Search results for: nano fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3198

Search results for: nano fluid

228 Exceptional Cost and Time Optimization with Successful Leak Repair and Restoration of Oil Production: West Kuwait Case Study

Authors: Nasser Al-Azmi, Al-Sabea Salem, Abu-Eida Abdullah, Milan Patra, Mohamed Elyas, Daniel Freile, Larisa Tagarieva

Abstract:

Well intervention was done along with Production Logging Tools (PLT) to detect sources of water, and to check well integrity for two West Kuwait oil wells started to produce 100 % water. For the first well, to detect the source of water, PLT was performed to check the perforations, no production observed from the bottom two perforation intervals, and an intake of water was observed from the top most perforation. Then a decision was taken to extend the PLT survey from tag depth to the Y-tool. For the second well, the aim was to detect the source of water and if there was a leak in the 7’’liner in front of the upper zones. Data could not be recorded in flowing conditions due to the casing deformation at almost 8300 ft. For the first well from the interpretation of PLT and well integrity data, there was a hole in the 9 5/8'' casing from 8468 ft to 8494 ft producing almost the majority of water, which is 2478 bbl/d. The upper perforation from 10812 ft to 10854 ft was taking 534 stb/d. For the second well, there was a hole in the 7’’liner from 8303 ft MD to 8324 ft MD producing 8334.0 stb/d of water with an intake zone from10322.9-10380.8 ft MD taking the whole fluid. To restore the oil production, W/O rig was mobilized to prevent dump flooding, and during the W/O, the leaking interval was confirmed for both wells. The leakage was cement squeezed and tested at 900-psi positive pressure and 500-psi drawdown pressure. The cement squeeze job was successful. After W/O, the wells kept producing for cleaning, and eventually, the WC reduced to 0%. Regular PLT and well integrity logs are required to study well performance, and well integrity issues, proper cement behind casing is essential to well longevity and well integrity, and the presence of the Y-tool is essential as monitoring of well parameters and ESP to facilitate well intervention tasks. Cost and time optimization in oil and gas and especially during rig operations is crucial. PLT data quality and the accuracy of the interpretations contributed a lot to identify the leakage interval accurately and, in turn, saved a lot of time and reduced the repair cost with almost 35 to 45 %. The added value here was more related to the cost reduction and effective and quick proper decision making based on the economic environment.

Keywords: leak, water shut-off, cement, water leak

Procedia PDF Downloads 97
227 A Single-Use Endoscopy System for Identification of Abnormalities in the Distal Oesophagus of Individuals with Chronic Reflux

Authors: Nafiseh Mirabdolhosseini, Jerry Zhou, Vincent Ho

Abstract:

The dramatic global rise in acid reflux has also led to oesophageal adenocarcinoma (OAC) becoming the fastest-growing cancer in developed countries. While gastroscopy with biopsy is used to diagnose OAC patients, this labour-intensive and expensive process is not suitable for population screening. This study aims to design, develop, and implement a minimally invasive system to capture optical data of the distal oesophagus for rapid screening of potential abnormalities. To develop the system and understand user requirements, a user-centric approach was employed by utilising co-design strategies. Target users’ segments were identified, and 38 patients and 14 health providers were interviewed. Next, the technical requirements were developed based on consultations with the industry. A minimally invasive optical system was designed and developed considering patient comfort. This system consists of the sensing catheter, controller unit, and analysis program. Its procedure only takes 10 minutes to perform and does not require cleaning afterward since it has a single-use catheter. A prototype system was evaluated for safety and efficacy for both laboratory and clinical performance. This prototype performed successfully when submerged in simulated gastric fluid without showing evidence of erosion after 24 hours. The system effectively recorded a video of the mid-distal oesophagus of a healthy volunteer (34-year-old male). The recorded images were used to develop an automated program to identify abnormalities in the distal oesophagus. Further data from a larger clinical study will be used to train the automated program. This system allows for quick visual assessment of the lower oesophagus in primary care settings and can serve as a screening tool for oesophageal adenocarcinoma. In addition, this system is able to be coupled with 24hr ambulatory pH monitoring to better correlate oesophageal physiological changes with reflux symptoms. It also can provide additional information on lower oesophageal sphincter functions such as opening times and bolus retention.

