Search results for: teacher learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7756

Search results for: teacher learning

4786 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 201
4785 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study

Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon

Abstract:

This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.

Keywords: bureaucracy, organizational learning, organizational change, E and O theory

Procedia PDF Downloads 434
4784 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles

Authors: Paulo Sérgio Ribeiro de Araújo Bogas

Abstract:

Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.

Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing

Procedia PDF Downloads 83
4783 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones

Authors: Vineesh Amin, Ananya Agrawal

Abstract:

In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.

Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling

Procedia PDF Downloads 209
4782 Developing Second Language Learners’ Reading Comprehension through Content and Language Integrated Learning

Authors: Kaine Gulozer

Abstract:

A strong methodological conception in the practice of teaching, content, and language integrated learning (CLIL) is adapted to boost efficiency in the second language (L2) instruction with a range of proficiency levels. This study aims to investigate whether the incorporation of two different mediums of meaningful CLIL reading activities (in-school and out-of-school settings) influence L2 students’ development of comprehension skills differently. CLIL based instructional methodology was adopted and total of 50 preparatory year students (N=50, 25 students for each proficiency level) from two distinct language proficiency learners (elementary and intermediate) majoring in engineering faculties were recruited for the study. Both qualitative and quantitative methods through a post-test design were adopted. Data were collected through a questionnaire, a reading comprehension test and a semi-structured interview addressed to the two proficiency groups. The results show that both settings in relation to the development of reading comprehension are beneficial, whereas the impact of the reading activities conducted in school settings was higher at the elementary language level of students than that of the one conducted out-of-class settings based on the reported interview results. This study suggests that the incorporation of meaningful CLIL reading activities in both settings for both proficiency levels could create students’ self-awareness of their language learning process and the sense of ownership in successful improvements of field-specific reading comprehension. Further potential suggestions and implications of the study were discussed.

Keywords: content and language integrated learning, in-school setting, language proficiency, out-of-school setting, reading comprehension

Procedia PDF Downloads 146
4781 Opinions of Pre-Service Teachers on Online Language Teaching: COVID-19 Pandemic Perspective

Authors: Neha J. Nandaniya

Abstract:

In the present research paper researcher put focuses on the opinions of pre-service teachers have been taken regarding online language teaching, which was held during the COVID-19 pandemic and is still going on. The researcher developed a three-point rating scale in Google Forms to find out the views of trainees on online language learning, in which 167 B. Ed. trainees having language content and method gave their responses. After scoring the responses obtained by the investigator, the chi-square value was calculated, and the findings were concluded. The major finding of the study is language learning is not as effective as offline teaching mode.

Keywords: online language teaching, ICT competency, B. Ed. trainees, COVID-19 pandemic

Procedia PDF Downloads 84
4780 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 249
4779 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 101
4778 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 150
4777 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 84
4776 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 90
4775 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'

Authors: Kevin R. Wilson, Roger Mantie

Abstract:

Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.

Keywords: community arts-based learning, participatory education, pedagogy, service learning

Procedia PDF Downloads 401
4774 The Learning Experience of Two Students with Visual Impairments in the EFL Courses: A Case Study

Authors: May Ling González-Ruiz, Ana Cristina Solís-Solís

Abstract:

Everyday more people can thrive towards the dream of pursuing a university diploma. This can be more attainable for some than for others who may face different types of limitations. Even though not all limitations come from within the individual but most of the times they come from without it may include the environment, the support of the person’s family, the school – its infrastructure, administrative procedures, and attitudes. This is a qualitative type of research that is developed through a case study. It is based on the experiences of two students who are visually impaired and who have attended a public university in Costa Rica. We enquire about the experiences of these two students in the English as a Foreign Language courses at the university scenario. An in-depth analysis of their lived experiences is presented. Their values, attitudes, and expectations serve as the guiding elements for this research. Findings are presented in light of the Social Justice Approach to inclusive education. Some of the most salient aspects found have to do with the attitudes the students used to face challenges; others point at those elements that may have hindered the learning experience of the persons observed and to those that encouraged them to continue their journey and successfully achieve a diploma.

