Search results for: ultra capacitor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 651

Search results for: ultra capacitor

381 A High Quality Factor Filter Based on Quasi- Periodic Photonic Structure

Authors: Hamed Alipour-Banaei, Farhad Mehdizadeh

Abstract:

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue-Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.

Keywords: Thue-Morse, filter, quality factor, photonic

Procedia PDF Downloads 571
380 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 504
379 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM

Authors: Gaddafi Sani Shehu, Tankut Yalcınoz, Abdullahi Bala Kunya

Abstract:

Multilevel inverters such as flying capacitor, diode-clamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.

Keywords: cascaded H-bridge multilevel inverter, power quality, selective harmonic elimination

Procedia PDF Downloads 416
378 A Pink-Pigmented Facultative Methylobacterium sp Isolated from Retama monosperma Root Nodules

Authors: N. Selami, M. Kaid Harche

Abstract:

A pink-pigmented, aerobic, facultatively methylotrophic bacterium, was isolated from Retama monosperma root nodules and identified as a member of the genus Methylobacterium. Inoculation of R. monosperma plants by a pure culture of isolate strain under a hydroponic condition, resulted, 10 dpi, the puffiness at lateral roots. The observation in detail the anatomy and ultra-structure of infection sites by light and electron microscopy show that the bacteria induce stimulation of the division of cortical cells and digestion of epidermis cells then, Methylobacterium was observed in the inter and intracellular spaces of the outer cortex root. These preliminary results allow us to suggest the establishment of an epi-endosymbiotic interaction between Methylobacterium sp and R. monosperma.

Keywords: endophytic colonization, Methylobacterium, microscopy, nodule, pink pigmented, Retama monosperma

Procedia PDF Downloads 363
377 Continuous Manufacturing of Ultra Fine Grained Materials by Severe Plastic Deformation Methods

Authors: Aslı Günay Bulutsuz, Mehmet Emin Yurci

Abstract:

Severe plastic deformation techniques are top-down deformation methods which enable superior mechanical properties by decreasing grain size. Different kind severe plastic deformation methods have been widely being used at various process temperature and geometries. Besides manufacturing advantages of severe plastic deformation technique, most of the types are being used only at the laboratory level. They cannot be adapted to industrial usage due to their continuous manufacturability and manufacturing costs. In order to enhance these manufacturing difficulties and enable widespread usage, different kinds of methods have been developed. In this review, a comprehensive literature research was fulfilled in order to highlight continuous severe plastic deformation methods.

Keywords: continuous manufacturing, severe plastic deformation, ultrafine grains, grain size refinement

Procedia PDF Downloads 235
376 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator

Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo

Abstract:

Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.

Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors

Procedia PDF Downloads 407
375 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.

Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation

Procedia PDF Downloads 356
374 Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion

Authors: Rachid Fermous, Rima Mebrek

Abstract:

Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

Keywords: plasma expansion, quantum degeneracy, weakly relativistic, under-dense plasma

Procedia PDF Downloads 85
373 Nuclear Near Misses and Their Learning for Healthcare

Authors: Nick Woodier, Iain Moppett

Abstract:

Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.

Keywords: culture, definitions, near miss, nuclear safety, patient safety

Procedia PDF Downloads 103
372 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters

Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava

Abstract:

Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predicted

Keywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)

Procedia PDF Downloads 641
371 Template-less Self-Assembled Morphologically Cubic BiFeO₃ for Improved Electrical Properties

Authors: Jenna Metera, Olivia Graeve

Abstract:

Ceramic capacitor technologies using lead based materials is being phased out for its environmental and handling hazards. Bismuth ferrite (BiFeO₃) is the next best replacement for those lead-based technologies. Unfortunately, the electrical properties in bismuth systems are not as robust as the lead alternatives. The improvement of electrical properties such as charge density, charge anisotropy, relative permittivity, and dielectric loss are the parameters that will make BiFeO₃ a competitive alternative to lead-based ceramic materials. In order to maximize the utility of these properties, we propose the ordering and an evaporation-induced self-assembly of a cubic morphology powder. Evaporation-induced self-assembly is a template-less, bottom-up, self-assembly option. The capillary forces move the particles closer together when the solvent evaporates, promoting organized agglomeration at the particle faces. The assembly of particles into organized structures can lead to enhanced properties compared to unorganized structures or single particles themselves. The interactions between the particles can be controlled based on the long-range order in the organized structure. The cubic particle morphology is produced through a hydrothermal synthesis with changes in the concentration of potassium hydroxide, which changes the morphology of the powder. Once the assembly materializes, the powder is fabricated into workable substrates for electrical testing after consolidation.