Keywords: endoscopy, MedTech, oesophageal adenocarcinoma, optical system, screening tool

Procedia PDF Downloads 64
226 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin

Abstract:

This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine

Procedia PDF Downloads 317
225 LTE Modelling of a DC Arc Ignition on Cold Electrodes

Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov

Abstract:

The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.

Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes

Procedia PDF Downloads 93
224 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 174
223 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 83
222 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7

Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro

Abstract:

The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.

Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis

Procedia PDF Downloads 423
221 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 88
220 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation

Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira

Abstract:

The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.

Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy

Procedia PDF Downloads 106
219 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 135
218 A PHREEQC Reactive Transport Simulation for Simply Determining Scaling during Desalination

Authors: Andrew Freiburger, Sergi Molins

Abstract:

Freshwater is a vital resource; yet, the supply of clean freshwater is diminishing as the consequence of melting snow and ice from global warming, pollution from industry, and an increasing demand from human population growth. The unsustainable trajectory of diminishing water resources is projected to jeopardize water security for billions of people in the 21st century. Membrane desalination technologies may resolve the growing discrepancy between supply and demand by filtering arbitrary feed water into a fraction of renewable, clean water and a fraction of highly concentrated brine. The leading hindrance of membrane desalination is fouling, whereby the highly concentrated brine solution encourages micro-organismal colonization and/or the precipitation of occlusive minerals (i.e. scale) upon the membrane surface. Thus, an understanding of brine formation is necessary to mitigate membrane fouling and to develop efficacious desalination technologies that can bolster the supply of available freshwater. This study presents a reactive transport simulation of brine formation and scale deposition during reverse osmosis (RO) desalination. The simulation conceptually represents the RO module as a one-dimensional domain, where feed water directionally enters the domain with a prescribed fluid velocity and is iteratively concentrated in the immobile layer of a dual porosity model. Geochemical PHREEQC code numerically evaluated the conceptual model with parameters for the BW30-400 RO module and for real water feed sources – e.g. the Red and Mediterranean seas, and produced waters from American oil-wells, based upon peer-review data. The presented simulation is computationally simpler, and hence less resource intensive, than the existent and more rigorous simulations of desalination phenomena, like TOUGHREACT. The end-user may readily prepare input files and execute simulations on a personal computer with open source software. The graphical results of fouling-potential and brine characteristics may therefore be particularly useful as the initial tool for screening candidate feed water sources and/or informing the selection of an RO module.

Keywords: desalination, PHREEQC, reactive transport, scaling

Procedia PDF Downloads 114
217 Advances in Health Risk Assessment of Mycotoxins in Africa

Authors: Wilfred A. Abiaa, Chibundu N. Ezekiel, Benedikt Warth, Michael Sulyok, Paul C. Turner, Rudolf Krska, Paul F. Moundipa

Abstract:

Mycotoxins are a wide range of toxic secondary metabolites of fungi that contaminate various food commodities worldwide especially in sub-Saharan Africa (SSA). Such contamination seriously compromises food safety and quality posing a serious problem for human health as well as to trade and the economy. Their concentrations depend on various factors, such as the commodity itself, climatic conditions, storage conditions, seasonal variances, and processing methods. When humans consume foods contaminated by mycotoxins, they exert toxic effects to their health through various modes of actions. Rural populations in sub-Saharan Africa, are exposed to dietary mycotoxins, but it is supposed that exposure levels and health risks associated with mycotoxins between SSA countries may vary. Dietary exposures and health risk assessment studies have been limited by lack of equipment for the proper assessment of the associated health implications on consumer populations when they eat contaminated agricultural products. As such, mycotoxin research is premature in several SSA nations with product evaluation for mycotoxin loads below/above legislative limits being inadequate. Few nations have health risk assessment reports mainly based on direct quantification of the toxins in foods ('external exposure') and linking food levels with data from food frequency questionnaires. Nonetheless, the assessment of the exposure and health risk to mycotoxins requires more than the traditional approaches. Only a fraction of the mycotoxins in contaminated foods reaches the blood stream and exert toxicity ('internal exposure'). Also, internal exposure is usually smaller than external exposure thus dependence on external exposure alone may induce confounders in risk assessment. Some studies from SSA earlier focused on biomarker analysis mainly on aflatoxins while a few recent studies have concentrated on the multi-biomarker analysis of exposures in urine providing probable associations between observed disease occurrences and dietary mycotoxins levels. As a result, new techniques that could assess the levels of exposures directly in body tissue or fluid, and possibly link them to the disease state of individuals became urgent.