Keywords: inclusion, case study, visually impaired student, learning experience, social justice approach

Procedia PDF Downloads 138
4773 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 79
4772 Attitudes of Secondary School Students towards Biology in Birnin Kebbi Metropolis, Kebbi State, Nigeria

Authors: I. A. Libata

Abstract:

The present study was carried out to determine the attitudes of Secondary School Students towards Biology in Birnin Kebbi metropolis. The population of the study is 2680 SS 2 Secondary School Students in Birnin Kebbi metropolis. Proportionate random sampling was used in selecting the samples. Oppinnionnaire was the only instrument used in the study. The instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students. The results also revealed that there was significant difference between the attitude of science and art students. The results also revealed that there was significant difference between the attitude of public and private school students. The study also reveals that majority of students in Birnin Kebbi Metropolis have positive attitudes towards biology. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning Biology.

Keywords: attitudes, students, Birnin-Kebbi, metropolis

Procedia PDF Downloads 402
4771 Early Prediction of Disposable Addresses in Ethereum Blockchain

Authors: Ahmad Saleem

Abstract:

Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.

Keywords: blockchain, Ethereum, cryptocurrency, prediction

Procedia PDF Downloads 97
4770 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills

Authors: Inkeri Jaaskelainen

Abstract:

The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.

Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being

Procedia PDF Downloads 133
4769 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 145
4768 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 225
4767 Game On: Unlocking the Educational Potential of Games and Entertainment in Online Learning

Authors: Colleen Cleveland, W. Adam Baldowski

Abstract:

In the dynamic realm of online education, the integration of games and entertainment has emerged as a powerful strategy to captivate learners, drive active participation, and cultivate meaningful learning experiences. This abstract presents an overview of the upcoming conference, "Game On," dedicated to exploring the transformative impact of gamification, interactive simulations, and multimedia content in the digital learning landscape. Introduction: The conference aims to blur the traditional boundaries between education and entertainment, inspiring learners of diverse ages and backgrounds to actively engage in their online learning journeys. By leveraging the captivating elements of games and entertainment, educators can enhance motivation, retention, and deep understanding among virtual classroom participants. Conference Highlights: Commencing with an exploration of theoretical foundations drawing from educational psychology, instructional design, and the latest pedagogical research, participants will gain valuable insights into the ways gamified elements elevate the quality of online education. Attendees can expect interactive sessions, workshops, and case studies showcasing best practices and innovative strategies, including game-based assessments and virtual reality simulations. Inclusivity and Diversity: The conference places a strong emphasis on inclusivity, accessibility, and diversity in the integration of games and entertainment for educational purposes. Discussions will revolve around accommodating diverse learning styles, overcoming potential challenges, and ensuring equitable access to engaging educational content for all learners. Educational Transformation: Educators, instructional designers, and e-learning professionals attending "Game On" will acquire practical techniques to elevate the quality of their online courses. The conference promises a stimulating and informative exploration of blending education with entertainment, unlocking the untapped potential of games and entertainment in online education. Conclusion: "Game On" invites participants to embark on a journey that transforms online education by harnessing the power of entertainment. This event promises to be a cornerstone in the evolution of virtual learning, offering valuable insights for those seeking to create a more engaging and effective online educational experience. Join us as we explore new horizons, pushing the boundaries of online education through the fusion of games and entertainment.

Keywords: online education, games, entertainment, psychology, therapy, pop culture

Procedia PDF Downloads 51
4766 The Roles of Organizational Culture, Participative Leadership, Employee Satisfaction and Work Motivation Towards Organizational Capabilities

Authors: Inezia Aurelia, Soebowo Musa

Abstract:

Many firms still fail to develop organizational agility. There are more than 40% of organizations think that they are low/not agile in facing market change. Organizational culture plays an important role in developing the organizations to be adaptive in order to manage the VUCA effectively. This study examines the relationships of organizational culture towards participative leadership, employee satisfaction, employee work motivation, organizational learning, and absorptive capacity in developing organizational agility in managing the VUCA environment. 263 employees located from international chemical-based company offices across the globe who have worked for more than three years were the respondents in this study. This study showed that organizational clan culture promotes the development of participative leadership, which it has an empowering effect on people in the organization resulting in employee satisfaction. The study also confirms the role of organizational culture in creating organizational behavior within the organization that fosters organizational learning, absorptive capacity, and organizational agility, while the study also found that the relationship between participative leadership and employee work motivation is not significant.

