Search results for: thermal losses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4572

Search results for: thermal losses

1602 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate

Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad

Abstract:

CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.

Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory

Procedia PDF Downloads 118
1601 Ab Initio Studies of Structural and Thermal Properties of Aluminum Alloys

Authors: M. Saadi, S. E. H. Abaidia, M. Y. Mokeddem.

Abstract:

We present the results of a systematic and comparative study of the bulk, the structural properties, and phonon calculations of aluminum alloys using several exchange–correlations functional theory (DFT) with different plane-wave basis pseudo potential techniques. Density functional theory implemented by the Vienna Ab Initio Simulation Package (VASP) technique is applied to calculate the bulk and the structural properties of several structures. The calculations were performed for within several exchange–correlation functional and pseudo pententials available in this code (local density approximation (LDA), generalized gradient approximation (GGA), projector augmented wave (PAW)). The lattice dynamic code “PHON” developed by Dario Alfè was used to calculate some thermodynamics properties and phonon dispersion relation frequency distribution of Aluminium alloys using the VASP LDA PAW and GGA PAW results. The bulk and structural properties of the calculated structures were compared to different experimental and calculated works.

Keywords: DFT, exchange-correlation functional, LDA, GGA, pseudopotential, PAW, VASP, PHON, phonon dispersion

Procedia PDF Downloads 486
1600 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures

Authors: WooYoung Jung, V. Sim

Abstract:

This paper presents numerical analysis in terms of buckling resistance strength of polymer matrix composite (PMC) infill panels system under the influence of temperature on the foam core. Failure mode under in-plane compression is investigated by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its Young's Modulus under the thermal influence. Variation of temperature is considered in static cases and only applied to core. Indeed, it is shown that the effect of temperature on the panel system mechanical properties is significance. Moreover, the variations of temperature result in the decrements of the system strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Hence, by comparing difference type of core material, the variation can be reducing.

Keywords: buckling, contact length, foam core, temperature dependent

Procedia PDF Downloads 298
1599 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems

Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair

Abstract:

Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.

Keywords: breeding blanket, corrosion protection, coating, plasma spray

Procedia PDF Downloads 309
1598 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia

Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak

Abstract:

Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.

Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification

Procedia PDF Downloads 78
1597 Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells

Authors: Zakaria Ahmed, Khaled Charradi, Sherif M. A. S. Keshk, Radhouane Chtourou

Abstract:

Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes.

Keywords: SPEEK, sepiolite clay, LDH clay, proton exchange membrane

Procedia PDF Downloads 123
1596 Effect of Bulk Density and Fiber Blend Content of Nonwoven Textiles on Flammability Properties

Authors: Klara Masnicova, Jiri Chaloupek

Abstract:

Flammability plays an important role in applications such as thermal and acoustic insulation and other technical nonwoven textiles. The study was conducted in an attempt to investigate the flammability behavior of nonwoven textiles in relation to their structural and material characteristics, with emphasis given to the blending ratios of flammable and non-flammable fibers or fibers with reduced flammability. Nonwoven structures made of blends of viscose/oxidized polyacrylonitrile (VS/oxidized PAN fibers and polyethylene terephthalate/oxidized polyacrylonitrile (PET/oxidized PAN) fibers in several bulk densities are evaluated. The VS/oxidized PAN blend is model material. The flammability was studied using a cone calorimeter. Reaction to fire was observed using the small flame test method. Interestingly, the results show some of the blending ratios do not react to the heat in linear response to bulk density. This outcome can have a huge impact on future product development in fire safety and for the general understanding of flammability behavior of nonwovens made of staple fibers.

Keywords: bulk density, cone calorimetry, flammability, nonwoven textiles

Procedia PDF Downloads 308
1595 Numerical Method of Heat Transfer in Fin Profiles

Authors: Beghdadi Lotfi, Belkacem Abdellah

Abstract:

In this work, a numerical method is proposed in order to solve the thermal performance problems of heat transfer of fins surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.

Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry

Procedia PDF Downloads 406
1594 Development of Pre-Mitigation Measures and Its Impact on Life-Cycle Cost of Facilities: Indian Scenario

Authors: Mahima Shrivastava, Soumya Kar, B. Swetha Malika, Lalu Saheb, M. Muthu Kumar, P. V. Ponambala Moorthi

Abstract:

Natural hazards and manmade destruction causes both economic and societal losses. Generalized pre-mitigation strategies introduced and adopted for prevention of disaster all over the world are capable of augmenting the resiliency and optimizing the life-cycle cost of facilities. In countries like India where varied topographical feature exists requires location specific mitigation measures and strategies to be followed for better enhancement by event-driven and code-driven approaches. Present state of vindication measures followed and adopted, lags dominance in accomplishing the required development. In addition, serious concern and debate over climate change plays a vital role in enhancing the need and requirement for the development of time bound adaptive mitigation measures. For the development of long-term sustainable policies incorporation of future climatic variation is inevitable. This will further assist in assessing the impact brought about by the climate change on life-cycle cost of facilities. This paper develops more definite region specific and time bound pre-mitigation measures, by reviewing the present state of mitigation measures in India and all over the world for improving life-cycle cost of facilities. For the development of region specific adoptive measures, Indian regions were divided based on multiple-calamity prone regions and geo-referencing tools were used to incorporate the effect of climate changes on life-cycle cost assessment. This study puts forward significant effort in establishing sustainable policies and helps decision makers in planning for pre-mitigation measures for different regions. It will further contribute towards evaluating the life cycle cost of facilities by adopting the developed measures.

Keywords: climate change, geo-referencing tools, life-cycle cost, multiple-calamity prone regions, pre-mitigation strategies, sustainable policies

Procedia PDF Downloads 380
1593 High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells

Authors: Saeed Ghali, Azza Ahmed, Taha Mattar

Abstract:

Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects.

Keywords: SOFCs, Cr-steel, interconnects, oxidation

Procedia PDF Downloads 331
1592 Biosecurity Control Systems in Two Phases for Poultry Farms

Authors: M. Peña Aguilar Juan, E. Nava Galván Claudia, Pastrana Palma Alberto

Abstract:

In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores.

Keywords: innovation, triple helix, poultry farms, biosecurity

Procedia PDF Downloads 284
1591 Influence of the Quality of the Recycled Aggregates in Concrete Pavement

Authors: Viviana Letelier, Ester Tarela, Bianca Lopez, Pedro Muñoz, Giacomo Moriconi

Abstract:

The environmental impact has become a global concern during the last decades. Several alternatives have been proposed and studied to minimize this impact in different areas. The reuse of aggregates from old concretes to manufacture new ones not only can reduce this impact but is also a way to optimize the resource management. The effect of the origin of the reused aggregates from two different origin materials in recycled concrete pavement is studied here. Using the dosing applied by a pavement company, coarse aggregates in the 6.3-25 mm fraction are replaced by recycled aggregates with two different origins: old concrete pavements with similar origin strength to the one of the control concrete, and precast concrete pipes with smaller strengths than the one of the control concrete. The replacement percentages tested are 30%, 40% and 50% in both cases. The compressive strength tests are performed after 7, 14, 28 and 90 curing days, the flexural strength tests and the elasticity modulus tests after 28 and 90 curing days. Results show that the influence of the quality of the origin concrete in the mechanical properties of recycled concretes is not despicable. Concretes with up to a 50% of recycled aggregates from the concrete pavement have similar compressive strengths to the ones of the control concrete and slightly smaller flexural strengths that, however, in all cases exceed the minimum of 5MPa after 28 curing days stablished by the Chilean regulation for pavement concretes. On the other hand, concretes with recycled aggregates from precast concrete pipes show significantly lower compressive strengths after 28 curing days. The differences with the compressive strength of the control concrete increase with the percentage of replacement, reaching a 13% reduction when 50% of the aggregates are replaced. The flexural strength also suffers significant reductions that increase with the percentage of replacement, only obeying the Chilean regulation when 30% of the aggregates are recycled after 28 curing days. Nevertheless, after 90 curing days, all series obey the regulation requirements. Results show, not only the importance of the quality of the origin concrete, but also the significance of the curing days, that may allow the use of less quality recycled material without important strength losses.