Keywords: evaporation, lead-free, morphology, self-assembly

Procedia PDF Downloads 121
370 Using Tyre Ash as Ground Resistance Improvement Material-Health and Environmental Perspective

Authors: George Eduful, Dominic Yeboah, Kingsford Joseph A. Atanga

Abstract:

The use of tyre ash as backfill material for ground electrode has been found to provide ultra-low and stable ground resistance value for grounding systems. However, health and environmental concerns have been expressed regarding its application. To address these concerns, the paper investigates chemical contents of the tyre ash and compares them to levels considered non-hazardous to health and the environment. It was found that the levels of the pollutant agents in the tyre ash were within the recommended safety margins. The rate of ground electrode corrosion in tyre ash material was also investigated. It was found that the effect of corrosion and the life of electrode can be extended if the tyre ash is mixed with cement. For best results, a ratio of 10 portions of tyre ash to 1 portion of cement is recommended.

Keywords: tyre ash, scrapped tyre, ground resistance reducing agent, rate of corrosion

Procedia PDF Downloads 402
369 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad

Abstract:

Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.

Keywords: optimization, voltage transformer, ferroresonance, modeling, damper

Procedia PDF Downloads 99
368 Design and Implementation of Bluetooth Controlled Autonomous Vehicle

Authors: Amanuel Berhanu Kesamo

Abstract:

This paper presents both circuit simulation and hardware implementation of a robot vehicle that can be either controlled manually via Bluetooth with video streaming or navigate autonomously to a target point by avoiding obstacles. In manual mode, the user controls the mobile robot using C# windows form interfaced via Bluetooth. The camera mounted on the robot is used to capture and send the real time video to the user. In autonomous mode, the robot plans the shortest path to the target point while avoiding obstacles along the way. Ultrasonic sensor is used for sensing the obstacle in its environment. An efficient path planning algorithm is implemented to navigate the robot along optimal route.

Keywords: Arduino Uno, autonomous, Bluetooth module, path planning, remote controlled robot, ultra sonic sensor

Procedia PDF Downloads 141
367 Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device

Authors: MeiBo, ZhaoXing, LuoLei, YuQingkui, TangMin, HanZhengsheng

Abstract:

The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor.

Keywords: single event transients, pulse laser, partially-depleted silicon-on-insulator, propagation-induced pulse broadening effect

Procedia PDF Downloads 410
366 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel

Abstract:

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)

Procedia PDF Downloads 216
365 Female Fans in Global Football Governance: A Call for Change

Authors: Yaron Covo, Tamar Kofman, Shira Palti

Abstract:

