness when viewing familiar faces compared to unfamiliar ones. These findings suggest that the enfacement illusion strengthens emotional resonance and facilitates the processing of positive emotions, which are inherently more likely to be shared and mimicked. Conversely, for the recognition of sadness, an opposite but non-significant trend was observed. Specifically, participants were slightly faster at recognizing sadness in unfamiliar faces compared to familiar ones. This pattern suggests potential differences in how positive and negative emotions are processed within the context of facial mimicry and emotional contagion, warranting further investigation. These results provide insights into the role of facial mimicry in emotional contagion and its selective impact on empathic accuracy. This study highlights how the enfacement illusion can precisely modulate the recognition of specific emotions, offering a deeper understanding of the mechanisms underlying empathy.Keywords: empathy, emotional contagion, enfacement illusion, emotion recognition
Procedia PDF Downloads 12781 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical
Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva
Abstract:
Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements
Procedia PDF Downloads 194780 The Practice of Low Flow Anesthesia to Reduce Carbon Footprints Sustainability Project
Authors: Ahmed Eid, Amita Gupta
Abstract:
Abstract: Background: Background Medical gases are estimated to contribute to 5% of the carbon footprints produced by hospitals, Desflurane has the largest impact, but all increase significantly when used with N2O admixture. Climate Change Act 2008, we must reduce our carbon emission by 80% of the 1990 baseline by 2050.NHS carbon emissions have reduced by 18.5% (2007-2017). The NHS Long Term Plan has outlined measures to achieve this objective, including a 2% reduction by transforming anaesthetic practices. FGF is an important variable that determines the utilization of inhalational agents and can be tightly controlled by the anaesthetist. Aims and Objectives Environmental safety, Identification of areas of high N20 and different anaesthetic agents used across the St Helier operating theatres and consider improvising on the current practice. Methods: Data was collected from St Helier operating theatres and retrieved daily from Care Station 650 anaesthetic machines. 60 cases were included in the sample. Collected data (average flow rate, amount and type of agent used, duration of surgery, type of surgery, duration, and the total amount of Air, O2 and N2O used. AAGBI impact anaesthesia calculator was used to identify the amount of CO2 produced and also the cost per hour for every pt. Communication via reminder emails to staff emphasized the significance of low-flow anaesthesia and departmental meeting presentations aimed at heightening awareness of LFA, Distribution of AAGBI calculator QR codes in all theatres enables the calculation of volatile anaesthetic consumption and CO2e post each case, facilitating informed environmental impact assessment. Results: A significant reduction in the flow rate use in the 2nd sample was observed, flow rate usage between 0-1L was 60% which means a great reduction of the consumption of volatile anaesthetics and also Co2e. By using LFA we can save money but most importantly we can make our lives much greener and save the planet.Keywords: low flow anesthesia, sustainability project, N₂0, Co2e
Procedia PDF Downloads 68779 Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis
Authors: Hala Raslan, Noha Eltaweel, Hanaa Rasmi, Solaf Kamel, May Magdy, Sherif Ismail, Khalda Amr
Abstract:
Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes.Keywords: MiRNAs, expression, rheumatoid arthritis, osteoarthritis
Procedia PDF Downloads 80778 A Cross Culture Analysis of Medicinal Plants and Phytotherapies: Highly Effective for Gastropathic Disorders among Three Ethnic Communities of South West Pakistan
Authors: Sheikh Z. Ul Abidin, Raees Khan, Rainer W. Bussmann, Mushtaq Ahmad, Shayan Jamshed, Humera Jabeen, Ajmal Khan
Abstract:
Gastropathic disorders are increasing rapidly and millions patients are reported every years across the world. Herbal medicines and traditional phytotherapies are very effective for many diseases including gastropathic ailments. Many communities and study region have their own unique remedies for such diseases. The current study was aimed to investigate and document high valued medicinal plants and folk remedies for different gastropathic disorders among the three ethnic groups of three regions in South West Pakistan. A total of 104 semi-structured interviews involving experts of traditional knowledge in 21 localities of the three regions (D.I. Khan, Zhob and Mianwali) were conducted. The interviews were especially focused on the documentation of folk herbal remedies. The collected data was analyzed using different quantitative methods. The highly effective plants from all localities were identified with the help of local interviewers and collected for proper taxonomic identification. A total of 56 medicinal plants and 33 effective recipes for 12 gastropathic diseases were documented from all the three ethnic groups in 21 localities. Fabaceae and Asteraceae were most prominently used for different gastropathic diseases. Diarrhea, vomiting and dysentery were the most commonly diseases treated with herbal remedies. It was observed that the three communities shared knowledge about the use of medicinal plants, 35 species were commonly reported from all three areas. However, each community had also their own unique uses of medicinal plants, e.g. 23 plants species were only used in Zhob, 20 plant species were only reported in D.I. Khan and 16 species in Mianwali. The present study reveals that different communities and ethnic groups share some traditional knowledge and also have their own unique knowledge of plants utilization. Gastropathic disorder is increasing very rapidly and the traditional cross-cultural knowledge of medicinal plants use can be very effective for its cure.Keywords: cross cultural, ethnic groups, gastropathy, phytotherapies, South West Pakistan
Procedia PDF Downloads 295777 “CheckPrivate”: Artificial Intelligence Powered Mobile Application to Enhance the Well-Being of Sextual Transmitted Diseases Patients in Sri Lanka under Cultural Barriers
Authors: Warnakulasuriya Arachichige Malisha Ann Rosary Fernando, Udalamatta Gamage Omila Chalanka Jinadasa, Bihini Pabasara Amandi Amarasinghe, Manul Thisuraka Mandalawatta, Uthpala Samarakoon, Manori Gamage
Abstract:
The surge in sexually transmitted diseases (STDs) has become a critical public health crisis demanding urgent attention and action. Like many other nations, Sri Lanka is grappling with a significant increase in STDs due to a lack of education and awareness regarding their dangers. Presently, the available applications for tracking and managing STDs cover only a limited number of easily detectable infections, resulting in a significant gap in effectively controlling their spread. To address this gap and combat the rising STD rates, it is essential to leverage technology and data. Employing technology to enhance the tracking and management of STDs is vital to prevent their further propagation and to enable early intervention and treatment. This requires adopting a comprehensive approach that involves raising public awareness about the perils of STDs, improving access to affordable healthcare services for early detection and treatment, and utilizing advanced technology and data analysis. The proposed mobile application aims to cater to a broad range of users, including STD patients, recovered individuals, and those unaware of their STD status. By harnessing cutting-edge technologies like image detection, symptom-based identification, prevention methods, doctor and clinic recommendations, and virtual counselor chat, the application offers a holistic approach to STD management. In conclusion, the escalating STD rates in Sri Lanka and across the globe require immediate action. The integration of technology-driven solutions, along with comprehensive education and healthcare accessibility, is the key to curbing the spread of STDs and promoting better overall public health.Keywords: STD, machine learning, NLP, artificial intelligence
Procedia PDF Downloads 84776 Fully Autonomous Vertical Farm to Increase Crop Production
Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek
Abstract:
New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.Keywords: automation, vertical farming, robot, artificial intelligence, vision, control
Procedia PDF Downloads 45775 Investigation p53 Codon 72 Polymorphism and miR-146a rs2910164 Polymorphism in Breast Cancer
Authors: Marjan Moradi Fard, Hossein Rassi, Masoud Houshmand
Abstract:
Aim: Breast cancer is one of the most common cancers affecting the morbidity and mortality of Iranian women. This disease is a result of collective alterations of oncogenes and tumor suppressor genes. Studies have produced conflicting results concerning the role of p53 codon 72 polymorphism (G>C) and miR-146a rs2910164 polymorphism (G>C) on the risk of several cancers; therefore, a research was performed to estimate the association between the p53 codon 72 polymorphism and miR-146a rs2910164 polymorphism in breast cancer. Methods and Materials: A total of 45 archival breast cancer samples from khatam hospital and 40 healthy samples were collected. Verification of each cancer reported in a relative was sought through the pathology reports of the hospital records. Then, DNA extracted from all samples by standard methods and p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes were analyzed using multiplex PCR. The tubules, mitotic activity, necrosis, polymorphism and grade of breast cancer were staged by Nottingham histological grading and immunohistochemical staining of the sections from the paraffin wax embedded tissues for the expression of ER, PR and p53 was carried out using a standard method. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Results: Successful DNA extraction was assessed by PCR amplification of b-actin gene (99 bp). According to the results, p53 GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of breast cancer in the study population. In this study, we established that tumors of p53 GG genotype and miR-146a rs2910164 CC genotype exhibited higher mitotic activity, higher polymorphism, lower necrosis, lower tubules, higher ER- and PR-negatives and lower TP53-positives than the other genotypes. Conclusion: The present study provided preliminary evidence that a p53 GG genotype may effect breast cancer risk in the study population, interacting synergistically with miR-146a rs2910164 CC genotype. Our results demonstrate that the testing of p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes in combination with clinical parameters can serve as major risk factors in the early identification of breast cancers.Keywords: breast cancer, p53 codon 72 polymorphism, miR-146a rs2910164 polymorphism, genotypes
Procedia PDF Downloads 338774 Targeting Glucocorticoid Receptor Eliminate Dormant Chemoresistant Cancer Stem Cells in Glioblastoma
Authors: Aoxue Yang, Weili Tian, Yonghe Wu, Haikun Liu
Abstract:
Brain tumor stem cells (BTSCs) are resistant to therapy and give rise to recurrent tumors. These rare and elusive cells are likely to disseminate during cancer progression, and some may enter dormancy, remaining viable but not increasing. The identification of dormant BTSCs is thus necessary to design effective therapies for glioblastoma (GBM) patients. Little progress has been made in therapeutic treatment of glioblastoma in the last decade despite rapid progress in molecular understanding of brain tumors1. Here we show that the stress hormone glucocorticoid is essential for the maintenance of brain tumor stem cells (BTSCs), which are resistant to conventional therapy. The glucocorticoid receptor (GR) regulates metabolic plasticity and chemoresistance of the dormant BTSC via controlling expression of GPD1 (glycerol-3-phosphate dehydrogenase 1), which is an essential regulator of lipid metabolism in BTSCs. Genomic, lipidomic and cellular analysis confirm that GR/GPD1 regulation is essential for BTSCs metabolic plasticity and survival. We further demonstrate that the GR agonist dexamethasone (DEXA), which is commonly used to control edema in glioblastoma, abolishes the effect of chemotherapy drug temozolomide (TMZ) by upregulating GPD1 and thus promoting tumor cell dormancy in vivo, this provides a mechanistic explanation and thus settle the long-standing debate of usage of steroid in brain tumor patient edema control. Pharmacological inhibition of GR/GPD1 pathway disrupts metabolic plasticity of BTSCs and prolong animal survival, which is superior to standard chemotherapy. Patient case study shows that GR antagonist mifepristone blocks tumor progression and leads to symptomatic improvement. This study identifies an important mechanism regulating cancer stem cell dormancy and provides a new opportunity for glioblastoma treatment.Keywords: cancer stem cell, dormancy, glioblastoma, glycerol-3-phosphate dehydrogenase 1, glucocorticoid receptor, dexamethasone, RNA-sequencing, phosphoglycerides.
Procedia PDF Downloads 85