Keywords: flexural strength of recycled concrete., mechanical properties of recycled concrete, recycled aggregates, recycled concrete pavements

Procedia PDF Downloads 248
1590 The Study of Sintered Wick Structure of Heat Pipes with Excellent Heat Transfer Capabilities

Authors: Im-Nam Jang, Yong-Sik Ahn

Abstract:

In this study sintered wick was formed in a heat pipe through the process of sintering a mixture of copper powder with particle sizes of 100μm and 200μm, mixed with a pore-forming agent. The heat pipe's thermal resistance, which affects its heat transfer efficiency, is determined during manufacturing according to powder type, thickness of the sintered wick, and filling rate of the working fluid. Heat transfer efficiency was then tested at various inclination angles (0°, 45°, 90°) to evaluate the performance of heat pipes. Regardless of the filling amount and test angle, the 200μm copper powder type exhibited superior heat transfer efficiency compared to the 100μm type. After analyzing heat transfer performance at various filling rates between 20% and 50%, it was determined that the heat pipe's optimal heat transfer capability occurred at a working fluid filling rate of 30%. The width of the wick was directly related to the heat transfer performance.

Keywords: heat pipe, heat transfer performance, effective pore size, capillary force, sintered wick

Procedia PDF Downloads 64
1589 Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle

Authors: Mousa Meratizaman, Sina Monadizadeh, Majid Amidpour

Abstract:

One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance.

Keywords: solid oxide fuel cell, thermodynamic simulation, multi effect desalination, gas turbine hybrid cycle

Procedia PDF Downloads 379
1588 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting

Procedia PDF Downloads 286
1587 Robson System Analysis in Kyiv Perinatal Centre

Authors: Victoria Bila, Iryna Ventskivska, Oleksandra Zahorodnia

Abstract:

The goal of the study: To study the distribution of patients of the Kiyv Perinatal Center according to the Robson system and compare it with world data. Materials and methods: a comparison of the distribution of patients of Kiyv Perinatal center according to the Robson system for 2 periods - the first quarter of 2019 and 2020. For each group, 3 indicators were analyzed - the share of this group in the overall structure of patients of the Perinatal Center for the reporting period, the frequency of abdominal delivery in this group, as well as the contribution of this group to the total number of abdominal delivery. Obtained data were compared with those of the WHO in the guidelines for the implementation of the Robson system in 2017. Results and its discussion: The distribution of patients of the Perinatal Center into groups in the Robson classification is not much different from that recommended by the author. So, among all women, patients of group 1 dominate; this indicator does not change in dynamics. A slight increase in the share of group 2 (6.7% in 2019 and 9.3% - 2020) was due to an increase in the number of labor induction. At the same time, the number of patients of groups 1 and 2 in the Perinatal Center is greater than in the world population, which is determined by the hospitalization of primiparous women with reproductive losses in the past. The Perinatal Center is distinguished from the world population and the proportion of women of group 5 - it was 5.4%, in the world - 7.6%. The frequency of caesarean section in the Perinatal Center is within limits typical for most countries (20.5-20.8%). Moreover, the dominant groups in the structure of caesarean sections are group 5 (21-23.3%) and group 2 (21.9-22.9%), which are the reserve for reducing the number of abdominal delivery. In group 2, certain results have already been achieved in this matter - the frequency of cesarean section in 2019 here amounted to 67.8%, in the first quarter of 2020 - 51.6%. This happened due to a change in the leading method of induction of labor. Thus, the Robson system is a convenient and affordable tool for assessing the structure of caesarean sections. The analysis showed that, in general, the structure of caesarean sections in the Perinatal Center is close to world data, and the identified deviations have explanations related to the specialization of the Center.

Keywords: cesarian section, Robson system, Kyiv Perinatal Center, labor induction

Procedia PDF Downloads 137
1586 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.

Keywords: soil degradation, land consolidation, soil erosion, soil conservation

Procedia PDF Downloads 356
1585 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 473
1584 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.

Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling

Procedia PDF Downloads 180
1583 Malaysian's Shale Formation Characterizations: Geochemical Properties, Mineralogy, Adsorption and Desorption Behavior

Authors: Ahmed M. Al-Mutarreb, Shiferaw R. Jufar

Abstract:

Global shale gas resource assessment is still in its preliminary stage in most of the countries including the development of shale gas reservoirs in Malaysia. This project presents the main geochemical and mineral characteristics of few Malaysian’s shale samples which contribute on evaluating shale gas reserve world resource evaluations. Three shale samples from the western part of Peninsular Malaysia (Batu-Caja, Kuala Lumpur, and Johor Baru shale formations) were collected for this study. Total organic carbon wt.%, thermal maturity, kerogen type, mineralogy and adsorption/desorption characteristics are measured at Universiti Teknologi PETRONAS laboratories. Two samples show good potential in TOC results exhibited > 2wt.% exceeding the minimum values of Shale gas potential, while the third revealed < 1.5wt. Mineralogical compositions for the three samples are within the acceptable range percentage% of quartz and clays compared to shale plays in USA. This research’s results are promising and recommend to continue exploring and assessing unconventional shale gas reserves values in these areas.

