Search results for: analytical network design model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30362

Search results for: analytical network design model

27392 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Taiki Baba, Tomoaki Hashimoto

Abstract:

The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.

Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization

Procedia PDF Downloads 282
27391 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 24
27390 Impulsive Synchronization of Periodically Forced Complex Duffing's Oscillators

Authors: Shaban Aly, Ali Al-Qahtani, Houari B. Khenous

Abstract:

Synchronization is an important phenomenon commonly observed in nature. A system of periodically forced complex Duffings oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using impulsive synchronization techniques. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

Keywords: complex nonlinear oscillators, impulsive synchronization, chaotic systems, global exponential synchronization

Procedia PDF Downloads 447
27389 An Assessment into the Drift in Direction of International Migration of Labor: Changing Aspirations for Religiosity and Cultural Assimilation

Authors: Syed Toqueer Akhter, Rabia Zulfiqar

Abstract:

This paper attempts to trace the determining factor- as far as individual preferences and expectations are concerned- of what causes the direction of international migration to drift in certain ways owing to factors such as Religiosity and Cultural Assimilation. The narrative on migration has graduated from the age long ‘push/pull’ debate to that of complex factors that may vary across each individual. We explore the longstanding factor of religiosity widely acknowledged in mentioned literature as a key variable in the assessment of migration, wherein the impact of religiosity in the form of a drift into the intent of migration has been analyzed. A more conventional factor cultural assimilation is used in a contemporary way to estimate how it plays a role in affecting the drift in direction. In particular what our research aims at achieving is to isolate the effect our key variables: Cultural Assimilation and Religiosity have on direction of migration, and to explore how they interplay as a composite unit- and how we may be able to justify the change in behavior displayed by these key variables. In order to establish a true sense of what drives individual choices we employ the method of survey research and use a questionnaire to conduct primary research. The questionnaire was divided into six sections covering subjects including household characteristics, perceptions and inclinations of the respondents relevant to our study. Religiosity was quantified using a proxy of Migration Network that utilized secondary data to estimate religious hubs in recipient countries. To estimate the relationship between Intent of Migration and its variants three competing econometric models namely: the Ordered Probit Model, the Ordered Logit Model and the Tobit Model were employed. For every model that included our key variables, a highly significant relationship with the intent of migration was estimated.

Keywords: international migration, drift in direction, cultural assimilation, religiosity, ordered probit model

Procedia PDF Downloads 307
27388 Effects of an Educative Model in Socially Responsible Behavior and Other Psychological Variables

Authors: Gracia V. Navarro, Maria V. Gonzalez, Carlos G. Reed

Abstract:

The eudaimonic perspective in philosophy and psychology suggests that a good life is closely related to developing oneself in order to contribute to the well-being and happiness of other people and of the world as a whole. Educational psychology can help to achieve this through the design and validation of educative models. Since 2004, the University of Concepcion and other Chilean universities apply an educative model to train socially responsible professionals, people that in the exercise of their profession contribute to generate equity for the development and assess the impacts of their decisions, opting for those that serve the common good. The main aim is to identify if a relationship exists between achieved learning, attitudes toward social responsibility, self-attribution of socially responsible behavior, value type, professional behavior observed and, participation in a specific model to train socially responsible (SR) professionals. The Achieved Learning and Attitudes Toward Social Responsibility Questionnaire, interview with employers and Values Questionnaire and Self-attribution of SR Behavior Questionnaire is applied to 394 students and graduates, divided into experimental and control groups (trained and not trained under the educative model), in order to identify the professional behavior of the graduates. The results show that students and graduates perceive cognitive, affective and behavioral learning, with significant differences in attitudes toward social responsibility and self-attribution of SR behavior, between experimental and control. There are also differences in employers' perceptions about the professional practice of those who were trained under the model and those who were not. It is concluded that the educative model has an impact on the learning of social responsibility and educates for a full life. It is also concluded that it is necessary to identify mediating variables of the model effect.

Keywords: educative model, good life, professional social responsibility, values

Procedia PDF Downloads 264
27387 Numerical Modeling Analysis for the Double-Layered Asphalt Pavement Structure Behavior with Interface Bonding

Authors: Minh Tu Le, Quang Huy Nguyen, Mai Lan Nguyen

Abstract:

Bonding characteristics between pavement layers have an important influence on responses of pavement structures. This paper deals with analytical solution for the stresses, strains, and deflections of double-layered asphalt pavement structure. This solution is based on the homogeneous half-space of layered theory developed by Burmister (1943). The partial interaction between the layers is taken into account by considering an interface bonding behavior which is obtained by push-out shear test. Numerical applications considering three cases of bonding (unbonded, partially bonded, and fully bonded overlays) are carried out to the influence of the interface bonding on the structural behavior of asphalt pavement under static loading. Further, it was observed that numerical results indicate that the horizontal shear reaction modulus at the interface (Ks) will significantly affect pavement structure behavior.