Keywords: mycotoxins, biomarkers, exposure assessment, health risk assessment, sub-Saharan Africa

Procedia PDF Downloads 543
216 Understanding the Processwise Entropy Framework in a Heat-powered Cooling Cycle

Authors: P. R. Chauhan, S. K. Tyagi

Abstract:

Adsorption refrigeration technology offers a sustainable and energy-efficient cooling alternative over traditional refrigeration technologies for meeting the fast-growing cooling demands. With its ability to utilize natural refrigerants, low-grade heat sources, and modular configurations, it has the potential to revolutionize the cooling industry. Despite these benefits, the commercial viability of this technology is hampered by several fundamental limiting constraints, including its large size, low uptake capacity, and poor performance as a result of deficient heat and mass transfer characteristics. The primary cause of adequate heat and mass transfer characteristics and magnitude of exergy loss in various real processes of adsorption cooling system can be assessed by the entropy generation rate analysis, i. e. Second law of Thermodynamics. Therefore, this article presents the second law of thermodynamic-based investigation in terms of entropy generation rate (EGR) to identify the energy losses in various processes of the HPCC-based adsorption system using MATLAB R2021b software. The adsorption technology-based cooling system consists of two beds made up of silica gel and arranged in a single stage, while the water is employed as a refrigerant, coolant, and hot fluid. The variation in process-wise EGR is examined corresponding to cycle time, and a comparative analysis is also presented. Moreover, the EGR is also evaluated in the external units, such as the heat source and heat sink unit used for regeneration and heat dump, respectively. The research findings revealed that the combination of adsorber and desorber, which operates across heat reservoirs with a higher temperature gradient, shares more than half of the total amount of EGR. Moreover, the EGR caused by the heat transfer process is determined to be the highest, followed by a heat sink, heat source, and mass transfer, respectively. in case of heat transfer process, the operation of the valve is determined to be responsible for more than half (54.9%) of the overall EGR during the heat transfer. However, the combined contribution of the external units, such as the source (18.03%) and sink (21.55%), to the total EGR, is 35.59%. The analysis and findings of the present research are expected to pinpoint the source of the energy waste in HPCC based adsorption cooling systems.

Keywords: adsorption cooling cycle, heat transfer, mass transfer, entropy generation, silica gel-water

Procedia PDF Downloads 82
215 Petrogenesis and Tectonic Implication of the Oligocene Na-Rich Granites from the North Sulawesi Arc, Indonesia

Authors: Xianghong Lu, Yuejun Wang, Chengshi Gan, Xin Qian

Abstract:

The North Sulawesi Arc, located on the east of Indonesia and to the south of the Celebes Sea, is the north part of the K-shape of Sulawesi Island and has a complex tectonic history since the Cenozoic due to the convergence of three plates (Eurasia, India-Australia and Pacific plates). Published rock records contain less precise chronology, mostly using K-Ar dating, and rare geochemistry data, which limit the understanding of the regional tectonic setting. This study presents detailed zircon U-Pb geochronological and Hf-O isotope and whole-rock geochemical analyses for the Na-rich granites from the North Sulawesi Arc. Zircon U-Pb geochronological analyses of three representative samples yield weighted mean ages of 30.4 ± 0.4 Ma, 29.5 ± 0.2 Ma, and 27.3 ± 0.4 Ma, respectively, revealing the Oligocene magmatism in the North Sulawesi Arc. The samples have high Na₂O and low K₂O contents with high Na₂O/K₂O ratios, belonging to Low-K tholeiitic Na-rich granites. The Na-rich granites are characterized by high SiO₂ contents (75.05-79.38 wt.%) and low MgO contents (0.07-0.91 wt.%) and show arc-like trace elemental signatures. They have low (⁸⁷Sr/⁸⁶Sr)i ratios (0.7044-0.7046), high εNd(t) values (from +5.1 to +6.6), high zircon εHf(t) values (from +10.1 to +18.8) and low zircon δ18O values (3.65-5.02). They show an Indian-Ocean affinity of Pb isotopic compositions with ²⁰⁶Pb/²⁰⁴Pb ratio of 18.16-18.37, ²⁰⁷Pb/²⁰⁴Pb ratio of 15.56-15.62, and ²⁰⁸Pb/²⁰⁴Pb ratio of 38.20-38.66. These geochemical signatures suggest that the Oligocene Na-rich granites from the North Sulawesi Arc formed by partial melting of the juvenile oceanic crust with sediment-derived fluid-related metasomatism in a subducting setting and support an intra-oceanic arc origin. Combined with the published study, the emergence of extensive calc-alkaline felsic arc magmatism can be traced back to the Early Oligocene period, subsequent to the Eocene back-arc basalts (BAB) that share similarity with the Celebes Sea basement. Since the opening of the Celebes Sea started from the Eocene (42~47 Ma) and stopped by the Early Oligocene (~32 Ma), the geodynamical mechanism of the formation of the Na-rich granites from the North Sulawesi Arc during the Oligocene might relate to the subduction of the Indian Ocean.