Keywords: absorptive capacity, employee satisfaction, employee work motivation, organizational agility, organizational culture, organizational learning, participative leadership

Procedia PDF Downloads 123
4765 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 84
4764 Understanding Relationships between Listening to Music and Pronunciation Learning: An Investigation Based upon Japanese EFL Learners' Self-Evaluation

Authors: Hirokatsu Kawashima

Abstract:

In an attempt to elucidate relationships between listening to music and pronunciation learning, a classroom-based investigation was conducted with Japanese EFL learners (n=45). The subjects were instructed to listen to English songs they liked on YouTube, especially paying attention to phonologically similar vowel and consonant minimal pair words (e.g., live and leave). This kind of activity, which included taking notes, was regularly carried out in the classroom, and the same kind of task was given to the subjects as homework in order to reinforce the in-class activity. The duration of these activities was eight weeks, after which the program was evaluated on a 9-point scale (1: the lowest and 9: the highest) by learners’ self-evaluation. The main questions for this evaluation included 1) how good the learners had been at pronouncing vowel and consonant minimal pair words originally, 2) how often they had listened to songs good for pronouncing vowel and consonant minimal pair words, 3) how frequently they had moved their mouths to vowel and consonant minimal pair words of English songs, and 4) how much they thought the program would support and enhance their pronunciation learning of phonologically similar vowel and consonant minimal pair words. It has been found, for example, A) that the evaluation of this program is by no means low (Mean: 6.51 and SD: 1.23), suggesting that listening to music may support and enhance pronunciation learning, and B) that listening to consonant minimal pair words in English songs and moving the mouth to them are more related to the program’s evaluation (r =.69, p=.00 and r =.55, p=.00, respectively) than listening to vowel minimal pair words in English songs and moving the mouth to them (r =.45, p=.00 and r =.39, p=.01, respectively).

Keywords: minimal pair, music, pronunciation, song

Procedia PDF Downloads 319
4763 Communicative Language Teaching in English as a Foreign Language Classrooms: An Overview of Secondary Schools in Bangladesh

Authors: Saifunnahar

Abstract:

As a former English colony, the relationship of Bangladesh with the English language goes a long way back. English is taught as a compulsory subject in Bangladesh from an early age starting from grade 1 and continuing through the 12th, yet, students are not competent enough to communicate in English proficiently. To improve students’ English language competency, the Bangladesh Ministry of Education introduced communicative language teaching (CLT) methods in English classrooms in the 1990s. It has been decades since this effort was taken, but the students’ level of proficiency is still not satisfactory. The main reason behind this failure is that CLT-based teaching-learning methods have not been effectively implemented. Very little research has been conducted to address the issues English as a foreign language (EFL) classrooms are facing to carry out CLT methodologies in secondary schools (grades 6 to 10) in Bangladesh. Though the secondary level is crucial for students’ language learning and retention, EFL classrooms are marked with various issues that make teaching-learning harder for teachers and students. This study provides an overview of the status of CLT in EFL classrooms and the reasons behind failing to implement CLT in secondary schools in Bangladesh through an analysis of the qualitative data collected from different literature. Based on the findings, effective approaches have been recommended to employ CLT in EFL classrooms.

Keywords: Bangladesh, communicative language teaching, English as a foreign language, secondary schools, pedagogy

Procedia PDF Downloads 155
4762 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
4761 Teachers' Technological Pedagogical and Content Knowledge and Technology Integration in Teaching and Learning in a Small Island Developing State: A Concept Paper

Authors: Aminath Waseela, Vinesh Chandra, Shaun Nykvist,

Abstract:

The success of technology integration initiatives hinges on the knowledge and skills of teachers to effectively integrate technology in classroom teaching. Consequently, gaining an understanding of teachers' technology knowledge and its integration can provide useful insights on strategies that can be adopted to enhance teaching and learning, especially in developing country contexts where research is scant. This paper extends existing knowledge on teachers' use of technology by developing a conceptual framework that recognises how three key types of knowledge; content, pedagogy, technology, and their integration are at the crux of teachers' technology use while at the same time is amenable to empirical studies. Although the aforementioned knowledge is important for effective use of technology that can result in enhanced student engagement, literature on how this knowledge leads to effective technology use and enhanced student engagement is limited. Thus, this theoretical paper proposes a framework to explore teachers' knowledge through the lens of the Technological Pedagogical and Content Knowledge (TPACK); the integration of technology in classroom teaching through the Substitution Augmentation Modification and Redefinition (SAMR) model and how this affects students' learning through the Bloom's Digital Taxonomy (BDT) lens. Studies using this framework could inform the design of professional development to support teachers to develop skills for effective use of available technology that can enhance student learning engagement.