Keywords: analytical solution, interface bonding, shear test keyword, double-layered asphalt, shear reaction modulus

Procedia PDF Downloads 230
27386 The Link Between Collaboration Interactions and Team Creativity Among Nursing Student Teams in Taiwan: A Moderated Mediation Model

Authors: Hsing Yuan Liu

Abstract:

Background: Considerable theoretical and empirical work has identified a relationship between collaboration interactions and creativity in an organizational context. The mechanisms underlying this link, however, are not well understood in healthcare education. Objectives: The aims of this study were to explore the impact of collaboration interactions on team creativity and its underlying mechanism and to verify a moderated mediation model. Design, setting, and participants: This study utilized a cross-sectional, quantitative, descriptive design. The survey data were collected from 177 nursing students who enrolled in 18-week capstone courses of small interdisciplinary groups collaborating to design healthcare products in Taiwan during 2018 and 2019. Methods: Questionnaires assessed the nursing students' perceptions about their teams' swift trust (of cognition- and affect-based), conflicts (of task, process, and relationship), interaction behaviors (constructive controversy, helping behaviors, and spontaneous communication), and creativity. This study used descriptive statistics to compare demographics, swift trust scores, conflict scores, interaction behavior scores, and creativity scores for interdisciplinary teams. Data were analyzed using Pearson’s correlation coefficient and simple and hierarchical multiple regression models. Results: Pearson’s correlation analysis showed the cognition-based team swift trust was positively correlated with team creativity. The mediation model indicated constructive controversy fully mediated the effect of cognition-based team swift trust on student teams’ creativity. The moderated mediation model indicated that task conflict negatively moderates the mediating effect of the constructive controversy on the link between cognition-based team swift trust and team creativity. Conclusion: Our findings suggest nursing student teams’ interaction behaviors and task conflict are crucial mediating and moderated mediation variables on the relationship between collaboration interactions and team creativity, respectively. The empirical data confirms the validity of our proposed moderated mediation models of team creativity. Therefore, this study's validated moderated mediation model could provide guidance for nursing educators to improve collaboration interaction outcomes and creativity on nursing student teams.

Keywords: team swift trust, team conflict, team interaction behavior, moderated mediating effects, interdisciplinary education, nursing students

Procedia PDF Downloads 187
27385 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories

Authors: Umesh Kumar Singh, Chanchala Joshi

Abstract:

With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.

Keywords: CVSS score, risk level, security measurement, vulnerability category

Procedia PDF Downloads 321
27384 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling

Authors: Danlei Yang, Luofeng Huang

Abstract:

The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.

Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence

Procedia PDF Downloads 8
27383 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 194
27382 Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures

Authors: Haleh Hamidpour

Abstract:

Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method.

Keywords: direct performance-based design, ductility demands, inelastic seismic performance, yield mechanism

Procedia PDF Downloads 333
27381 Designing a Pregnancy Interactive Information Design for a Mobile Application

Authors: Thomas Adi Purnomo Sidhi

Abstract:

The importance of designing a pregnancy interactive information design for a mobile application is felt in order to assist pregnant women to get an easy access of highly credible pregnancy-related information on which often fail to be fulfilled, while it has been a very critical one. Thus, an observation of needs assessment for designing a pregnancy interactive information system design for a mobile application at iOS becomes current objective study. A comparative study of the top five pregnancy interactive information design available at the Apple Store conducted in order to fulfill it. Whilst, an observation of user experiences included for deeper analyzes. Moreover, a literature study conducted to support the arguments that being provided in the current study. The findings, surprisingly, also reveal the advantages of local wisdom in pregnancy that never been attached to those top five applications before.

Keywords: information system design, interactive design, local wisdom, pregnancy

Procedia PDF Downloads 187
27380 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro

Authors: Rafael Zhindon Almeida

Abstract:

Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.

Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models

Procedia PDF Downloads 98
27379 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network

Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup

Abstract:

This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.

Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis

Procedia PDF Downloads 114
27378 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
27377 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis

Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi

Abstract:

Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.

Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS

Procedia PDF Downloads 161
27376 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom

Authors: Yen-Hui Lu

Abstract:

In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.

Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning

Procedia PDF Downloads 83
27375 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas

Authors: Thulane Paepae, Tumisang Seodigeng

Abstract:

This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.

Keywords: attainable regions, dimethyl ether, optimal reaction network, GH Space

Procedia PDF Downloads 240
27374 The Potential Roles of Digital Technologies in Developing Children's Artistic Ability and Promoting Creative Activity in Children Aged

Authors: Aber Aboalgasm, Rupert Ward, Ruth Taylor, Jonathan Glazzard

Abstract:

Teaching art by digital means is a big challenge for the majority of teachers of art and artistic design courses in primary education schools. These courses can clearly identify relationships between art, technology, and creativity in the classroom .The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom in order to improve creative ability in pupils aged between 9 and 11 years; it also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning drawing and using an e-drawing package, and for teachers who are interested in teaching their students modern digital art, and improving children’s creativity. This model is designed to show the strategy of teaching art through technology, in order for children to learn how to be creative. This will also help education providers to make suitable choices about which technological approaches they should choose to teach students and enhance their creative ability. It is also expected that use of this model will help to develop social interactive qualities that may improve intellectual ability.

Keywords: digital tools, motivation, creative activity, education

Procedia PDF Downloads 340
27373 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 136
27372 A New Mathematical Model of Human Olfaction

Authors: H. Namazi, H. T. N. Kuan

Abstract:

It is known that in humans, the adaptation to a given odor occurs within a quite short span of time (typically one minute) after the odor is presented to the brain. Different models of human olfaction have been developed by scientists but none of these models consider the diffusion phenomenon in olfaction. A novel microscopic model of the human olfaction is presented in this paper. We develop this model by incorporating the transient diffusivity. In fact, the mathematical model is written based on diffusion of the odorant within the mucus layer. By the use of the model developed in this paper, it becomes possible to provide quantification of the objective strength of odor.

Keywords: diffusion, microscopic model, mucus layer, olfaction

Procedia PDF Downloads 505
27371 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.

Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles

Procedia PDF Downloads 144
27370 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar

Abstract:

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Keywords: ECAP, mechanical design, numerical methods, SPD

Procedia PDF Downloads 140
27369 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 131
27368 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 75
27367 An Output Oriented Super-Efficiency Model for Considering Time Lag Effect

Authors: Yanshuang Zhang, Byungho Jeong

Abstract:

There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO model

Keywords: DEA, Super-efficiency, Time Lag, research activities

Procedia PDF Downloads 658
27366 A Behaviourally Plausible Decision Centred Perspective on the Role of Corporate Governance in Corporate Failures

Authors: Navdeep Kaur

Abstract:

The primary focus of this study is to answer “What is the role of corporate governance in corporate failures? Does poor corporate governance lead to corporate failures? If so, how?”. In doing so, the study examines the literature from multiple fields, including corporate governance, corporate failures and organizational decision making, and presents a research gap to analyze and explore the relationship between corporate governance practices and corporate failures through a behavioral lens. In approaching this, a qualitative research methodology is adopted to analyze the failure of Enron Corporation (United States). The research considered the case study organizations as the primary unit of analysis and the decision-makers as the secondary unit of analysis. Based on this research approach, the study reports the analytical results drawn from extensive and triangulated secondary data. The study then interprets the results in the context of the theoretical synthesis. The study contributes towards filling a gap in the research and presents a behaviourally plausible decision centered model of the role of corporate governance in corporate failures. The model highlights the critical role of the behavioral aspects of corporate governance decision making in corporate failures and focuses attention on the under-explored aspects of corporate governance decision making. The study also suggests a further understanding of ‘A Behavioral Theory of the Firm’ in relation to corporate failures.

Keywords: behavior, corporate failure, corporate governance, decision making, values

Procedia PDF Downloads 132
27365 Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β

Authors: Saidi Abdelkrim, Hamouine Abdelmadjid, Abdellatif Megnounif

Abstract:

The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations.

Keywords: vehicle-bridge interaction, Newmark-β, MATLAB code

Procedia PDF Downloads 618
27364 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

Authors: Jurij Tasinkiewicz

Abstract:

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wave beam both in elevation and azimuth. In this paper, a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Keywords: beamforming, transducer array, BIS-expansion, piezoelectric layer

Procedia PDF Downloads 423
27363 Classification of IoT Traffic Security Attacks Using Deep Learning

Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem

Abstract:

The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.

Keywords: IoT, traffic security, deep learning, classification

Procedia PDF Downloads 153