Keywords: shale gas characterizations, geochemical properties, Malaysia, shale gas reserve

Procedia PDF Downloads 326
1582 The Interactions between Phosphorus Leaching and Lime Application in Undisturbed Soil Columns with Different Soil Textures

Authors: Faezeh Eslamian, Zhiming Qi, Michael J. Tate

Abstract:

Phosphorus losses from agricultural fields through leaching is one of the main contributors to eutrophication of lakes in Quebec as well as North America. The main objective of this study is to evaluate the application of high calcium hydrated lime as a soil amendment in reducing the subsurface transport of phosphorus to water bodies by studying the interactions between phosphorus leaching and lime application in three common agricultural soil textures (sandy loam, loam and clay loam) in Quebec. For this purpose, 6 intact soil columns of 10 cm diameter and 20 cm deep were taken from each of the three different soil textured agricultural fields. Lime (high calcium hydrated lime) was applied to the top 5 cm of half of the intact soil columns while the rest were left as controls. The columns were leached with artificial rainwater in-consecutively at a rate of 3 mm h-1 over a 90-day period. The total amount of water added was equal to the average total rainfall of the region in fall. The leachate samples were collected daily and analyzed for dissolved reactive phosphorus, total dissolved phosphorus, total phosphorus, pH, electrical conductivity, calcium, magnesium, potassium and iron. The results showed that lime was able to significantly reduce dissolved reactive phosphorus concentrations in the leachates by 70 and 40 percent in sandy loam and loam soil columns, respectively, while phosphorus concentration in the clay loam soil leachates were increased by 40 percent. The calcium in lime has P-binding capabilities. Soil chemical properties in sandy and loamy soils can affect phosphorus leaching, whereas, transport mechanisms in clay soils with macropores dominate phosphorus leaching behaviors. The presence of preferential pathways and cracks in the clay soil columns has led to a quick transport of phosphorus through the soil and the less contact time with the soil matrix, therefore, causing less opportunity for P sorption and larger P release. Application of lime to agricultural fields can be considered as a promising measure in mitigating phosphorus loss from sandy loam and loam soils.

Keywords: leaching, lime, phosphorus, soil texture

Procedia PDF Downloads 176
1581 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: flexible edge seal, stress, support pillar, vacuum glazing

Procedia PDF Downloads 234
1580 Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre

Authors: Gloria James, S. K. Nema, T. S. Anantha Singh, P. Vadivel Murugan

Abstract:

The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres.

Keywords: plasma, gasification, syngas, tyre waste

Procedia PDF Downloads 182
1579 An Experimental Study on Intellectual Concentration Influenced by Indoor Airflow

Authors: Kyoko Ito, Shinya Furuta, Daisuke Kamihigashi, Kimi Ueda, Hirotake Ishii, Hiroshi Shimoda, Fumiaki Obayashi, Kazuhiro Taniguchi

Abstract:

In order to improve intellectual concentration, few studies have verified the effect of indoor airflow among the thermal environment conditions, and the differences of the season in effects have not been studied. In this study, in order to investigate the influence of the airflow in winter on the intellectual concentration, an evaluation experiment was conducted. In the previous study, an effective airflow in summer was proposed and the improvement of intellectual concentration by evaluation experiment was confirmed. Therefore, an airflow profile in winter was proposed with reference to the airflow profile in summer. The airflows are a combination of a simulative airflow and mild airflow. An experiment has been conducted to investigate the influence of a room airflow in winter on intellectual concentration. As a result of comparison with no airflow condition, no significant difference was found. Based on the results, it is a future task to ask preliminary preference in advance and to establish a mechanism that can provide controllable airflow for each individual, taking into account the preference for airflow to be different for each individual.