Keywords: information and communication technology, ICT, in-service training, small island developing states, SIDS, student engagement, technology integration, technology professional development training, technological pedagogical and content knowledge, TPACK

Procedia PDF Downloads 147
4760 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction

Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong

Abstract:

The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.

Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm

Procedia PDF Downloads 149
4759 Attitudes, Experiences and Good Practices of Writing Online Course Material: A Case Study in Makerere University

Authors: Ruth Nsibirano

Abstract:

Online mode of delivery in higher institutions of learning, popularly known in some circles as e-Learning or distance education is a new phenomenon that is steadily taking root in African universities but specifically at Makerere University. For slightly over a decade, the Department of Open and Distance Learning has been offering the first generation mode of distance education. In this, learning and teaching experiences were based on the use of hard copy materials circulated through postal services in a rather correspondence mode. There were more challenges to this including high dropout rates, limited support to the learners and sustainability issues. Fortunately, the Department was supported by the Norwegian Government through a NORHED grant to “leapfrog” to the fifth generation of distance education that makes more use of educational technologies and tools. The capacity of faculty staff was gradually enhanced through a series of training to handle the upgraded structure of fifth generation distance education. The trained staff was then tasked to develop modules befitting an online delivery mode, for use on the program. This paper will present attitudes, experiences of the course writers with a view of sharing the good practices that enabled them leap from e-faculty trainees to distinct online course writers. This perspective will hopefully serve as building blocks to enhance the capacity of other upcoming distance education programs in low capacity universities and also promote the uptake of e-Education on the continent and beyond. Methodologically the findings were collected through individual interviews with the 30 course writers. In addition, semi structured questionnaires were designed to collect data on the profile, challenges and lessons from the writers. Findings show that the attitudes of course writers on project supported activities are so much tagged to the returns from their committed efforts. In conclusion, therefore, it is strategically useful to assess and selectively choose which individual to nominate for involvement at the initial stages.

Keywords: distance education, online course content, staff attitudes, best practices in online learning

Procedia PDF Downloads 253
4758 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 130
4757 A Meta Analysis of the Recent Work-Related Research of BEC-Teachers in the Graduate Programs of the Selected HEIs in Region I and CAR

Authors: Sherelle Lou Sumera Icutan, Sheila P. Cayabyab, Mary Jane Laruan, Paulo V. Cenas, Agustina R. Tactay

Abstract:

This study critically analyzed the recent theses and dissertations of the Basic Education Curriculum (BEC) teachers who finished their graduate programs in selected higher educational institutions in Region I and CAR to be able to come up with a unified result from the varied results of the analyzed research works. All theses and dissertations completed by the educators/teachers/school personnel in the secondary and elementary public and private schools in Region 1 and CAR from AY 2003–2004 to AY 2007–2008 were classified first–as to work or non-work related; second–as to the different aspects of the curriculum: implementation, content, instructional materials, assessment instruments, learning, teaching, and others; third–as to being eligible for meta-analysis or not. Only studies found eligible for meta-analysis were subjected to the procedure. Aside from documentary analysis, the statistical treatments used in meta-analysis include the standardized effect size, Pearson’s correlation (r), the chi-square test of homogeneity and the inverse of the Fisher transformation. This study found out that the BEC-teachers usually probe on work-related researchers with topics that are focused on the learning performances of the students and on factors related to teaching. The development of instructional materials and assessment of implemented programs are also equally explored. However, there are only few researches on content and assessment instrument. Research findings on the areas of learning and teaching are the only aspects that are meta-analyzable. The research findings across studies in Region I and CAR of BEC teachers that focused on similar variables correlated to teaching do not vary significantly. On the contrary, research findings across studies in Region I and CAR that focused on variables correlated to learning performance significantly vary. Within each region, variations on the findings of research works related to learning performance that considered similar variables still exist. The combined finding on the effect size or relationship of the variables that are correlated to learning performance are low which means that effect is small but definite while the combined findings on the relationship of the variables correlated to teaching are slight or almost negligible.

Keywords: meta-analysis, BEC teachers, work-related research,

Procedia PDF Downloads 426