Over the recent decades, debates about the engagement of fans in football governance have focused on the club level and national level, emphasizing the significance of fans’ involvement in increasing the connection of clubs with the community, and in safeguarding the transparency, accountability, and clubs’ financial stability. This paper will offer a different conceptual justification for providing fans with access to decision-making processes in football. First, it will suggest that the participation of fans is necessary for addressing discriminatory practices against women in football stadiums. Second, it will argue that fans’ involvement in football governance is important not only at the club and national level but also at the global level, relying on the principles of Global Administrative Law. In contemporary men’s football, female fans face different forms of discrimination. Iranian women are still prohibited from attending football games at the domestic level; In Saudi Arabia, female fans are only permitted to enter designated family areas; Qatar – the host of the 2022 FIFA world cup – requires women to attend matches wearing modest clothing. Similarly, in Turkey, Lebanon, UAE, and Algeria, women face cultural barriers when attending men’s football games. In other countries, female fans suffer from subtle discrimination, including micro-aggressions, misogyny, sexism, and noninstitutionalized exclusion. Despite the vital role of fans in world football and the importance of football for many women’s lives, little has been done to address this problem. While FIFA recognizes that these discriminatory practices contradict its statutes, this recognition fails to materialize into meaningful change. This paper will argue that FIFA’s omission stems from two interrelated characteristics of world football: (1) the ultra-masculine nature of the game; (2) the insufficient recognition of fans’ significance. While fans have been given a voice in various football bodies on the domestic level, FIFA has yet to allow the representation of fans as stakeholders in world football governance. Since fans are a more heterogeneous group than players, the voices of those fans who do not fit the ultra-masculine model are not heard. Thus, by focusing mainly on male players, FIFA reproduces the hegemonic masculinity that feeds back into fan dynamics and marginalizes female fans. To rectify this problem, we will call on FIFA to provide fans and female fans in particular, with voice mechanisms and access to decision-making processes. In addition to its impact on the formation of fans’ identities, such a move will allow fans to demand better enforcement of existing anti-discrimination norms and new regulations to address their needs. The literature has yet to address the relationship between fans’ gender discrimination and global football governance. Building on Global Administrative Law scholarship and feminist theories, this paper will aim to fill this gap.

Keywords: fans, FIFA, football governance, gender discrimination, global administrative law, human rights

Procedia PDF Downloads 148
364 Using Self Organizing Feature Maps for Automatic Prostate Segmentation in TRUS Images

Authors: Ahad Salimi, Hassan Masoumi

Abstract:

Prostate cancer is one of the most common recognized cancers in men, and, is one of the most important mortality factors of cancer in this group. Determining of prostate’s boundary in TRUS (Transrectal Ultra Sound) images is very necessary for prostate cancer treatments. The weakness edges and speckle noise make the ultrasound images inherently to segment. In this paper a new automatic algorithm for prostate segmentation in TRUS images proposed that include three main stages. At first morphological smoothing and sticks filtering are used for noise removing. In second step, for finding a point in prostate region, SOFM algorithm is enlisted and in the last step, the boundary of prostate extracting accompanying active contour is employed. For validation of proposed method, a number of experiments are conducted. The results obtained by our algorithm show the promise of the proposed algorithm.

Keywords: SOFM, preprocessing, GVF contour, segmentation

Procedia PDF Downloads 327
363 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD

Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen

Abstract:

The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.

Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser

Procedia PDF Downloads 406
362 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems

Procedia PDF Downloads 74
361 Ultra High Performance Concrete Using Special Aggregates for Irregular Structures (the New Concrete Technology)

Authors: Arjun, A. D. Singh

Abstract:

Concrete the basic material using in construction across the global these days. The purpose of this special concrete is to provide extra strength and stability for irregular structure where the center of gravity is disturbed. In this paper an effort has been made to use different type of material aggregates has been discussed. We named As "STAR Aggregates" which has qualities to resist Shear, tension and compression forces. We have been divided into coarse aggregates and fine aggregates according to their sizes. Star Aggregates has interlocking behavior and cutting edge technology. Star aggregates had been draft and deign in Auto CAD and then analysis in ANSYS software. by using special aggregates we deign concrete grade of M40 for mega structures and irregular structure. This special concrete with STAR aggregates use in construction for irregular structure like Bridges, Skyscrapers or in deigned buildings.

Keywords: star aggregates, high performance concrete, material aggregates, interlocking

Procedia PDF Downloads 563
360 Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter

Authors: Priyanka R. Oberoi, Chandra B. Maurya, Prakash A. Mahanwar

Abstract:

Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively.

Keywords: bromophenol blue, dosimeter, gamma radiation, polymer

Procedia PDF Downloads 289
359 Hybrid Concrete Construction (HCC) for Sustainable Infrastructure Development in Nigeria

Authors: Muhammad Bello Ibrahim, M. Auwal Zakari, Aliyu Usman

Abstract:

Hybrid concrete construction (HCC) combines all the benefits of pre-casting with the advantages of cast in-situ construction. Merging the two, as a hybrid structure, results in even greater construction speed, value, and the overall economy. Its variety of uses has gained popularity in the United States and in Europe due to its distinctive benefits. However, the increase of its application in some countries (including Nigeria) has been relatively slow. Several researches have shown that hybrid construction offers an ultra-high performance concrete that offers superior strength, durability and aesthetics with design flexibility and within sustainability credentials, based on the available and economically visible technologies. This paper examines and documents the criterion that will help inform the process of deciding whether or not to adopt hybrid concrete construction (HCC) technology rather than more traditional alternatives. It also the present situation of design, construction and research on hybrid structures.

