Search results for: uncertainty and error visualisation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2852

Search results for: uncertainty and error visualisation

2582 Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction

Authors: E. T. Carvalho Filho, J. T. N. Medeiros, L. G. Martinez

Abstract:

Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors.

Keywords: residual stress, x-ray diffraction, repeatability, reproducibility, error analysis

Procedia PDF Downloads 181
2581 Co-Integration Model for Predicting Inflation Movement in Nigeria

Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi

Abstract:

The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).

Keywords: economic, inflation, model, series

Procedia PDF Downloads 242
2580 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties

Authors: Riku Hayashida, Tomoaki Hashimoto

Abstract:

This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: robust control, stabilization method, underwater robot, parameter uncertainty

Procedia PDF Downloads 158
2579 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications

Authors: Morsy Ahmed Morsy Ismail

Abstract:

In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.

Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia

Procedia PDF Downloads 174
2578 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure

Authors: Kai Zhang, Xi Jiang

Abstract:

Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.

Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification

Procedia PDF Downloads 273
2577 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 478
2576 Trajectory Tracking of Fixed-Wing Unmanned Aerial Vehicle Using Fuzzy-Based Sliding Mode Controller

Authors: Feleke Tsegaye

Abstract:

The work in this thesis mainly focuses on trajectory tracking of fixed wing unmanned aerial vehicle (FWUAV) by using fuzzy based sliding mode controller(FSMC) for surveillance applications. Unmanned Aerial Vehicles (UAVs) are general-purpose aircraft built to fly autonomously. This technology is applied in a variety of sectors, including the military, to improve defense, surveillance, and logistics. The model of FWUAV is complex due to its high non-linearity and coupling effect. In this thesis, input decoupling is done through extracting the dominant inputs during the design of the controller and considering the remaining inputs as uncertainty. The proper and steady flight maneuvering of UAVs under uncertain and unstable circumstances is the most critical problem for researchers studying UAVs. A FSMC technique was suggested to tackle the complexity of FWUAV systems. The trajectory tracking control algorithm primarily uses the sliding-mode (SM) variable structure control method to address the system’s control issue. In the SM control, a fuzzy logic control(FLC) algorithm is utilized in place of the discontinuous phase of the SM controller to reduce the chattering impact. In the reaching and sliding stages of SM control, Lyapunov theory is used to assure finite-time convergence. A comparison between the conventional SM controller and the suggested controller is done in relation to the chattering effect as well as tracking performance. It is evident that the chattering is effectively reduced, the suggested controller provides a quick response with a minimum steady-state error, and the controller is robust in the face of unknown disturbances. The designed control strategy is simulated with the nonlinear model of FWUAV using the MATLAB® / Simulink® environments. The simulation result shows the suggested controller operates effectively, maintains an aircraft’s stability, and will hold the aircraft’s targeted flight path despite the presence of uncertainty and disturbances.

Keywords: fixed-wing UAVs, sliding mode controller, fuzzy logic controller, chattering, coupling effect, surveillance, finite-time convergence, Lyapunov theory, flight path

Procedia PDF Downloads 56
2575 [Keynote Talk]: Evidence Fusion in Decision Making

Authors: Mohammad Abdullah-Al-Wadud

Abstract:

In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.

Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty

Procedia PDF Downloads 424
2574 Formulating a Flexible-Spread Fuzzy Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

This study proposes a regression model with flexible spreads for fuzzy input-output data to cope with the situation that the existing measures cannot reflect the actual estimation error. The main idea is that a dissemblance index (DI) is carefully identified and defined for precisely measuring the actual estimation error. Moreover, the graded mean integration (GMI) representation is adopted for determining more representative numeric regression coefficients. Notably, to comprehensively compare the performance of the proposed model with other ones, three different criteria are adopted. The results from commonly used test numerical examples and an application to Taiwan's business monitoring indicator illustrate that the proposed dissemblance index method not only produces valid fuzzy regression models for fuzzy input-output data, but also has satisfactory and stable performance in terms of the total estimation error based on these three criteria.

Keywords: dissemblance index, forecasting, fuzzy sets, linear regression

Procedia PDF Downloads 360
2573 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai

Abstract:

In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.

Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU

Procedia PDF Downloads 152
2572 Communication of Expected Survival Time to Cancer Patients: How It Is Done and How It Should Be Done

Authors: Geir Kirkebøen

Abstract:

Most patients with serious diagnoses want to know their prognosis, in particular their expected survival time. As part of the informed consent process, physicians are legally obligated to communicate such information to patients. However, there is no established (evidence based) ‘best practice’ for how to do this. The two questions explored in this study are: How do physicians communicate expected survival time to patients, and how should it be done? We explored the first, descriptive question in a study with Norwegian oncologists as participants. The study had a scenario and a survey part. In the scenario part, the doctors should imagine that a patient, recently diagnosed with a serious cancer diagnosis, has asked them: ‘How long can I expect to live with such a diagnosis? I want an honest answer from you!’ The doctors should assume that the diagnosis is certain, and that from an extensive recent study they had optimal statistical knowledge, described in detail as a right-skewed survival curve, about how long such patients with this kind of diagnosis could be expected to live. The main finding was that very few of the oncologists would explain to the patient the variation in survival time as described by the survival curve. The majority would not give the patient an answer at all. Of those who gave an answer, the typical answer was that survival time varies a lot, that it is hard to say in a specific case, that we will come back to it later etc. The survey part of the study clearly indicates that the main reason why the oncologists would not deliver the mortality prognosis was discomfort with its uncertainty. The scenario part of the study confirmed this finding. The majority of the oncologists explicitly used the uncertainty, the variation in survival time, as a reason to not give the patient an answer. Many studies show that patients want realistic information about their mortality prognosis, and that they should be given hope. The question then is how to communicate the uncertainty of the prognosis in a realistic and optimistic – hopeful – way. Based on psychological research, our hypothesis is that the best way to do this is by explicitly describing the variation in survival time, the (usually) right skewed survival curve of the prognosis, and emphasize to the patient the (small) possibility of being a ‘lucky outlier’. We tested this hypothesis in two scenario studies with lay people as participants. The data clearly show that people prefer to receive expected survival time as a median value together with explicit information about the survival curve’s right skewedness (e.g., concrete examples of ‘positive outliers’), and that communicating expected survival time this way not only provides people with hope, but also gives them a more realistic understanding compared with the typical way expected survival time is communicated. Our data indicate that it is not the existence of the uncertainty regarding the mortality prognosis that is the problem for patients, but how this uncertainty is, or is not, communicated and explained.

Keywords: cancer patients, decision psychology, doctor-patient communication, mortality prognosis

Procedia PDF Downloads 328
2571 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission

Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong

Abstract:

Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.

Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU

Procedia PDF Downloads 288
2570 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function

Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu

Abstract:

Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.

Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model

Procedia PDF Downloads 390
2569 Performance Analysis of Multichannel OCDMA-FSO Network under Different Pervasive Conditions

Authors: Saru Arora, Anurag Sharma, Harsukhpreet Singh

Abstract:

To meet the growing need of high data rate and bandwidth, various efforts has been made nowadays for the efficient communication systems. Optical Code Division Multiple Access over Free space optics communication system seems an effective role for providing transmission at high data rate with low bit error rate and low amount of multiple access interference. This paper demonstrates the OCDMA over FSO communication system up to the range of 7000 m at a data rate of 5 Gbps. Initially, the 8 user OCDMA-FSO system is simulated and pseudo orthogonal codes are used for encoding. Also, the simulative analysis of various performance parameters like power and core effective area that are having an effect on the Bit error rate (BER) of the system is carried out. The simulative analysis reveals that the length of the transmission is limited by the multi-access interference (MAI) effect which arises when the number of users increases in the system.

Keywords: FSO, PSO, bit error rate (BER), opti system simulation, multiple access interference (MAI), q-factor

Procedia PDF Downloads 364
2568 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 176
2567 Multi-Period Supply Chain Design under Uncertainty

Authors: Amir Azaron

Abstract:

In this research, a stochastic programming approach is developed for designing supply chains with uncertain parameters. Demands and selling prices of products at markets are considered as the uncertain parameters. The proposed mathematical model will be multi-period two-stage stochastic programming, which takes into account the selection of retailer sites, suppliers, production levels, inventory levels, transportation modes to be used for shipping goods, and shipping quantities among the entities of the supply chain network. The objective function is to maximize the chain’s net present value. In order to maximize the chain’s NPV, the sum of first-stage investment costs on retailers, and the expected second-stage processing, inventory-holding and transportation costs should be kept as low as possible over multiple periods. The effects of supply uncertainty where suppliers are unreliable will also be investigated on the efficiency of the supply chain.