Keywords: North Sulawesi Arc, oligocene, Na-rich granites, in-situ zircon Hf–O analysis, intra-oceanic origin

Procedia PDF Downloads 50
214 Covid -19 Pandemic and Impact on Public Spaces of Tourism and Hospitality in Dubai- an Exploratory Study from a Design Perspective

Authors: Manju Bala Jassi

Abstract:

The Covid 19 pandemic has badly mauled Dubai’s GDP heavily dependent on hospitality, tourism, entertainment, logistics, property and the retail sectors. In the context of the World Health protocols on social distancing for better maintenance of health and hygiene, the revival of the battered tourism and hospitality sectors has serious lessons for designers- interiors and public places. The tangible and intangible aesthetic elements and design –ambiance, materials, furnishings, colors, lighting and interior with architectural design issues of tourism and hospitality need a rethink to ensure a memorable tourist experience. Designers ought to experiment with sustainable places of tourism and design, develop, build and projects are aesthetic and leave as little negative impacts on the environment and public as possible. In short, they ought to conceive public spaces that makes use of little untouched materials and energy, and creates pollution and waste that are minimal. The spaces can employ healthier and more resource-efficient prototypes of construction, renovation, operation, maintenance, and demolition and thereby mitigate the environment impacts of the construction activities and it is sustainable These measures encompass the hospitality sector that includes hotels and restaurants which has taken the hardest fall from the pandemic. The paper sought to examine building energy efficiency and materials and design employed in public places, green buildings to achieve constructive sustainability and to establish the benefits of utilizing energy efficiency, green materials and sustainable design; to document diverse policy interventions, design and Spatial dimensions of tourism and hospitality sectors; to examine changes in the hospitality, aviation sector especially from a design perspective regarding infrastructure or operational constraints and additional risk-mitigation measures; to dilate on the nature of implications for interior designers and architects to design public places to facilitate sustainable tourism and hospitality while balancing convenient space and their operations' natural surroundings. The qualitative research approach was adopted for the study. The researcher collected and analyzed data in continuous iteration. Secondary data was collected from articles in journals, trade publications, government reports, newspaper/ magazine articles, policy documents etc. In depth interviews were conducted with diverse stakeholders. Preliminary data indicates that designers have started imagining public places of tourism and hospitality against the backdrop of the government push and WHO guidelines. For instance, with regard to health, safety, hygiene and sanitation, Emirates, the Dubai-based airline has augmented health measures at the Dubai International Airport and on board its aircraft. It has leveraged high tech/ Nano-tech, social distancing to encourage least human contact, flexible design layouts to limit the occupancy. The researcher organized the data into thematic categories and found that the Government of Dubai has initiated comprehensive measures in the hospitality, tourism and aviation sectors in compliance with the WHO guidelines.

Keywords: Covid 19, design, Dubai, hospitality, public spaces, tourism

Procedia PDF Downloads 138
213 Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer

Authors: A. Kaćunić, M. Ćosić, N. Kuzmanić

Abstract:

Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value.