Keywords: hybrid concrete construction, Nigeria, sustainable infrastructure development, design flexibility

Procedia PDF Downloads 559
358 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems

Procedia PDF Downloads 96
357 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications

Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin

Abstract:

A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.

Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors

Procedia PDF Downloads 370
356 Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy

Authors: Hamid Alihosseini, Kamran Dehghani

Abstract:

In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C.

Keywords: bake hardening, ultrafine grain, nano grain, AA6061 aluminum,

Procedia PDF Downloads 340
355 A Vertical Grating Coupler with High Efficiency and Broadband Operation

Authors: Md. Asaduzzaman

Abstract:

A Silicon-on-insulator (SOI) perfectly vertical fibre-to-chip grating coupler is proposed and designed based on engineered subwavelength structures. The high directionality of the coupler is achieved by implementing step gratings to realize asymmetric diffraction and by applying effective index variation with auxiliary ultra-subwavelength gratings. The proposed structure is numerically analysed by using two-dimensional Finite Difference Time Domain (2D FDTD) method and achieves 96% (-0.2 dB) coupling efficiency and 39 nm 1-dB bandwidth. This highly efficient GC is necessary for applications where coupling efficiency between the optical fibre and nanophotonics waveguide is critically important, for instance, experiments of the quantum photonics integrated circuits. Such efficient and broadband perfectly vertical grating couplers are also significantly advantageous in highly dense photonic packaging.

Keywords: diffraction grating, FDTD, grating couplers, nanophotonic

Procedia PDF Downloads 68
354 Design of Speedy, Scanty Adder for Lossy Application Using QCA

Authors: T. Angeline Priyanka, R. Ganesan

Abstract:

Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.

Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover

Procedia PDF Downloads 556
353 Cosmic Background Reduction in the Radiocarbon Measurements by Liquid Scintillation Spectrometry

Authors: Natasa Todorovic, Jovana Nikolov

Abstract:

Guard detector efficiency, cosmic background, and its variation were determinate using ultra low-level liquid scintillation spectrometer Quantulus 1220, equipped with an anti-Compton guard detector, in the surface laboratory at the University of Novi Sad, Serbia, Atmospheric pressure variation has an observable effect on the anti-Compton guard detector count rate. and the cosmic muon flux is lower during a high-pressure period. Also, the guard detector Compton continuum provides a good view of the level of gamma radiation in the laboratory environment. The efficiency of the guard detector in the channel interval from 750 to 1024 was assessed to 93.45%; efficiency in the entire window (channels 1 to 1024) was 75.23%, which is in good agreement with literature data.

Keywords: cosmic radiation, background reduction, liquid scintillation counting, guard detector efficiency

Procedia PDF Downloads 155
352 Fabrication and Characterization of Gelatin Nanofibers Dissolved in Concentrated Acetic Acid

Authors: Kooshina Koosha, Sima Habibi, Azam Talebian

Abstract:

Electrospinning is a simple, versatile and widely accepted technique to produce ultra-fine fibers ranging from nanometer to micron. Recently there has been great interest in developing this technique to produce nanofibers with novel properties and functionalities. The electrospinning field is extremely broad, and consequently there have been many useful reviews discussing various aspects from detailed fiber formation mechanism to the formation of nanofibers and to discussion on a wide range of applications. On the other hand, the focus of this study is quite narrow, highlighting electrospinning parameters. This work will briefly cover the solution and processing parameters (for instance; concentration, solvent type, voltage, flow rate, distance between the collector and the tip of the needle) impacting the morphological characteristics of nanofibers, such as diameter. In this paper, a comprehensive work would be presented on the research of producing nanofibers from natural polymer entitled Gelatin.

Keywords: electrospinning, solution parameters, process parameters, natural fiber

Procedia PDF Downloads 273