Keywords: supply chain management, stochastic programming, multiobjective programming, inventory control

Procedia PDF Downloads 293
2566 Improving Sales through Inventory Reduction: A Retail Chain Case Study

Authors: M. G. Mattos, J. E. Pécora Jr, T. A. Briso

Abstract:

Today's challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer’s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains.

Keywords: inventory, distribution, retail, risk, safety stock, sales, uncertainty

Procedia PDF Downloads 266
2565 Experimental Characterization of the Color Quality and Error Rate for an Red, Green, and Blue-Based Light Emission Diode-Fixture Used in Visible Light Communications

Authors: Juan F. Gutierrez, Jesus M. Quintero, Diego Sandoval

Abstract:

An important feature of LED technology is the fast on-off commutation, which allows data transmission. Visible Light Communication (VLC) is a wireless method to transmit data with visible light. Modulation formats such as On-Off Keying (OOK) and Color Shift Keying (CSK) are used in VLC. Since CSK is based on three color bands uses red, green, and blue monochromatic LED (RGB-LED) to define a pattern of chromaticities. This type of CSK provides poor color quality in the illuminated area. This work presents the design and implementation of a VLC system using RGB-based CSK with 16, 8, and 4 color points, mixing with a steady baseline of a phosphor white-LED, to improve the color quality of the LED-Fixture. The experimental system was assessed in terms of the Color Rendering Index (CRI) and the Symbol Error Rate (SER). Good color quality performance of the LED-Fixture was obtained with an acceptable SER. The laboratory setup used to characterize and calibrate an LED-Fixture is described.

Keywords: VLC, indoor lighting, color quality, symbol error rate, color shift keying

Procedia PDF Downloads 96
2564 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 214
2563 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 194
2562 A Posteriori Analysis of the Spectral Element Discretization of Heat Equation

Authors: Chor Nejmeddine, Ines Ben Omrane, Mohamed Abdelwahed

Abstract:

In this paper, we present a posteriori analysis of the discretization of the heat equation by spectral element method. We apply Euler's implicit scheme in time and spectral method in space. We propose two families of error indicators, both of which are built from the residual of the equation and we prove that they satisfy some optimal estimates. We present some numerical results which are coherent with the theoretical ones.

Keywords: heat equation, spectral elements discretization, error indicators, Euler

Procedia PDF Downloads 304
2561 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 116
2560 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.

Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate

Procedia PDF Downloads 284
2559 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM

Authors: Jaechoul Shin, Juhwan Hwang

Abstract:

In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.

Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork

Procedia PDF Downloads 441
2558 A Global Fuel Combustion Data Product and Its Application

Authors: Shu Tao, Rong Wang, Huizhong Shen, Ye Huang

Abstract:

High-resolution mapping of fuel combustion is essential for reducing uncertainties in assessments of greenhouse gases and air pollutant emissions. Such inventories provide valuable information for inferring carbon sinks, modeling pollutant transport, and developing control strategies. Previous inventories included only a few fuel types and were derived using national population proxies which may distort the geographical variation within countries. In this study, a global 0.1 degree by 0.1 degree geo-referenced inventory of fuel combustion (PKU-FUEL-2007) was developed for 64 fuel sub-types along with uncertainty analysis for the year 2007. Sub-national fuel consumption of large countries and major power-station locations were used. The disaggregation error can be reduced significantly by using the sub-nationally energy data, because the uneven distribution of per-capita fuel consumption within countries is taken into consideration. The PKU-FUEL was used to generate global emission inventories of CO2 (PKU-CO2-2007), polycyclic aromatic hydrocarbons (PKU-PAHs-2007), and black carbons (PKU-BC-2007). Atmospheric transport modeling and expsoure assessment were conducted for BC and PAHs based on the inventory.

Keywords: fuel, emission, BC, PAHs, atmospheric transport, exposure

Procedia PDF Downloads 327
2557 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 314
2556 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT

Authors: Imane Khalil, Quinn Pratt

Abstract:

In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.

Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification

Procedia PDF Downloads 218
2555 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier

Procedia PDF Downloads 465
2554 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances

Authors: Shabnam Pashaei, Mohammadali Badamchizadeh

Abstract:

This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.

Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization

Procedia PDF Downloads 408
2553 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 74