Keywords: dual impeller crystallizer, mixing time, power consumption, metastable zone width, nucleation rate

Procedia PDF Downloads 274
212 Fastidious Enteric Pathogens in HIV

Authors: S. Pathak, R. Lazarus

Abstract:

A 25-year-old male HIV patient (CD4 cells 20/µL and HIV viral load 14200000 copies/ml) with a past medical history of duodenal ulcer, pneumocystis carinii pneumonia, oesophageal candidiasis presented with fever and a seizure to hospital. The only recent travel had been a religious pilgrimage from Singapore to Malaysia 5 days prior; during the trip he sustained skin abrasions. The patient had recently started highly active antiretroviral therapy 2 months prior. Clinical examination was unremarkable other than a temperature of 38.8°C and perianal warts. Laboratory tests showed a leukocyte count 12.5x109 cells/L, haemoglobin 9.4 g/dL, normal biochemistry and a C-reactive protein 121 mg/L. CT head and MRI head were unremarkable and cerebrospinal fluid analysis performed after a delay (due to technical difficulties) of 11 days was unremarkable. Blood cultures (three sets) taken on admission showed Gram-negative rods in the anaerobic bottles only at the end of incubation with culture result confirmed by molecular sequencing showing Helicobacter cinaedi. The patient was treated empirically with ceftriaxone for seven days and this was converted to oral co-amoxiclav for a further seven days after the blood cultures became positive. A Transthoracic echocardiogram was unremarkable. The patient made a full recovery. Helicobacter cinaedi is a gram-negative anaerobic fastidious organism affecting patients with comorbidity. Infection may manifest as cellulitius, colitis or as in this case as bloodstream infection – the latter is often attributed to faeco-oral infection. Laboratory identification requires prolonged culture. Therapeutic options may be limited by resistance to macrolides and fluoroquinolones. The likely pathogen inoculation routes in the case described include gastrointestinal translocation due to proctitis at the site of perianal warts, or breach of the skin via abrasions occurring during the pilgrimage. Such organisms are increasing in prevalence as our patient population ages and patients have multiple comorbidities including HIV. It may be necessary in patients with unexplained fever to prolong incubation of sterile sites including blood in order to identify this unusual fastidious organism.

Keywords: fastidious, Helicobacter cinaedi, HIV, immunocompromised

Procedia PDF Downloads 358
211 A Comparative Study: Comparison of Two Different Fluorescent Stains -Auramine and Rhodamine- with Ehrlich-Ziehl-Neelsen, Kinyoun Staining, and Culture in the Determination of Acid Resistant Bacilli

Authors: Recep Keşli, Hayriye Tokay, Cengiz Demir, İsmail Ceyhan

Abstract:

Objective: In many countries, tuberculosis (TB) is still one of the most important diseases. Tuberculosis is among top 10 causes of death worldwide. The early diagnosis of active tuberculosis still depends on the presence of acid resistant bacilli (ARB) in stained smears. In this study, we aimed to investigate the diagnostic performances of Erlich Ziehl Neelsen (EZN), Kinyoun and two different fluorescent stains. Methods: The specimens were obtained from the patients who applied to Chest Diseases Departments of Ankara Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, and Afyon Kocatepe University, ANS Research and Practice Hospital. The study was carried out in the Medical Microbiology Laboratory, School of Medicine, Afyon Kocatepe University. All the non-sterile specimens were homogenized and decontaminated according to the EUCAST instructions. Samples were inoculated onto the Löwenstein-Jensen agars (bio-Merieux Marcy l'Etoile, France) and then incubated at 37˚C, for 40 days. Four smears were prepared from each specimen. Slides were stained with commercial EZN (BD, Sparks, USA), Kinyoun (SALUBRIS Istanbul, Turkey), Auramine (SALUBRIS Istanbul, Turkey) and Rhodamine (SALUBRIS Istanbul, Turkey) kit. While EZN and Kinyoun stainings were examined by light microscope, Auramine and Rhodamine slides were examined by fluorescence microscopy. Results: A total of 158 respiratory system samples (sputum, broncho alveolar lavage fluid…etc) were enrolled into the study. A hundred and two of the samples that processed were found as culture positive. The sensitivity, specificity, positive predictive, and negative predictive values were detected as 100%, 67.5%, 73.5%, and 100% for EZN, 100%, 70.9%, 77.4%, and 100% for Kinyoun, 100%,77.8%, 84.3%, 100% for Auramine, and 100%, 80% , 86.3%, and 100% for Rhodamine respectively. Conclusions: According to our study auramine and rhodamine staining methods showed the best diagnostic performance among the four investigated staining methods. In conclusion, the fluorochrome staining method may be accepted as the most reliable, rapid and useful method for diagnosis of the mycobacterial infections truly.