Keywords: concentration time ratio, CTR, indoor airflow, intellectual concentration, workplace environment

Procedia PDF Downloads 235
1578 Prevalence, Associated Risk Factors, and Bacterial Pathogens in Dairy Camels: A Review

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdelatif, Rabah Siham

Abstract:

Camels play a vital role as multipurpose animals, providing milk meat and serving as a means of transportation. They serve as a financial reserve for pastoralists and hold significant cultural and social value. Camel milk, known for its exceptional nutritional properties, is considered a valuable substitute for human milk. However, udder infections, particularly mastitis, pose significant challenges to camel farming. Clinical and subclinical mastitis can lead to substantial economic losses. Mastitis, especially the subclinical form, is a persistent and prevalent condition affecting milk hygiene and quality in dairy camels. This review offers insights into the prevalence and risk factors associated with subclinical mastitis in camels. The prevalence of subclinical mastitis in dairy camels was found to range from 9.28% to 87.78%. Major pathogens responsible for camel mastitis include Staphylococcus aureus, Coagulase-negative Staphylococcus, Streptococcus agalactiae, Streptococcus dysgalactiae, Escherichia coli, Micrococcus spp, Pasteurella haemolytica and Corynebacterium spp. The study outlines key risk factors contributing to camel mastitis, emphasizing factors such as severe tick infestation, age, stage of lactation, parity, body condition score, skin lesion on the teats or udders, anti-suckling devices, previous history of the udder, conformation of the udder, breed, unhygienic milking practices, production system, amongst others have been reported to be important in the prevalence of subclinical mastitis. This comprehensive overview provides valuable insights into the multifaceted aspects of camel mastitis, encompassing prevalent bacterial pathogens and diverse risk factors. The findings underscore the importance of holistic management practices, emphasizing hygiene, health monitoring, and targeted interventions to ensure the well-being and productivity of camels in various agro-pastoral contexts.

Keywords: bacterial pathogens, camel, mastitis, risk factors

Procedia PDF Downloads 82
1577 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 151
1576 Economic Cost of Malaria: A Threat to Household Income in Nigeria

Authors: Nsikan Affiah, Kayode Osungbade, Williams Uzoma

Abstract:

Malaria remains one of the major killers of humans worldwide, threatening the lives of more than one-third of the world’s population. Some people refers it to; a disease of poverty because it contributes towards national poverty through its impact on foreign direct investment, tourism, labour productivity, and trade. At the micro level, it may cause poverty through spending on health care, income losses, and premature deaths. Unfortunately, malaria is a disease that affects both low-income household and its high-income counterpart, but low-income households are still at greater risk because significant part of the available monthly income is dedicated to various preventive and treatment measures. The objective of this study is to estimate direct and indirect cost of malaria treatment in households in a section of South-South Region (Akwa Ibom State) of Nigeria. A cross-sectional study of Six Hundred and Forty (640) heads of households or any adult representative of households in three local government areas of Akwa Ibom State, Nigeria from May 1-31, 2015 were ascertained through interviewer-administered questionnaire adapted from Nigerian Malaria Indicator Survey Report. The clustering technique was used to select 640 households with the help of Primary Health Care (PHC) house numbering system. Using exchange rate of 197 Naira/USD, result shows that direct cost of malaria treatment was 8,894.44 USD while the indirect cost of malaria treatment was 11,012.81 USD. Total cost of treatment made up of 44.7% direct cost and 55.3% indirect cost, with average direct cost of malaria treatment per household estimated at 20.6 USD and the average indirect cost of treatment per household estimated at 25.1 USD. Average total cost for each episode (888) of malaria was estimated at 22.4 USD. While at household level, the average total cost was estimated at 45.5 USD. From the average total cost, low-income households would spend 36% of monthly household income on treating malaria and the impact could be said to be catastrophic, compared to high-income households where only 1.2% of monthly household income is spent on malaria treatment. It could be concluded that the cost of malaria treatment is well beyond the means of households and given the reality of repeated bouts of malaria and its contribution to the impoverishment of households, there is a need for urgent action.

Keywords: direct cost, indirect cost, low income households, malaria

Procedia PDF Downloads 258
1575 Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems

Authors: Ziwei Huang, Jian Ge, Jie Shen, Jiantao Weng

Abstract:

Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality.

Keywords: post-occupancy evaluation, green office building, air-conditioning systems, ground source heat pump system

Procedia PDF Downloads 196
1574 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach

Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert

Abstract:

Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.

Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems

Procedia PDF Downloads 150
1573 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 363