Keywords: acid resistant bacilli (ARB), auramine, Ehrlich-Ziehl-Neelsen (EZN), Kinyoun, Rhodamine

Procedia PDF Downloads 247
210 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 213
209 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.

Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling

Procedia PDF Downloads 154
208 Electrical Tortuosity across Electrokinetically Remediated Soils

Authors: Waddah S. Abdullah, Khaled F. Al-Omari

Abstract:

Electrokinetic remediation is one of the most influential and effective methods to decontaminate contaminated soils. Electroosmosis and electromigration are the processes of electrochemical extraction of contaminants from soils. The driving force that causes removing contaminants from soils (electroosmosis process or electromigration process) is voltage gradient. Therefore, the electric field distribution throughout the soil domain is extremely important to investigate and to determine the factors that help to establish a uniform electric field distribution in order to make the clean-up process work properly and efficiently. In this study, small-sized passive electrodes (made of graphite) were placed at predetermined locations within the soil specimen, and the voltage drop between these passive electrodes was measured in order to observe the electrical distribution throughout the tested soil specimens. The electrokinetic test was conducted on two types of soils; a sandy soil and a clayey soil. The electrical distribution throughout the soil domain was conducted with different tests properties; and the electrical field distribution was observed in three-dimensional pattern in order to establish the electrical distribution within the soil domain. The effects of density, applied voltages, and degree of saturation on the electrical distribution within the remediated soil were investigated. The distribution of the moisture content, concentration of the sodium ions, and the concentration of the calcium ions were determined and established in three-dimensional scheme. The study has shown that the electrical conductivity within soil domain depends on the moisture content and concentration of electrolytes present in the pore fluid. The distribution of the electrical field in the saturated soil was found not be affected by its density. The study has also shown that high voltage gradient leads to non-uniform electric field distribution within the electroremediated soil. Very importantly, it was found that even when the electric field distribution is uniform globally (i.e. between the passive electrodes), local non-uniformity could be established within the remediated soil mass. Cracks or air gaps formed due to temperature rise (because of electric flow in low conductivity regions) promotes electrical tortuosity. Thus, fracturing or cracking formed in the remediated soil mass causes disconnection of electric current and hence, no removal of contaminant occur within these areas.

Keywords: contaminant removal, electrical tortuousity, electromigration, electroosmosis, voltage distribution

Procedia PDF Downloads 404
207 Explosion Mechanics of Aluminum Plates Subjected to the Combined Effect of Blast Wave and Fragment Impact Loading: A Multicase Computational Modeling Study

Authors: Atoui Oussama, Maazoun Azer, Belkassem Bachir, Pyl Lincy, Lecompte David

Abstract:

For many decades, researchers have been focused on understanding the dynamic behavior of different structures and materials subjected to fragment impact or blast loads separately. The explosion mechanics, as well as the impact physics studies dealing with the numerical modeling of the response of protective structures under the synergistic effect of a blast wave and the impact of fragments, are quite limited in the literature. This article numerically evaluates the nonlinear dynamic behavior and damage mechanisms of Aluminum plates EN AW-1050A- H24 under different combined loading scenarios varied by the sequence of the applied loads using the commercial software LS-DYNA. For one hand, with respect to the terminal ballistic field investigations, a Lagrangian (LAG) formulation is used to evaluate the different failure modes of the target material in case of a fragment impact. On the other hand, with respect to the blast field analysis, an Arbitrary Lagrangian-Eulerian (ALE) formulation is considered to study the fluid-structure interaction (FSI) of the shock wave and the plate in case of a blast loading. Four different loading scenarios are considered: (1) only blast loading, (2) only fragment impact, (3) blast loading followed by a fragment impact and (4) a fragment impact followed by blast loading. From the numerical results, it was observed that when the impact load is applied to the plate prior to the blast load, it suffers more severe damage due to the hole enlargement phenomenon and the effects of crack propagation on the circumference of the damaged zone. Moreover, it was found that the hole from the fragment impact loading was enlarged to about three times in diameter as compared to the diameter of the projectile. The validation of the proposed computational model is based in part on previous experimental data obtained by the authors and in the other part on experimental data obtained from the literature. A good correspondence between the numerical and experimental results is found.

Keywords: computational analysis, combined loading, explosion mechanics, hole enlargement phenomenon, impact physics, synergistic effect, terminal ballistic

Procedia PDF Downloads 156
206 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 298
205 Particle Deflection in a PDMS Microchannel Caused by a Plane Travelling Surface Acoustic Wave

Authors: Florian Keipert, Hagen Schmitd

Abstract:

The size selective separation of different species in a microfluidic system is an actual task in biological or medical research. Former works dealt with the utilisation of the acoustic radiation force (ARF) caused by a plane travelling Surface Acoustic Wave (tSAW). In literature the ARF is described by a dimensionless parameter κ, depending on the wavelength and the particle diameter. To our knowledge research was done for values 0.2 < κ < 5.8 showing that the ARF is dominating the acoustic streaming force (ASF) for κ > 1.2. As a consequence the particle separation is limited by κ. In addition the dependence on the electrical power level was examined but only for κ > 1 pointing out an increased particle deflection for higher electrical power levels. Nevertheless a detailed study on the ASF and ARF especially for κ < 1 is still missing. In our setup we used a tSAW with a wavelength λ = 90 µm and 3 µm PS particles corresponding to κ = 0.3. Herewith the influence of the applied electrical power level on the particle deflection in a polydimethylsiloxan micro channel was investigated. Our results show an increased particle deflection for an increased electrical power level, which coincides with the reported results for κ > 1. Therefore particle separation is in contrast to literature also possible for lower κ values. Thereby the experimental setup can be generally simplified by a coordinated electrical power level for the specific particle size. Furthermore this raises the question of whether this particle deflection is caused only by the ARF as adopted so far or by the ASF or the sum of both forces. To investigate this fact a 0% - 24% saline solution was used and thus the mismatch between the compressibility of the PS particle and the working fluid could be changed. Therefore it is possible to change the relative strength between ARF and ASF and consequently the particle deflection. We observed a decreasing in the particle deflection for an increased NaCl content up to a 12% saline solution and subsequently an increasing of the particle deflection. Our observation could be explained by the acoustic contrast factor Φ, which depends on the compressibility mismatch. The compressibility of water is increased by the NaCl and the range of a 0% - 24% saline solution covers the PS particle compressibility. Hence the particle deflection reaches a minimum value for the accordance between compressibility of PS particle and saline solution. This minimum value can be estimated as the particle deflection only caused by the ASF. Knowing the particle deflection due to the ASF the particle deflection caused by the ARF can be calculated and thus finally the relation between both forces. Concluding, the particle deflection and therefore the size selective particle separation generated by a tSAW can be achieved for values κ < 1, simplifying actual setups by adjusting the electrical power level. Beyond we studied for the first time the relative strength between ARF and ASF to characterise the particle deflection in a microchannel.

Keywords: ARF, ASF, particle separation, saline solution, tSAW

Procedia PDF Downloads 236
204 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 116
203 Effects of Front Porch and Loft on Indoor Ventilation in the Renewal of Beijing Courtyard

Authors: Zhongzhong Zeng, Zichen Liang

Abstract:

In recent years, Beijing courtyards have been facing the problem of renewal and renovation, and the residents are faced with the problems of small house areas, large household sizes, old and dangerous houses, etc. Among the many renovation methods, the authors note two more common practices of using the front porch to expand the floor area and adding a loft. Residents and architects, however, did not give the ventilation performance of the significant interior consideration before beginning the remodeling. The aim of this article is to explore the good or negative impacts of both front porch and loft structures on the manner of interior ventilation in the courtyard. Ventilation, in turn, is crucial to the indoor environmental quality of a home. The major method utilized in this study is the comparative analysis method, in which the authors create four alternative house models with or without a front porch and an attic as two variables and examine internal ventilation using the CFD(Computational Fluid Dynamics) technique. The authors compare the indoor ventilation of four different architectural models with or without front porches and lofts as two variables. The results obtained from the analysis of the sectional airflow and the plane 1.5m height cloud are the existence of the loft, to a certain extent, disrupts the airflow organization of the building and makes the rear wall high windows of the building less effective. Occupying the front porch to become the area of the house has no significant effect on ventilation, but try not to occupy the front porch and add the loft at the same time in the building renovation. The findings of this study led to the following recommendations: strive to preserve the courtyard building's original architectural design and make adjustments to only the inappropriate elements or constructions. The ventilation in the loft portion is inadequate, and the inhabitants typically use the loft as a living area. This may lead to the building relying more on air conditioning in the summer, which would raise energy demand. The front porch serves as a transition place as well as a source of shade, weather protection, and inside ventilation. In conclusion, the examination of interior environments in upcoming studies should concentrate on cross-disciplinary, multi-angle, and multi-level research topics.

Keywords: Beijing courtyard renewal, CFD, indoor environment, ventilation analysis

Procedia PDF Downloads 59
202 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 88
201 Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration

Authors: Mariia Timofeeva, Andrew Ooi, Eric K. W. Poon, Peter Barlis

Abstract:

Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry.

Keywords: computational fluid dynamics, coronary artery, fractional flow reserve, serial stenoses

Procedia PDF Downloads 163
200 Design of Experiment for Optimizing Immunoassay Microarray Printing

Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern

Abstract:

Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).

Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing

Procedia PDF Downloads 152
199 Effect of Velocity-Slip in Nanoscale Electroosmotic Flows: Molecular and Continuum Transport Perspectives

Authors: Alper T. Celebi, Ali Beskok

Abstract:

Electroosmotic (EO) slip flows in nanochannels are investigated using non-equilibrium molecular dynamics (MD) simulations, and the results are compared with analytical solution of Poisson-Boltzmann and Stokes (PB-S) equations with slip contribution. The ultimate objective of this study is to show that well-known continuum flow model can accurately predict the EO velocity profiles in nanochannels using the slip lengths and apparent viscosities obtained from force-driven flow simulations performed at various liquid-wall interaction strengths. EO flow of aqueous NaCl solution in silicon nanochannels are simulated under realistic electrochemical conditions within the validity region of Poisson-Boltzmann theory. A physical surface charge density is determined for nanochannels based on dissociations of silanol functional groups on channel surfaces at known salt concentration, temperature and local pH. First, we present results of density profiles and ion distributions by equilibrium MD simulations, ensuring that the desired thermodynamic state and ionic conditions are satisfied. Next, force-driven nanochannel flow simulations are performed to predict the apparent viscosity of ionic solution between charged surfaces and slip lengths. Parabolic velocity profiles obtained from force-driven flow simulations are fitted to a second-order polynomial equation, where viscosity and slip lengths are quantified by comparing the coefficients of the fitted equation with continuum flow model. Presence of charged surface increases the viscosity of ionic solution while the velocity-slip at wall decreases. Afterwards, EO flow simulations are carried out under uniform electric field for different liquid-wall interaction strengths. Velocity profiles present finite slips near walls, followed with a conventional viscous flow profile in the electrical double layer that reaches a bulk flow region in the center of the channel. The EO flow enhances with increased slip at the walls, which depends on wall-liquid interaction strength and the surface charge. MD velocity profiles are compared with the predictions from analytical solutions of the slip modified PB-S equation, where the slip length and apparent viscosity values are obtained from force-driven flow simulations in charged silicon nano-channels. Our MD results show good agreements with the analytical solutions at various slip conditions, verifying the validity of PB-S equation in nanochannels as small as 3.5 nm. In addition, the continuum model normalizes slip length with the Debye length instead of the channel height, which implies that enhancement in EO flows is independent of the channel height. Further MD simulations performed at different channel heights also shows that the flow enhancement due to slip is independent of the channel height. This is important because slip enhanced EO flow is observable even in micro-channels experiments by using a hydrophobic channel with large slip and high conductivity solutions with small Debye length. The present study provides an advanced understanding of EO flows in nanochannels. Correct characterization of nanoscale EO slip flow is crucial to discover the extent of well-known continuum models, which is required for various applications spanning from ion separation to drug delivery and bio-fluidic analysis.

Keywords: electroosmotic flow, molecular dynamics, slip length, velocity-slip

Procedia PDF Downloads 122